v8/test/cctest/wasm/test-run-wasm-simd.cc
gdeepti eeefc74a11 [wasm] Swap the implementation of SIMD compare ops using Gt/Ge insteas of Lt/Le
Currently SIMD integer comparison ops are implemented using Lt/Le, this is
sub-optimal on Intel, because all compares are done using pcmpgt(d/w/b) that
clobber the destination register, and will need additional instructions to
when using Lt/Le as the base implementation. This CL proposes moving to Gt/Ge
as the underlying implementation as this will only require swapping operands
on MIPS and is consistent with x86/ARM instructions.

BUG=v8:6020

R=bbudge@chromium.org, bmeurer@chromium.org, bradnelson@chromium.org

Review-Url: https://codereview.chromium.org/2874403002
Cr-Commit-Position: refs/heads/master@{#45440}
2017-05-21 22:40:46 +00:00

2350 lines
97 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/assembler-inl.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/cctest/wasm/wasm-run-utils.h"
#include "test/common/wasm/wasm-macro-gen.h"
using namespace v8::base;
using namespace v8::internal;
using namespace v8::internal::compiler;
using namespace v8::internal::wasm;
namespace {
typedef float (*FloatUnOp)(float);
typedef float (*FloatBinOp)(float, float);
typedef int (*FloatCompareOp)(float, float);
typedef int32_t (*Int32UnOp)(int32_t);
typedef int32_t (*Int32BinOp)(int32_t, int32_t);
typedef int (*Int32CompareOp)(int32_t, int32_t);
typedef int32_t (*Int32ShiftOp)(int32_t, int);
typedef int16_t (*Int16UnOp)(int16_t);
typedef int16_t (*Int16BinOp)(int16_t, int16_t);
typedef int (*Int16CompareOp)(int16_t, int16_t);
typedef int16_t (*Int16ShiftOp)(int16_t, int);
typedef int8_t (*Int8UnOp)(int8_t);
typedef int8_t (*Int8BinOp)(int8_t, int8_t);
typedef int (*Int8CompareOp)(int8_t, int8_t);
typedef int8_t (*Int8ShiftOp)(int8_t, int);
#if !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_IA32 && \
!V8_TARGET_ARCH_MIPS && !V8_TARGET_ARCH_MIPS64
#define SIMD_LOWERING_TARGET 1
#else
#define SIMD_LOWERING_TARGET 0
#endif
// Generic expected value functions.
template <typename T>
T Negate(T a) {
return -a;
}
template <typename T>
T Add(T a, T b) {
return a + b;
}
template <typename T>
T Sub(T a, T b) {
return a - b;
}
template <typename T>
T Mul(T a, T b) {
return a * b;
}
template <typename T>
T Div(T a, T b) {
return a / b;
}
template <typename T>
T Minimum(T a, T b) {
return a <= b ? a : b;
}
template <typename T>
T Maximum(T a, T b) {
return a >= b ? a : b;
}
// For float operands, Min and Max must return NaN if either operand is NaN.
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_MIPS64
template <>
float Minimum(float a, float b) {
if (std::isnan(a) || std::isnan(b))
return std::numeric_limits<float>::quiet_NaN();
return a <= b ? a : b;
}
template <>
float Maximum(float a, float b) {
if (std::isnan(a) || std::isnan(b))
return std::numeric_limits<float>::quiet_NaN();
return a >= b ? a : b;
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS ||
// V8_TARGET_ARCH_MIPS64
template <typename T>
T UnsignedMinimum(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? a : b;
}
template <typename T>
T UnsignedMaximum(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? a : b;
}
template <typename T>
int Equal(T a, T b) {
return a == b ? 1 : 0;
}
template <typename T>
int NotEqual(T a, T b) {
return a != b ? 1 : 0;
}
template <typename T>
int Less(T a, T b) {
return a < b ? 1 : 0;
}
template <typename T>
int LessEqual(T a, T b) {
return a <= b ? 1 : 0;
}
template <typename T>
int Greater(T a, T b) {
return a > b ? 1 : 0;
}
template <typename T>
int GreaterEqual(T a, T b) {
return a >= b ? 1 : 0;
}
template <typename T>
int UnsignedLess(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) < static_cast<UnsignedT>(b) ? 1 : 0;
}
template <typename T>
int UnsignedLessEqual(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? 1 : 0;
}
template <typename T>
int UnsignedGreater(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) > static_cast<UnsignedT>(b) ? 1 : 0;
}
template <typename T>
int UnsignedGreaterEqual(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? 1 : 0;
}
template <typename T>
T LogicalShiftLeft(T a, int shift) {
return a << shift;
}
template <typename T>
T LogicalShiftRight(T a, int shift) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) >> shift;
}
template <typename T>
T Clamp(int64_t value) {
static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
int64_t min = static_cast<int64_t>(std::numeric_limits<T>::min());
int64_t max = static_cast<int64_t>(std::numeric_limits<T>::max());
int64_t clamped = std::max(min, std::min(max, value));
return static_cast<T>(clamped);
}
template <typename T>
int64_t Widen(T value) {
static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
return static_cast<int64_t>(value);
}
template <typename T>
int64_t UnsignedWiden(T value) {
static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<int64_t>(static_cast<UnsignedT>(value));
}
template <typename T>
T Narrow(int64_t value) {
return Clamp<T>(value);
}
template <typename T>
T UnsignedNarrow(int64_t value) {
static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<T>(Clamp<UnsignedT>(value & 0xffffffffu));
}
template <typename T>
T AddSaturate(T a, T b) {
return Clamp<T>(Widen(a) + Widen(b));
}
template <typename T>
T SubSaturate(T a, T b) {
return Clamp<T>(Widen(a) - Widen(b));
}
template <typename T>
T UnsignedAddSaturate(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return Clamp<UnsignedT>(UnsignedWiden(a) + UnsignedWiden(b));
}
template <typename T>
T UnsignedSubSaturate(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return Clamp<UnsignedT>(UnsignedWiden(a) - UnsignedWiden(b));
}
template <typename T>
T And(T a, T b) {
return a & b;
}
template <typename T>
T Or(T a, T b) {
return a | b;
}
template <typename T>
T Xor(T a, T b) {
return a ^ b;
}
template <typename T>
T Not(T a) {
return ~a;
}
template <typename T>
T LogicalNot(T a) {
return a == 0 ? 1 : 0;
}
template <typename T>
T Sqrt(T a) {
return std::sqrt(a);
}
template <typename T>
T Recip(T a) {
return 1.0f / a;
}
template <typename T>
T RecipSqrt(T a) {
return 1.0f / std::sqrt(a);
}
} // namespace
#define WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lane_value, lane_index) \
WASM_IF(WASM_##LANE_TYPE##_NE(WASM_GET_LOCAL(lane_value), \
WASM_SIMD_##TYPE##_EXTRACT_LANE( \
lane_index, WASM_GET_LOCAL(value))), \
WASM_RETURN1(WASM_ZERO))
#define WASM_SIMD_CHECK4(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3) \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0) \
, WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3)
#define WASM_SIMD_CHECK_SPLAT4(TYPE, value, LANE_TYPE, lv) \
WASM_SIMD_CHECK4(TYPE, value, LANE_TYPE, lv, lv, lv, lv)
#define WASM_SIMD_CHECK8(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3, lv4, lv5, \
lv6, lv7) \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0) \
, WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv4, 4), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv5, 5), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv6, 6), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv7, 7)
#define WASM_SIMD_CHECK_SPLAT8(TYPE, value, LANE_TYPE, lv) \
WASM_SIMD_CHECK8(TYPE, value, LANE_TYPE, lv, lv, lv, lv, lv, lv, lv, lv)
#define WASM_SIMD_CHECK16(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3, lv4, \
lv5, lv6, lv7, lv8, lv9, lv10, lv11, lv12, lv13, \
lv14, lv15) \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0) \
, WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv4, 4), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv5, 5), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv6, 6), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv7, 7), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv8, 8), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv9, 9), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv10, 10), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv11, 11), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv12, 12), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv13, 13), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv14, 14), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv15, 15)
#define WASM_SIMD_CHECK_SPLAT16(TYPE, value, LANE_TYPE, lv) \
WASM_SIMD_CHECK16(TYPE, value, LANE_TYPE, lv, lv, lv, lv, lv, lv, lv, lv, \
lv, lv, lv, lv, lv, lv, lv, lv)
#define WASM_SIMD_CHECK_F32_LANE(value, lane_value, lane_index) \
WASM_IF(WASM_F32_NE(WASM_GET_LOCAL(lane_value), \
WASM_SIMD_F32x4_EXTRACT_LANE(lane_index, \
WASM_GET_LOCAL(value))), \
WASM_RETURN1(WASM_ZERO))
#define WASM_SIMD_CHECK_F32x4(value, lv0, lv1, lv2, lv3) \
WASM_SIMD_CHECK_F32_LANE(value, lv0, 0) \
, WASM_SIMD_CHECK_F32_LANE(value, lv1, 1), \
WASM_SIMD_CHECK_F32_LANE(value, lv2, 2), \
WASM_SIMD_CHECK_F32_LANE(value, lv3, 3)
#define WASM_SIMD_CHECK_SPLAT_F32x4(value, lv) \
WASM_SIMD_CHECK_F32x4(value, lv, lv, lv, lv)
#define WASM_SIMD_CHECK_F32_LANE_ESTIMATE(value, low, high, lane_index) \
WASM_IF(WASM_F32_GT(WASM_GET_LOCAL(low), \
WASM_SIMD_F32x4_EXTRACT_LANE(lane_index, \
WASM_GET_LOCAL(value))), \
WASM_RETURN1(WASM_ZERO)) \
, WASM_IF(WASM_F32_LT(WASM_GET_LOCAL(high), \
WASM_SIMD_F32x4_EXTRACT_LANE(lane_index, \
WASM_GET_LOCAL(value))), \
WASM_RETURN1(WASM_ZERO))
#define WASM_SIMD_CHECK_SPLAT_F32x4_ESTIMATE(value, low, high) \
WASM_SIMD_CHECK_F32_LANE_ESTIMATE(value, low, high, 0) \
, WASM_SIMD_CHECK_F32_LANE_ESTIMATE(value, low, high, 1), \
WASM_SIMD_CHECK_F32_LANE_ESTIMATE(value, low, high, 2), \
WASM_SIMD_CHECK_F32_LANE_ESTIMATE(value, low, high, 3)
#define TO_BYTE(val) static_cast<byte>(val)
#define WASM_SIMD_OP(op) kSimdPrefix, TO_BYTE(op)
#define WASM_SIMD_SPLAT(Type, x) x, WASM_SIMD_OP(kExpr##Type##Splat)
#define WASM_SIMD_UNOP(op, x) x, WASM_SIMD_OP(op)
#define WASM_SIMD_BINOP(op, x, y) x, y, WASM_SIMD_OP(op)
#define WASM_SIMD_SHIFT_OP(op, shift, x) x, WASM_SIMD_OP(op), TO_BYTE(shift)
#define WASM_SIMD_CONCAT_OP(op, bytes, x, y) \
x, y, WASM_SIMD_OP(op), TO_BYTE(bytes)
#define WASM_SIMD_SELECT(format, x, y, z) \
x, y, z, WASM_SIMD_OP(kExprS##format##Select)
// Since boolean vectors can't be checked directly, materialize them into
// integer vectors using a Select operation.
#define WASM_SIMD_MATERIALIZE_BOOLS(format, x) \
x, WASM_SIMD_I##format##_SPLAT(WASM_ONE), \
WASM_SIMD_I##format##_SPLAT(WASM_ZERO), \
WASM_SIMD_OP(kExprS##format##Select)
#define WASM_SIMD_F32x4_SPLAT(x) x, WASM_SIMD_OP(kExprF32x4Splat)
#define WASM_SIMD_F32x4_EXTRACT_LANE(lane, x) \
x, WASM_SIMD_OP(kExprF32x4ExtractLane), TO_BYTE(lane)
#define WASM_SIMD_F32x4_REPLACE_LANE(lane, x, y) \
x, y, WASM_SIMD_OP(kExprF32x4ReplaceLane), TO_BYTE(lane)
#define WASM_SIMD_I32x4_SPLAT(x) x, WASM_SIMD_OP(kExprI32x4Splat)
#define WASM_SIMD_I32x4_EXTRACT_LANE(lane, x) \
x, WASM_SIMD_OP(kExprI32x4ExtractLane), TO_BYTE(lane)
#define WASM_SIMD_I32x4_REPLACE_LANE(lane, x, y) \
x, y, WASM_SIMD_OP(kExprI32x4ReplaceLane), TO_BYTE(lane)
#define WASM_SIMD_I16x8_SPLAT(x) x, WASM_SIMD_OP(kExprI16x8Splat)
#define WASM_SIMD_I16x8_EXTRACT_LANE(lane, x) \
x, WASM_SIMD_OP(kExprI16x8ExtractLane), TO_BYTE(lane)
#define WASM_SIMD_I16x8_REPLACE_LANE(lane, x, y) \
x, y, WASM_SIMD_OP(kExprI16x8ReplaceLane), TO_BYTE(lane)
#define WASM_SIMD_I8x16_SPLAT(x) x, WASM_SIMD_OP(kExprI8x16Splat)
#define WASM_SIMD_I8x16_EXTRACT_LANE(lane, x) \
x, WASM_SIMD_OP(kExprI8x16ExtractLane), TO_BYTE(lane)
#define WASM_SIMD_I8x16_REPLACE_LANE(lane, x, y) \
x, y, WASM_SIMD_OP(kExprI8x16ReplaceLane), TO_BYTE(lane)
#define WASM_SIMD_S32x4_SHUFFLE_OP(opcode, m, x, y) \
x, y, WASM_SIMD_OP(opcode), TO_BYTE(m[0]), TO_BYTE(m[1]), TO_BYTE(m[2]), \
TO_BYTE(m[3])
#define WASM_SIMD_S16x8_SHUFFLE_OP(opcode, m, x, y) \
x, y, WASM_SIMD_OP(opcode), TO_BYTE(m[0]), TO_BYTE(m[1]), TO_BYTE(m[2]), \
TO_BYTE(m[3]), TO_BYTE(m[4]), TO_BYTE(m[5]), TO_BYTE(m[6]), \
TO_BYTE(m[7])
#define WASM_SIMD_S8x16_SHUFFLE_OP(opcode, m, x, y) \
x, y, WASM_SIMD_OP(opcode), TO_BYTE(m[0]), TO_BYTE(m[1]), TO_BYTE(m[2]), \
TO_BYTE(m[3]), TO_BYTE(m[4]), TO_BYTE(m[5]), TO_BYTE(m[6]), \
TO_BYTE(m[7]), TO_BYTE(m[8]), TO_BYTE(m[9]), TO_BYTE(m[10]), \
TO_BYTE(m[11]), TO_BYTE(m[12]), TO_BYTE(m[13]), TO_BYTE(m[14]), \
TO_BYTE(m[15])
// Skip FP tests involving extremely large or extremely small values, which
// may fail due to non-IEEE-754 SIMD arithmetic on some platforms.
bool SkipFPValue(float x) {
float abs_x = std::fabs(x);
const float kSmallFloatThreshold = 1.0e-32f;
const float kLargeFloatThreshold = 1.0e32f;
return abs_x != 0.0f && // 0 or -0 are fine.
(abs_x < kSmallFloatThreshold || abs_x > kLargeFloatThreshold);
}
// Skip tests where the expected value is a NaN, since our WASM test code
// doesn't handle NaNs. Also skip extreme values.
bool SkipFPExpectedValue(float x) { return std::isnan(x) || SkipFPValue(x); }
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_MIPS64
WASM_EXEC_COMPILED_TEST(F32x4Splat) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float> r(kExecuteCompiled);
byte lane_val = 0;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(lane_val))),
WASM_SIMD_CHECK_SPLAT_F32x4(simd, lane_val), WASM_RETURN1(WASM_ONE));
FOR_FLOAT32_INPUTS(i) {
if (SkipFPExpectedValue(*i)) continue;
CHECK_EQ(1, r.Call(*i));
}
}
WASM_EXEC_COMPILED_TEST(F32x4ReplaceLane) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, float> r(kExecuteCompiled);
byte old_val = 0;
byte new_val = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(old_val))),
WASM_SET_LOCAL(simd,
WASM_SIMD_F32x4_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_F32x4(simd, new_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_F32x4(simd, new_val, new_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_F32x4(simd, new_val, new_val, new_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_SPLAT_F32x4(simd, new_val), WASM_RETURN1(WASM_ONE));
CHECK_EQ(1, r.Call(3.14159f, -1.5f));
}
// Tests both signed and unsigned conversion.
WASM_EXEC_COMPILED_TEST(F32x4ConvertI32x4) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, float, float> r(kExecuteCompiled);
byte a = 0;
byte expected_signed = 1;
byte expected_unsigned = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
byte simd2 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_UNOP(kExprF32x4SConvertI32x4,
WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT_F32x4(simd1, expected_signed),
WASM_SET_LOCAL(simd2, WASM_SIMD_UNOP(kExprF32x4UConvertI32x4,
WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT_F32x4(simd2, expected_unsigned),
WASM_RETURN1(WASM_ONE));
FOR_INT32_INPUTS(i) {
CHECK_EQ(1, r.Call(*i, static_cast<float>(*i),
static_cast<float>(static_cast<uint32_t>(*i))));
}
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS ||
// V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_MIPS64
void RunF32x4UnOpTest(WasmOpcode simd_op, FloatUnOp expected_op,
float error = 0.0f) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, float, float> r(kExecuteCompiled);
byte a = 0;
byte low = 1;
byte high = 2;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT_F32x4_ESTIMATE(simd, low, high),
WASM_RETURN1(WASM_ONE));
FOR_FLOAT32_INPUTS(i) {
if (SkipFPValue(*i)) continue;
float expected = expected_op(*i);
if (SkipFPExpectedValue(expected)) continue;
float abs_error = std::abs(expected) * error;
CHECK_EQ(1, r.Call(*i, expected - abs_error, expected + abs_error));
}
}
WASM_EXEC_COMPILED_TEST(F32x4Abs) { RunF32x4UnOpTest(kExprF32x4Abs, std::abs); }
WASM_EXEC_COMPILED_TEST(F32x4Neg) { RunF32x4UnOpTest(kExprF32x4Neg, Negate); }
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS ||
// V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
static const float kApproxError = 0.01f;
WASM_EXEC_COMPILED_TEST(F32x4RecipApprox) {
RunF32x4UnOpTest(kExprF32x4RecipApprox, Recip, kApproxError);
}
WASM_EXEC_COMPILED_TEST(F32x4RecipSqrtApprox) {
RunF32x4UnOpTest(kExprF32x4RecipSqrtApprox, RecipSqrt, kApproxError);
}
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_MIPS64
void RunF32x4BinOpTest(WasmOpcode simd_op, FloatBinOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, float, float> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1))),
WASM_SIMD_CHECK_SPLAT_F32x4(simd1, expected), WASM_RETURN1(WASM_ONE));
FOR_FLOAT32_INPUTS(i) {
if (SkipFPValue(*i)) continue;
FOR_FLOAT32_INPUTS(j) {
if (SkipFPValue(*j)) continue;
float expected = expected_op(*i, *j);
if (SkipFPExpectedValue(expected)) continue;
CHECK_EQ(1, r.Call(*i, *j, expected));
}
}
}
WASM_EXEC_COMPILED_TEST(F32x4Add) { RunF32x4BinOpTest(kExprF32x4Add, Add); }
WASM_EXEC_COMPILED_TEST(F32x4Sub) { RunF32x4BinOpTest(kExprF32x4Sub, Sub); }
WASM_EXEC_COMPILED_TEST(F32x4Mul) { RunF32x4BinOpTest(kExprF32x4Mul, Mul); }
WASM_EXEC_COMPILED_TEST(F32x4_Min) {
RunF32x4BinOpTest(kExprF32x4Min, Minimum);
}
WASM_EXEC_COMPILED_TEST(F32x4_Max) {
RunF32x4BinOpTest(kExprF32x4Max, Maximum);
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS ||
// V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_MIPS64
void RunF32x4CompareOpTest(WasmOpcode simd_op, FloatCompareOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, float, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1,
WASM_SIMD_MATERIALIZE_BOOLS(
32x4, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1)))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_ONE);
FOR_FLOAT32_INPUTS(i) {
if (SkipFPValue(*i)) continue;
FOR_FLOAT32_INPUTS(j) {
if (SkipFPValue(*j)) continue;
float diff = *i - *j;
if (SkipFPExpectedValue(diff)) continue;
CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j)));
}
}
}
WASM_EXEC_COMPILED_TEST(F32x4Eq) { RunF32x4CompareOpTest(kExprF32x4Eq, Equal); }
WASM_EXEC_COMPILED_TEST(F32x4Ne) {
RunF32x4CompareOpTest(kExprF32x4Ne, NotEqual);
}
WASM_EXEC_COMPILED_TEST(F32x4Gt) {
RunF32x4CompareOpTest(kExprF32x4Gt, Greater);
}
WASM_EXEC_COMPILED_TEST(F32x4Ge) {
RunF32x4CompareOpTest(kExprF32x4Ge, GreaterEqual);
}
WASM_EXEC_COMPILED_TEST(F32x4Lt) { RunF32x4CompareOpTest(kExprF32x4Lt, Less); }
WASM_EXEC_COMPILED_TEST(F32x4Le) {
RunF32x4CompareOpTest(kExprF32x4Le, LessEqual);
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS ||
// V8_TARGET_ARCH_MIPS64
WASM_EXEC_COMPILED_TEST(I32x4Splat) {
FLAG_wasm_simd_prototype = true;
// Store SIMD value in a local variable, use extract lane to check lane values
// This test is not a test for ExtractLane as Splat does not create
// interesting SIMD values.
//
// SetLocal(1, I32x4Splat(Local(0)));
// For each lane index
// if(Local(0) != I32x4ExtractLane(Local(1), index)
// return 0
//
// return 1
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
byte lane_val = 0;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(lane_val))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, lane_val), WASM_ONE);
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
}
WASM_EXEC_COMPILED_TEST(I32x4ReplaceLane) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte old_val = 0;
byte new_val = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(old_val))),
WASM_SET_LOCAL(simd,
WASM_SIMD_I32x4_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, new_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, new_val, new_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, new_val), WASM_ONE);
CHECK_EQ(1, r.Call(1, 2));
}
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET || \
V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
WASM_EXEC_COMPILED_TEST(I16x8Splat) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
byte lane_val = 0;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(lane_val))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, lane_val), WASM_ONE);
FOR_INT16_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
}
WASM_EXEC_COMPILED_TEST(I16x8ReplaceLane) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte old_val = 0;
byte new_val = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(old_val))),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, old_val, old_val,
old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, old_val,
old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val,
old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(4, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val,
new_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(5, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(6, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(7, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, new_val), WASM_ONE);
CHECK_EQ(1, r.Call(1, 2));
}
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET ||
// V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_MIPS64 || SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(I8x16Splat) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
byte lane_val = 0;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(lane_val))),
WASM_SIMD_CHECK_SPLAT8(I8x16, simd, I32, lane_val), WASM_ONE);
FOR_INT8_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
}
WASM_EXEC_COMPILED_TEST(I8x16ReplaceLane) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte old_val = 0;
byte new_val = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(old_val))),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
old_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(4, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(5, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(6, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(7, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(8, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(9, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(10, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(11, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, new_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(12, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(13, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(14, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(15, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd, I32, new_val), WASM_ONE);
CHECK_EQ(1, r.Call(1, 2));
}
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_MIPS ||
// V8_TARGET_ARCH_MIPS64 || SIMD_LOWERING_TARGET
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_MIPS64
// Determines if conversion from float to int will be valid.
bool CanRoundToZeroAndConvert(double val, bool unsigned_integer) {
const double max_uint = static_cast<double>(0xffffffffu);
const double max_int = static_cast<double>(kMaxInt);
const double min_int = static_cast<double>(kMinInt);
// Check for NaN.
if (val != val) {
return false;
}
// Round to zero and check for overflow. This code works because 32 bit
// integers can be exactly represented by ieee-754 64bit floating-point
// values.
return unsigned_integer ? (val < (max_uint + 1.0)) && (val > -1)
: (val < (max_int + 1.0)) && (val > (min_int - 1.0));
}
int ConvertInvalidValue(double val, bool unsigned_integer) {
if (val != val) {
return 0;
} else {
if (unsigned_integer) {
return (val < 0) ? 0 : 0xffffffffu;
} else {
return (val < 0) ? kMinInt : kMaxInt;
}
}
}
int32_t ConvertToInt(double val, bool unsigned_integer) {
int32_t result =
unsigned_integer ? static_cast<uint32_t>(val) : static_cast<int32_t>(val);
if (!CanRoundToZeroAndConvert(val, unsigned_integer)) {
result = ConvertInvalidValue(val, unsigned_integer);
}
return result;
}
// Tests both signed and unsigned conversion.
WASM_EXEC_COMPILED_TEST(I32x4ConvertF32x4) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected_signed = 1;
byte expected_unsigned = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
byte simd2 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_UNOP(kExprI32x4SConvertF32x4,
WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected_signed),
WASM_SET_LOCAL(simd2, WASM_SIMD_UNOP(kExprI32x4UConvertF32x4,
WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd2, I32, expected_unsigned), WASM_ONE);
FOR_FLOAT32_INPUTS(i) {
if (SkipFPValue(*i)) continue;
int32_t signed_value = ConvertToInt(*i, false);
int32_t unsigned_value = ConvertToInt(*i, true);
CHECK_EQ(1, r.Call(*i, signed_value, unsigned_value));
}
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS ||
// V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM
// Tests both signed and unsigned conversion from I16x8 (unpacking).
WASM_EXEC_COMPILED_TEST(I32x4ConvertI16x8) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte unpacked_signed = 1;
byte unpacked_unsigned = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
byte simd2 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8Low,
WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, unpacked_signed),
WASM_SET_LOCAL(simd2, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8High,
WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd2, I32, unpacked_unsigned), WASM_ONE);
FOR_INT16_INPUTS(i) {
int32_t unpacked_signed = Widen<int16_t>(*i);
int32_t unpacked_unsigned = UnsignedWiden<int16_t>(*i);
CHECK_EQ(1, r.Call(*i, unpacked_signed, unpacked_unsigned));
}
}
#endif // V8_TARGET_ARCH_ARM
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_MIPS64
void RunI32x4UnOpTest(WasmOpcode simd_op, Int32UnOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, expected), WASM_ONE);
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i))); }
}
WASM_EXEC_COMPILED_TEST(I32x4Neg) { RunI32x4UnOpTest(kExprI32x4Neg, Negate); }
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS ||
// V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(S128Not) { RunI32x4UnOpTest(kExprS128Not, Not); }
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
void RunI32x4BinOpTest(WasmOpcode simd_op, Int32BinOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_ONE);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_COMPILED_TEST(I32x4Add) { RunI32x4BinOpTest(kExprI32x4Add, Add); }
WASM_EXEC_COMPILED_TEST(I32x4Sub) { RunI32x4BinOpTest(kExprI32x4Sub, Sub); }
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET || \
V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
WASM_EXEC_COMPILED_TEST(I32x4Mul) { RunI32x4BinOpTest(kExprI32x4Mul, Mul); }
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET ||
// V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_X64
WASM_EXEC_COMPILED_TEST(S128And) { RunI32x4BinOpTest(kExprS128And, And); }
WASM_EXEC_COMPILED_TEST(S128Or) { RunI32x4BinOpTest(kExprS128Or, Or); }
WASM_EXEC_COMPILED_TEST(S128Xor) { RunI32x4BinOpTest(kExprS128Xor, Xor); }
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_X64
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET || \
V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
WASM_EXEC_COMPILED_TEST(I32x4Min) {
RunI32x4BinOpTest(kExprI32x4MinS, Minimum);
}
WASM_EXEC_COMPILED_TEST(I32x4MaxS) {
RunI32x4BinOpTest(kExprI32x4MaxS, Maximum);
}
WASM_EXEC_COMPILED_TEST(I32x4MinU) {
RunI32x4BinOpTest(kExprI32x4MinU, UnsignedMinimum);
}
WASM_EXEC_COMPILED_TEST(I32x4MaxU) {
RunI32x4BinOpTest(kExprI32x4MaxU, UnsignedMaximum);
}
void RunI32x4CompareOpTest(WasmOpcode simd_op, Int32CompareOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1,
WASM_SIMD_MATERIALIZE_BOOLS(
32x4, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1)))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_ONE);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_COMPILED_TEST(I32x4Eq) { RunI32x4CompareOpTest(kExprI32x4Eq, Equal); }
WASM_EXEC_COMPILED_TEST(I32x4Ne) {
RunI32x4CompareOpTest(kExprI32x4Ne, NotEqual);
}
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET ||
// V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_MIPS64
WASM_EXEC_COMPILED_TEST(I32x4LtS) {
RunI32x4CompareOpTest(kExprI32x4LtS, Less);
}
WASM_EXEC_COMPILED_TEST(I32x4LeS) {
RunI32x4CompareOpTest(kExprI32x4LeS, LessEqual);
}
WASM_EXEC_COMPILED_TEST(I32x4GtS) {
RunI32x4CompareOpTest(kExprI32x4GtS, Greater);
}
WASM_EXEC_COMPILED_TEST(I32x4GeS) {
RunI32x4CompareOpTest(kExprI32x4GeS, GreaterEqual);
}
WASM_EXEC_COMPILED_TEST(I32x4LtU) {
RunI32x4CompareOpTest(kExprI32x4LtU, UnsignedLess);
}
WASM_EXEC_COMPILED_TEST(I32x4LeU) {
RunI32x4CompareOpTest(kExprI32x4LeU, UnsignedLessEqual);
}
WASM_EXEC_COMPILED_TEST(I32x4GtU) {
RunI32x4CompareOpTest(kExprI32x4GtU, UnsignedGreater);
}
WASM_EXEC_COMPILED_TEST(I32x4GeU) {
RunI32x4CompareOpTest(kExprI32x4GeU, UnsignedGreaterEqual);
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS ||
// V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET || \
V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
void RunI32x4ShiftOpTest(WasmOpcode simd_op, Int32ShiftOp expected_op,
int shift) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(
simd, WASM_SIMD_SHIFT_OP(simd_op, shift, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, expected), WASM_ONE);
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i, shift))); }
}
WASM_EXEC_COMPILED_TEST(I32x4Shl) {
RunI32x4ShiftOpTest(kExprI32x4Shl, LogicalShiftLeft, 1);
}
WASM_EXEC_COMPILED_TEST(I32x4ShrS) {
RunI32x4ShiftOpTest(kExprI32x4ShrS, ArithmeticShiftRight, 1);
}
WASM_EXEC_COMPILED_TEST(I32x4ShrU) {
RunI32x4ShiftOpTest(kExprI32x4ShrU, LogicalShiftRight, 1);
}
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET ||
// V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM
// Tests both signed and unsigned conversion from I8x16 (unpacking).
WASM_EXEC_COMPILED_TEST(I16x8ConvertI8x16) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte unpacked_signed = 1;
byte unpacked_unsigned = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
byte simd2 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16Low,
WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd1, I32, unpacked_signed),
WASM_SET_LOCAL(simd2, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16High,
WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd2, I32, unpacked_unsigned), WASM_ONE);
FOR_INT8_INPUTS(i) {
int32_t unpacked_signed = Widen<int8_t>(*i);
int32_t unpacked_unsigned = UnsignedWiden<int8_t>(*i);
CHECK_EQ(1, r.Call(*i, unpacked_signed, unpacked_unsigned));
}
}
#endif // V8_TARGET_ARCH_ARM
#if SIMD_LOWERING_TARGET || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_MIPS64
void RunI16x8UnOpTest(WasmOpcode simd_op, Int16UnOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, expected), WASM_ONE);
FOR_INT16_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i))); }
}
WASM_EXEC_COMPILED_TEST(I16x8Neg) { RunI16x8UnOpTest(kExprI16x8Neg, Negate); }
#endif // SIMD_LOWERING_TARGET || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS ||
// V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM
// Tests both signed and unsigned conversion from I32x4 (packing).
WASM_EXEC_COMPILED_TEST(I16x8ConvertI32x4) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte packed_signed = 1;
byte packed_unsigned = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
byte simd2 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(kExprI16x8SConvertI32x4,
WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd1, I32, packed_signed),
WASM_SET_LOCAL(simd2, WASM_SIMD_BINOP(kExprI16x8UConvertI32x4,
WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd2, I32, packed_unsigned), WASM_ONE);
FOR_INT32_INPUTS(i) {
int32_t packed_signed = Narrow<int16_t>(*i);
int32_t packed_unsigned = UnsignedNarrow<int16_t>(*i);
// Sign-extend here, since ExtractLane sign extends.
if (packed_unsigned & 0x8000) packed_unsigned |= 0xffff0000;
CHECK_EQ(1, r.Call(*i, packed_signed, packed_unsigned));
}
}
#endif // V8_TARGET_ARCH_ARM
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET || \
V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
void RunI16x8BinOpTest(WasmOpcode simd_op, Int16BinOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd1, I32, expected), WASM_ONE);
FOR_INT16_INPUTS(i) {
FOR_INT16_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_COMPILED_TEST(I16x8Add) { RunI16x8BinOpTest(kExprI16x8Add, Add); }
WASM_EXEC_COMPILED_TEST(I16x8AddSaturateS) {
RunI16x8BinOpTest(kExprI16x8AddSaturateS, AddSaturate);
}
WASM_EXEC_COMPILED_TEST(I16x8Sub) { RunI16x8BinOpTest(kExprI16x8Sub, Sub); }
WASM_EXEC_COMPILED_TEST(I16x8SubSaturateS) {
RunI16x8BinOpTest(kExprI16x8SubSaturateS, SubSaturate);
}
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET ||
// V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET || \
V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
WASM_EXEC_COMPILED_TEST(I16x8Mul) { RunI16x8BinOpTest(kExprI16x8Mul, Mul); }
WASM_EXEC_COMPILED_TEST(I16x8MinS) {
RunI16x8BinOpTest(kExprI16x8MinS, Minimum);
}
WASM_EXEC_COMPILED_TEST(I16x8MaxS) {
RunI16x8BinOpTest(kExprI16x8MaxS, Maximum);
}
WASM_EXEC_COMPILED_TEST(I16x8AddSaturateU) {
RunI16x8BinOpTest(kExprI16x8AddSaturateU, UnsignedAddSaturate);
}
WASM_EXEC_COMPILED_TEST(I16x8SubSaturateU) {
RunI16x8BinOpTest(kExprI16x8SubSaturateU, UnsignedSubSaturate);
}
WASM_EXEC_COMPILED_TEST(I16x8MinU) {
RunI16x8BinOpTest(kExprI16x8MinU, UnsignedMinimum);
}
WASM_EXEC_COMPILED_TEST(I16x8MaxU) {
RunI16x8BinOpTest(kExprI16x8MaxU, UnsignedMaximum);
}
void RunI16x8CompareOpTest(WasmOpcode simd_op, Int16CompareOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1,
WASM_SIMD_MATERIALIZE_BOOLS(
16x8, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1)))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd1, I32, expected), WASM_ONE);
FOR_INT16_INPUTS(i) {
FOR_INT16_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_COMPILED_TEST(I16x8Eq) { RunI16x8CompareOpTest(kExprI16x8Eq, Equal); }
WASM_EXEC_COMPILED_TEST(I16x8Ne) {
RunI16x8CompareOpTest(kExprI16x8Ne, NotEqual);
}
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET ||
// V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_MIPS64
WASM_EXEC_COMPILED_TEST(I16x8LtS) {
RunI16x8CompareOpTest(kExprI16x8LtS, Less);
}
WASM_EXEC_COMPILED_TEST(I16x8LeS) {
RunI16x8CompareOpTest(kExprI16x8LeS, LessEqual);
}
WASM_EXEC_COMPILED_TEST(I16x8GtS) {
RunI16x8CompareOpTest(kExprI16x8GtS, Greater);
}
WASM_EXEC_COMPILED_TEST(I16x8GeS) {
RunI16x8CompareOpTest(kExprI16x8GeS, GreaterEqual);
}
WASM_EXEC_COMPILED_TEST(I16x8GtU) {
RunI16x8CompareOpTest(kExprI16x8GtU, UnsignedGreater);
}
WASM_EXEC_COMPILED_TEST(I16x8GeU) {
RunI16x8CompareOpTest(kExprI16x8GeU, UnsignedGreaterEqual);
}
WASM_EXEC_COMPILED_TEST(I16x8LtU) {
RunI16x8CompareOpTest(kExprI16x8LtU, UnsignedLess);
}
WASM_EXEC_COMPILED_TEST(I16x8LeU) {
RunI16x8CompareOpTest(kExprI16x8LeU, UnsignedLessEqual);
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_MIPS ||
// V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET || \
V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
void RunI16x8ShiftOpTest(WasmOpcode simd_op, Int16ShiftOp expected_op,
int shift) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(
simd, WASM_SIMD_SHIFT_OP(simd_op, shift, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, expected), WASM_ONE);
FOR_INT16_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i, shift))); }
}
WASM_EXEC_COMPILED_TEST(I16x8Shl) {
RunI16x8ShiftOpTest(kExprI16x8Shl, LogicalShiftLeft, 1);
}
WASM_EXEC_COMPILED_TEST(I16x8ShrS) {
RunI16x8ShiftOpTest(kExprI16x8ShrS, ArithmeticShiftRight, 1);
}
WASM_EXEC_COMPILED_TEST(I16x8ShrU) {
RunI16x8ShiftOpTest(kExprI16x8ShrU, LogicalShiftRight, 1);
}
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET ||
// V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || \
SIMD_LOWERING_TARGET
void RunI8x16UnOpTest(WasmOpcode simd_op, Int8UnOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd, I32, expected), WASM_ONE);
FOR_INT8_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i))); }
}
WASM_EXEC_COMPILED_TEST(I8x16Neg) { RunI8x16UnOpTest(kExprI8x16Neg, Negate); }
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 ||
// SIMD_LOWERING_TARGET
#if V8_TARGET_ARCH_ARM
// Tests both signed and unsigned conversion from I16x8 (packing).
WASM_EXEC_COMPILED_TEST(I8x16ConvertI16x8) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte packed_signed = 1;
byte packed_unsigned = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
byte simd2 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(kExprI8x16SConvertI16x8,
WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd1, I32, packed_signed),
WASM_SET_LOCAL(simd2, WASM_SIMD_BINOP(kExprI8x16UConvertI16x8,
WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd2, I32, packed_unsigned), WASM_ONE);
FOR_INT16_INPUTS(i) {
int32_t packed_signed = Narrow<int8_t>(*i);
int32_t packed_unsigned = UnsignedNarrow<int8_t>(*i);
// Sign-extend here, since ExtractLane sign extends.
if (packed_unsigned & 0x80) packed_unsigned |= 0xffffff00;
CHECK_EQ(1, r.Call(*i, packed_signed, packed_unsigned));
}
}
#endif // V8_TARGET_ARCH_ARM
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET
void RunI8x16BinOpTest(WasmOpcode simd_op, Int8BinOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd1, I32, expected), WASM_ONE);
FOR_INT8_INPUTS(i) {
FOR_INT8_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_COMPILED_TEST(I8x16Add) { RunI8x16BinOpTest(kExprI8x16Add, Add); }
WASM_EXEC_COMPILED_TEST(I8x16AddSaturateS) {
RunI8x16BinOpTest(kExprI8x16AddSaturateS, AddSaturate);
}
WASM_EXEC_COMPILED_TEST(I8x16Sub) { RunI8x16BinOpTest(kExprI8x16Sub, Sub); }
WASM_EXEC_COMPILED_TEST(I8x16SubSaturateS) {
RunI8x16BinOpTest(kExprI8x16SubSaturateS, SubSaturate);
}
WASM_EXEC_COMPILED_TEST(I8x16MinS) {
RunI8x16BinOpTest(kExprI8x16MinS, Minimum);
}
WASM_EXEC_COMPILED_TEST(I8x16MaxS) {
RunI8x16BinOpTest(kExprI8x16MaxS, Maximum);
}
WASM_EXEC_COMPILED_TEST(I8x16AddSaturateU) {
RunI8x16BinOpTest(kExprI8x16AddSaturateU, UnsignedAddSaturate);
}
WASM_EXEC_COMPILED_TEST(I8x16SubSaturateU) {
RunI8x16BinOpTest(kExprI8x16SubSaturateU, UnsignedSubSaturate);
}
WASM_EXEC_COMPILED_TEST(I8x16MinU) {
RunI8x16BinOpTest(kExprI8x16MinU, UnsignedMinimum);
}
WASM_EXEC_COMPILED_TEST(I8x16MaxU) {
RunI8x16BinOpTest(kExprI8x16MaxU, UnsignedMaximum);
}
void RunI8x16CompareOpTest(WasmOpcode simd_op, Int8CompareOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1,
WASM_SIMD_MATERIALIZE_BOOLS(
8x16, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1)))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd1, I32, expected), WASM_ONE);
FOR_INT8_INPUTS(i) {
FOR_INT8_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_COMPILED_TEST(I8x16Eq) { RunI8x16CompareOpTest(kExprI8x16Eq, Equal); }
WASM_EXEC_COMPILED_TEST(I8x16Ne) {
RunI8x16CompareOpTest(kExprI8x16Ne, NotEqual);
}
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || SIMD_LOWERING_TARGET
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(I8x16Mul) { RunI8x16BinOpTest(kExprI8x16Mul, Mul); }
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64
// TODO(gdeepti): Remove special case for ARM64 after v8:6421 is fixed
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET && !V8_TARGET_ARCH_ARM64
WASM_EXEC_COMPILED_TEST(I8x16GtS) {
RunI8x16CompareOpTest(kExprI8x16GtS, Greater);
}
WASM_EXEC_COMPILED_TEST(I8x16GeS) {
RunI8x16CompareOpTest(kExprI8x16GeS, GreaterEqual);
}
WASM_EXEC_COMPILED_TEST(I8x16LtS) {
RunI8x16CompareOpTest(kExprI8x16LtS, Less);
}
WASM_EXEC_COMPILED_TEST(I8x16LeS) {
RunI8x16CompareOpTest(kExprI8x16LeS, LessEqual);
}
WASM_EXEC_COMPILED_TEST(I8x16GtU) {
RunI8x16CompareOpTest(kExprI8x16GtU, UnsignedGreater);
}
WASM_EXEC_COMPILED_TEST(I8x16GeU) {
RunI8x16CompareOpTest(kExprI8x16GeU, UnsignedGreaterEqual);
}
WASM_EXEC_COMPILED_TEST(I8x16LtU) {
RunI8x16CompareOpTest(kExprI8x16LtU, UnsignedLess);
}
WASM_EXEC_COMPILED_TEST(I8x16LeU) {
RunI8x16CompareOpTest(kExprI8x16LeU, UnsignedLessEqual);
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET && !V8_TARGET_ARCH_ARM64
void RunI8x16ShiftOpTest(WasmOpcode simd_op, Int8ShiftOp expected_op,
int shift) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(
simd, WASM_SIMD_SHIFT_OP(simd_op, shift, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd, I32, expected), WASM_ONE);
FOR_INT8_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i, shift))); }
}
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || \
SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(I8x16Shl) {
RunI8x16ShiftOpTest(kExprI8x16Shl, LogicalShiftLeft, 1);
}
WASM_EXEC_COMPILED_TEST(I8x16ShrS) {
RunI8x16ShiftOpTest(kExprI8x16ShrS, ArithmeticShiftRight, 1);
}
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 ||
// SIMD_LOWERING_TARGET
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(I8x16ShrU) {
RunI8x16ShiftOpTest(kExprI8x16ShrU, LogicalShiftRight, 1);
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_MIPS64
// Test Select by making a mask where the first two lanes are true and the rest
// false, and comparing for non-equality with zero to materialize a bool vector.
#define WASM_SIMD_SELECT_TEST(format) \
WASM_EXEC_COMPILED_TEST(S##format##Select) { \
FLAG_wasm_simd_prototype = true; \
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled); \
byte val1 = 0; \
byte val2 = 1; \
byte src1 = r.AllocateLocal(kWasmS128); \
byte src2 = r.AllocateLocal(kWasmS128); \
byte zero = r.AllocateLocal(kWasmS128); \
byte mask = r.AllocateLocal(kWasmS128); \
BUILD(r, WASM_SET_LOCAL( \
src1, WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val1))), \
WASM_SET_LOCAL(src2, \
WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val2))), \
WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \
WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \
1, WASM_GET_LOCAL(zero), WASM_I32V(-1))), \
WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \
2, WASM_GET_LOCAL(mask), WASM_I32V(-1))), \
WASM_SET_LOCAL( \
mask, \
WASM_SIMD_SELECT(format, WASM_SIMD_BINOP(kExprI##format##Ne, \
WASM_GET_LOCAL(mask), \
WASM_GET_LOCAL(zero)), \
WASM_GET_LOCAL(src1), WASM_GET_LOCAL(src2))), \
WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 0), \
WASM_SIMD_CHECK_LANE(I##format, mask, I32, val1, 1), \
WASM_SIMD_CHECK_LANE(I##format, mask, I32, val1, 2), \
WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 3), WASM_ONE); \
\
CHECK_EQ(1, r.Call(0x12, 0x34)); \
}
WASM_SIMD_SELECT_TEST(32x4)
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_MIPS ||
// V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_MIPS64
WASM_SIMD_SELECT_TEST(16x8)
WASM_SIMD_SELECT_TEST(8x16)
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_MIPS ||
// V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64
// Test binary ops with two lane test patterns, all lanes distinct.
template <typename T>
void RunBinaryLaneOpTest(
WasmOpcode simd_op,
const std::array<T, kSimd128Size / sizeof(T)>& expected) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
// Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7].
T* src0 = r.module().AddGlobal<T>(kWasmS128);
T* src1 = r.module().AddGlobal<T>(kWasmS128);
static const int kElems = kSimd128Size / sizeof(T);
for (int i = 0; i < kElems; i++) {
src0[i] = i;
src1[i] = kElems + i;
}
switch (simd_op) {
case kExprS32x4Shuffle: {
BUILD(r,
WASM_SET_GLOBAL(0, WASM_SIMD_S32x4_SHUFFLE_OP(simd_op, expected,
WASM_GET_GLOBAL(0),
WASM_GET_GLOBAL(1))),
WASM_ONE);
break;
}
case kExprS16x8Shuffle: {
BUILD(r,
WASM_SET_GLOBAL(0, WASM_SIMD_S16x8_SHUFFLE_OP(simd_op, expected,
WASM_GET_GLOBAL(0),
WASM_GET_GLOBAL(1))),
WASM_ONE);
break;
}
case kExprS8x16Shuffle: {
BUILD(r,
WASM_SET_GLOBAL(0, WASM_SIMD_S8x16_SHUFFLE_OP(simd_op, expected,
WASM_GET_GLOBAL(0),
WASM_GET_GLOBAL(1))),
WASM_ONE);
break;
}
default: {
BUILD(r,
WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(simd_op, WASM_GET_GLOBAL(0),
WASM_GET_GLOBAL(1))),
WASM_ONE);
break;
}
}
CHECK_EQ(1, r.Call());
for (size_t i = 0; i < expected.size(); i++) {
CHECK_EQ(src0[i], expected[i]);
}
}
WASM_EXEC_COMPILED_TEST(I32x4AddHoriz) {
RunBinaryLaneOpTest<int32_t>(kExprI32x4AddHoriz, {{1, 5, 9, 13}});
}
WASM_EXEC_COMPILED_TEST(I16x8AddHoriz) {
RunBinaryLaneOpTest<int16_t>(kExprI16x8AddHoriz,
{{1, 5, 9, 13, 17, 21, 25, 29}});
}
#endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64
#if V8_TARGET_ARCH_ARM
WASM_EXEC_COMPILED_TEST(F32x4AddHoriz) {
RunBinaryLaneOpTest<float>(kExprF32x4AddHoriz, {{1.0f, 5.0f, 9.0f, 13.0f}});
}
// Test some regular shuffles that may have special handling on some targets.
// Test a normal and unary versions (where second operand isn't used).
WASM_EXEC_COMPILED_TEST(S32x4ZipLeft) {
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{0, 4, 1, 5}});
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{0, 0, 1, 1}});
}
WASM_EXEC_COMPILED_TEST(S32x4ZipRight) {
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{2, 6, 3, 7}});
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{2, 2, 3, 3}});
}
WASM_EXEC_COMPILED_TEST(S32x4UnzipLeft) {
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{0, 2, 4, 6}});
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{0, 2, 0, 2}});
}
WASM_EXEC_COMPILED_TEST(S32x4UnzipRight) {
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{1, 3, 5, 7}});
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{1, 3, 1, 3}});
}
WASM_EXEC_COMPILED_TEST(S32x4TransposeLeft) {
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{0, 4, 2, 6}});
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{0, 0, 2, 2}});
}
WASM_EXEC_COMPILED_TEST(S32x4TransposeRight) {
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{1, 5, 3, 7}});
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{1, 1, 3, 3}});
}
// Reverses are only unary.
WASM_EXEC_COMPILED_TEST(S32x2Reverse) {
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{1, 0, 3, 2}});
}
// Test irregular shuffle.
WASM_EXEC_COMPILED_TEST(S32x4Irregular) {
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{0, 4, 4, 5}});
RunBinaryLaneOpTest<int32_t>(kExprS32x4Shuffle, {{0, 0, 0, 1}});
}
WASM_EXEC_COMPILED_TEST(S16x8ZipLeft) {
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle, {{0, 8, 1, 9, 2, 10, 3, 11}});
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle, {{0, 0, 1, 1, 2, 2, 3, 3}});
}
WASM_EXEC_COMPILED_TEST(S16x8ZipRight) {
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle,
{{4, 12, 5, 13, 6, 14, 7, 15}});
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle, {{4, 4, 5, 5, 6, 6, 7, 7}});
}
WASM_EXEC_COMPILED_TEST(S16x8UnzipLeft) {
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle,
{{0, 2, 4, 6, 8, 10, 12, 14}});
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle, {{0, 2, 4, 6, 0, 2, 4, 6}});
}
WASM_EXEC_COMPILED_TEST(S16x8UnzipRight) {
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle,
{{1, 3, 5, 7, 9, 11, 13, 15}});
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle, {{1, 3, 5, 7, 1, 3, 5, 7}});
}
WASM_EXEC_COMPILED_TEST(S16x8TransposeLeft) {
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle,
{{0, 8, 2, 10, 4, 12, 6, 14}});
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle, {{0, 0, 2, 2, 4, 4, 6, 6}});
}
WASM_EXEC_COMPILED_TEST(S16x8TransposeRight) {
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle,
{{1, 9, 3, 11, 5, 13, 7, 15}});
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle, {{1, 1, 3, 3, 5, 5, 7, 7}});
}
WASM_EXEC_COMPILED_TEST(S16x4Reverse) {
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle, {{3, 2, 1, 0, 7, 6, 5, 4}});
}
WASM_EXEC_COMPILED_TEST(S16x2Reverse) {
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle, {{1, 0, 3, 2, 5, 4, 7, 6}});
}
WASM_EXEC_COMPILED_TEST(S16x8Irregular) {
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle, {{0, 8, 8, 0, 2, 10, 3, 11}});
RunBinaryLaneOpTest<int16_t>(kExprS16x8Shuffle, {{0, 0, 0, 0, 2, 2, 3, 3}});
}
WASM_EXEC_COMPILED_TEST(S8x16ZipLeft) {
RunBinaryLaneOpTest<int8_t>(
kExprS8x16Shuffle,
{{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}});
RunBinaryLaneOpTest<int8_t>(
kExprS8x16Shuffle, {{0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}});
}
WASM_EXEC_COMPILED_TEST(S8x16ZipRight) {
RunBinaryLaneOpTest<int8_t>(
kExprS8x16Shuffle,
{{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}});
RunBinaryLaneOpTest<int8_t>(
kExprS8x16Shuffle,
{{8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15}});
}
WASM_EXEC_COMPILED_TEST(S8x16UnzipLeft) {
RunBinaryLaneOpTest<int8_t>(
kExprS8x16Shuffle,
{{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}});
RunBinaryLaneOpTest<int8_t>(kExprS8x16Shuffle, {{0, 2, 4, 6, 8, 10, 12, 14, 0,
2, 4, 6, 8, 10, 12, 14}});
}
WASM_EXEC_COMPILED_TEST(S8x16UnzipRight) {
RunBinaryLaneOpTest<int8_t>(
kExprS8x16Shuffle,
{{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}});
RunBinaryLaneOpTest<int8_t>(kExprS8x16Shuffle, {{1, 3, 5, 7, 9, 11, 13, 15, 1,
3, 5, 7, 9, 11, 13, 15}});
}
WASM_EXEC_COMPILED_TEST(S8x16TransposeLeft) {
RunBinaryLaneOpTest<int8_t>(
kExprS8x16Shuffle,
{{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}});
RunBinaryLaneOpTest<int8_t>(kExprS8x16Shuffle, {{0, 0, 2, 2, 4, 4, 6, 6, 8, 8,
10, 10, 12, 12, 14, 14}});
}
WASM_EXEC_COMPILED_TEST(S8x16TransposeRight) {
RunBinaryLaneOpTest<int8_t>(
kExprS8x16Shuffle,
{{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}});
RunBinaryLaneOpTest<int8_t>(kExprS8x16Shuffle, {{1, 1, 3, 3, 5, 5, 7, 7, 9, 9,
11, 11, 13, 13, 15, 15}});
}
WASM_EXEC_COMPILED_TEST(S8x8Reverse) {
RunBinaryLaneOpTest<int8_t>(kExprS8x16Shuffle, {{7, 6, 5, 4, 3, 2, 1, 0, 15,
14, 13, 12, 11, 10, 9, 8}});
}
WASM_EXEC_COMPILED_TEST(S8x4Reverse) {
RunBinaryLaneOpTest<int8_t>(kExprS8x16Shuffle, {{3, 2, 1, 0, 7, 6, 5, 4, 11,
10, 9, 8, 15, 14, 13, 12}});
}
WASM_EXEC_COMPILED_TEST(S8x2Reverse) {
RunBinaryLaneOpTest<int8_t>(kExprS8x16Shuffle, {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8,
11, 10, 13, 12, 15, 14}});
}
WASM_EXEC_COMPILED_TEST(S8x16Irregular) {
RunBinaryLaneOpTest<int8_t>(
kExprS8x16Shuffle,
{{0, 16, 0, 16, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}});
RunBinaryLaneOpTest<int8_t>(
kExprS8x16Shuffle, {{0, 0, 0, 0, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}});
}
// Test shuffles that concatenate the two vectors.
template <typename T>
void RunConcatOpTest(WasmOpcode simd_op) {
static const int kLanes = kSimd128Size / sizeof(T);
std::array<T, kLanes> expected;
for (int bias = 1; bias < kLanes; bias++) {
int i = 0;
// last kLanes - bias bytes of first vector.
for (int j = bias; j < kLanes; j++) {
expected[i++] = j;
}
// first bias lanes of second vector
for (int j = 0; j < bias; j++) {
expected[i++] = j + kLanes;
}
RunBinaryLaneOpTest<T>(simd_op, expected);
}
}
WASM_EXEC_COMPILED_TEST(S32x4Concat) {
RunConcatOpTest<int32_t>(kExprS32x4Shuffle);
}
WASM_EXEC_COMPILED_TEST(S16x8Concat) {
RunConcatOpTest<int16_t>(kExprS16x8Shuffle);
}
WASM_EXEC_COMPILED_TEST(S8x16Concat) {
RunConcatOpTest<int8_t>(kExprS8x16Shuffle);
}
// Boolean unary operations are 'AllTrue' and 'AnyTrue', which return an integer
// result. Use relational ops on numeric vectors to create the boolean vector
// test inputs. Test inputs with all true, all false, one true, and one false.
#define WASM_SIMD_BOOL_REDUCTION_TEST(format, lanes) \
WASM_EXEC_TEST(ReductionTest##lanes) { \
FLAG_wasm_simd_prototype = true; \
WasmRunner<int32_t> r(kExecuteCompiled); \
byte zero = r.AllocateLocal(kWasmS128); \
byte one_one = r.AllocateLocal(kWasmS128); \
byte reduced = r.AllocateLocal(kWasmI32); \
BUILD(r, WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \
WASM_SET_LOCAL( \
reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue, \
WASM_SIMD_BINOP(kExprI##format##Eq, \
WASM_GET_LOCAL(zero), \
WASM_GET_LOCAL(zero)))), \
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_SET_LOCAL( \
reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue, \
WASM_SIMD_BINOP(kExprI##format##Ne, \
WASM_GET_LOCAL(zero), \
WASM_GET_LOCAL(zero)))), \
WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_SET_LOCAL( \
reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue, \
WASM_SIMD_BINOP(kExprI##format##Eq, \
WASM_GET_LOCAL(zero), \
WASM_GET_LOCAL(zero)))), \
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_SET_LOCAL( \
reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue, \
WASM_SIMD_BINOP(kExprI##format##Ne, \
WASM_GET_LOCAL(zero), \
WASM_GET_LOCAL(zero)))), \
WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_SET_LOCAL(one_one, \
WASM_SIMD_I##format##_REPLACE_LANE( \
lanes - 1, WASM_GET_LOCAL(zero), WASM_ONE)), \
WASM_SET_LOCAL( \
reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue, \
WASM_SIMD_BINOP(kExprI##format##Eq, \
WASM_GET_LOCAL(one_one), \
WASM_GET_LOCAL(zero)))), \
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_SET_LOCAL( \
reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue, \
WASM_SIMD_BINOP(kExprI##format##Ne, \
WASM_GET_LOCAL(one_one), \
WASM_GET_LOCAL(zero)))), \
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_SET_LOCAL( \
reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue, \
WASM_SIMD_BINOP(kExprI##format##Eq, \
WASM_GET_LOCAL(one_one), \
WASM_GET_LOCAL(zero)))), \
WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_SET_LOCAL( \
reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue, \
WASM_SIMD_BINOP(kExprI##format##Ne, \
WASM_GET_LOCAL(one_one), \
WASM_GET_LOCAL(zero)))), \
WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_ONE); \
CHECK_EQ(1, r.Call()); \
}
WASM_SIMD_BOOL_REDUCTION_TEST(32x4, 4)
WASM_SIMD_BOOL_REDUCTION_TEST(16x8, 8)
WASM_SIMD_BOOL_REDUCTION_TEST(8x16, 16)
#define WASM_SIMD_UNOP_HELPER(format, lanes, lane_size) \
void RunS1x##lanes##UnOpTest(WasmOpcode simd_op, \
Int##lane_size##UnOp expected_op) { \
FLAG_wasm_simd_prototype = true; \
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled); \
byte a = 0; \
byte expected = 1; \
byte zero = r.AllocateLocal(kWasmS128); \
byte simd = r.AllocateLocal(kWasmS128); \
BUILD( \
r, WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \
WASM_SET_LOCAL(simd, WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(a))), \
WASM_SET_LOCAL( \
simd, \
WASM_SIMD_MATERIALIZE_BOOLS( \
format, WASM_SIMD_UNOP( \
simd_op, WASM_SIMD_BINOP(kExprI##format##Ne, \
WASM_GET_LOCAL(simd), \
WASM_GET_LOCAL(zero))))), \
WASM_SIMD_CHECK_SPLAT##lanes(I##format, simd, I32, expected), \
WASM_ONE); \
\
for (int i = 0; i <= 1; i++) { \
CHECK_EQ(1, r.Call(i, expected_op(i))); \
} \
}
WASM_SIMD_UNOP_HELPER(32x4, 4, 32);
WASM_SIMD_UNOP_HELPER(16x8, 8, 16);
WASM_SIMD_UNOP_HELPER(8x16, 16, 8);
#undef WASM_SIMD_UNOP_HELPER
WASM_EXEC_COMPILED_TEST(S1x4Not) { RunS1x4UnOpTest(kExprS1x4Not, LogicalNot); }
WASM_EXEC_COMPILED_TEST(S1x8Not) { RunS1x8UnOpTest(kExprS1x8Not, LogicalNot); }
WASM_EXEC_COMPILED_TEST(S1x16Not) {
RunS1x16UnOpTest(kExprS1x16Not, LogicalNot);
}
#define WASM_SIMD_BINOP_HELPER(format, lanes, lane_size) \
void RunS1x##lanes##BinOpTest(WasmOpcode simd_op, \
Int##lane_size##BinOp expected_op) { \
FLAG_wasm_simd_prototype = true; \
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled); \
byte a = 0; \
byte b = 1; \
byte expected = 2; \
byte zero = r.AllocateLocal(kWasmS128); \
byte simd0 = r.AllocateLocal(kWasmS128); \
byte simd1 = r.AllocateLocal(kWasmS128); \
BUILD( \
r, WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \
WASM_SET_LOCAL(simd0, WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(a))), \
WASM_SET_LOCAL(simd1, WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(b))), \
WASM_SET_LOCAL( \
simd1, \
WASM_SIMD_MATERIALIZE_BOOLS( \
format, \
WASM_SIMD_BINOP( \
simd_op, \
WASM_SIMD_BINOP(kExprI##format##Ne, WASM_GET_LOCAL(simd0), \
WASM_GET_LOCAL(zero)), \
WASM_SIMD_BINOP(kExprI##format##Ne, WASM_GET_LOCAL(simd1), \
WASM_GET_LOCAL(zero))))), \
WASM_SIMD_CHECK_SPLAT##lanes(I##format, simd1, I32, expected), \
WASM_ONE); \
\
for (int i = 0; i <= 1; i++) { \
for (int j = 0; j <= 1; j++) { \
CHECK_EQ(1, r.Call(i, j, expected_op(i, j))); \
} \
} \
}
WASM_SIMD_BINOP_HELPER(32x4, 4, 32);
WASM_SIMD_BINOP_HELPER(16x8, 8, 16);
WASM_SIMD_BINOP_HELPER(8x16, 16, 8);
#undef WASM_SIMD_BINOP_HELPER
WASM_EXEC_COMPILED_TEST(S1x4And) { RunS1x4BinOpTest(kExprS1x4And, And); }
WASM_EXEC_COMPILED_TEST(S1x4Or) { RunS1x4BinOpTest(kExprS1x4Or, Or); }
WASM_EXEC_COMPILED_TEST(S1x4Xor) { RunS1x4BinOpTest(kExprS1x4Xor, Xor); }
WASM_EXEC_COMPILED_TEST(S1x8And) { RunS1x8BinOpTest(kExprS1x8And, And); }
WASM_EXEC_COMPILED_TEST(S1x8Or) { RunS1x8BinOpTest(kExprS1x8Or, Or); }
WASM_EXEC_COMPILED_TEST(S1x8Xor) { RunS1x8BinOpTest(kExprS1x8Xor, Xor); }
WASM_EXEC_COMPILED_TEST(S1x16And) { RunS1x16BinOpTest(kExprS1x16And, And); }
WASM_EXEC_COMPILED_TEST(S1x16Or) { RunS1x16BinOpTest(kExprS1x16Or, Or); }
WASM_EXEC_COMPILED_TEST(S1x16Xor) { RunS1x16BinOpTest(kExprS1x16Xor, Xor); }
#endif // !V8_TARGET_ARCH_ARM
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(SimdI32x4ExtractWithF32x4) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
BUILD(r, WASM_IF_ELSE_I(
WASM_I32_EQ(WASM_SIMD_I32x4_EXTRACT_LANE(
0, WASM_SIMD_F32x4_SPLAT(WASM_F32(30.5))),
WASM_I32_REINTERPRET_F32(WASM_F32(30.5))),
WASM_I32V(1), WASM_I32V(0)));
CHECK_EQ(1, r.Call());
}
WASM_EXEC_COMPILED_TEST(SimdF32x4ExtractWithI32x4) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
BUILD(r,
WASM_IF_ELSE_I(WASM_F32_EQ(WASM_SIMD_F32x4_EXTRACT_LANE(
0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(15))),
WASM_F32_REINTERPRET_I32(WASM_I32V(15))),
WASM_I32V(1), WASM_I32V(0)));
CHECK_EQ(1, r.Call());
}
WASM_EXEC_COMPILED_TEST(SimdF32x4AddWithI32x4) {
FLAG_wasm_simd_prototype = true;
// Choose two floating point values whose sum is normal and exactly
// representable as a float.
const int kOne = 0x3f800000;
const int kTwo = 0x40000000;
WasmRunner<int32_t> r(kExecuteCompiled);
BUILD(r,
WASM_IF_ELSE_I(
WASM_F32_EQ(
WASM_SIMD_F32x4_EXTRACT_LANE(
0, WASM_SIMD_BINOP(kExprF32x4Add,
WASM_SIMD_I32x4_SPLAT(WASM_I32V(kOne)),
WASM_SIMD_I32x4_SPLAT(WASM_I32V(kTwo)))),
WASM_F32_ADD(WASM_F32_REINTERPRET_I32(WASM_I32V(kOne)),
WASM_F32_REINTERPRET_I32(WASM_I32V(kTwo)))),
WASM_I32V(1), WASM_I32V(0)));
CHECK_EQ(1, r.Call());
}
WASM_EXEC_COMPILED_TEST(SimdI32x4AddWithF32x4) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
BUILD(r,
WASM_IF_ELSE_I(
WASM_I32_EQ(
WASM_SIMD_I32x4_EXTRACT_LANE(
0, WASM_SIMD_BINOP(kExprI32x4Add,
WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25)),
WASM_SIMD_F32x4_SPLAT(WASM_F32(31.5)))),
WASM_I32_ADD(WASM_I32_REINTERPRET_F32(WASM_F32(21.25)),
WASM_I32_REINTERPRET_F32(WASM_F32(31.5)))),
WASM_I32V(1), WASM_I32V(0)));
CHECK_EQ(1, r.Call());
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_X64
WASM_EXEC_COMPILED_TEST(SimdI32x4Local) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))),
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(0)));
CHECK_EQ(31, r.Call());
}
WASM_EXEC_COMPILED_TEST(SimdI32x4SplatFromExtract) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
r.AllocateLocal(kWasmI32);
r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(0, WASM_SIMD_I32x4_EXTRACT_LANE(
0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(76)))),
WASM_SET_LOCAL(1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(0))),
WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1)));
CHECK_EQ(76, r.Call());
}
WASM_EXEC_COMPILED_TEST(SimdI32x4For) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
r.AllocateLocal(kWasmI32);
r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))),
WASM_SET_LOCAL(1, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_LOCAL(1),
WASM_I32V(53))),
WASM_SET_LOCAL(1, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_LOCAL(1),
WASM_I32V(23))),
WASM_SET_LOCAL(0, WASM_I32V(0)),
WASM_LOOP(
WASM_SET_LOCAL(
1, WASM_SIMD_BINOP(kExprI32x4Add, WASM_GET_LOCAL(1),
WASM_SIMD_I32x4_SPLAT(WASM_I32V(1)))),
WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(5)), WASM_BR(1))),
WASM_SET_LOCAL(0, WASM_I32V(1)),
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(1)),
WASM_I32V(36)),
WASM_SET_LOCAL(0, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1)),
WASM_I32V(58)),
WASM_SET_LOCAL(0, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GET_LOCAL(1)),
WASM_I32V(28)),
WASM_SET_LOCAL(0, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GET_LOCAL(1)),
WASM_I32V(36)),
WASM_SET_LOCAL(0, WASM_I32V(0))),
WASM_GET_LOCAL(0));
CHECK_EQ(1, r.Call());
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_X64
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(SimdF32x4For) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
r.AllocateLocal(kWasmI32);
r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(1, WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25))),
WASM_SET_LOCAL(1, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_LOCAL(1),
WASM_F32(19.5))),
WASM_SET_LOCAL(0, WASM_I32V(0)),
WASM_LOOP(
WASM_SET_LOCAL(
1, WASM_SIMD_BINOP(kExprF32x4Add, WASM_GET_LOCAL(1),
WASM_SIMD_F32x4_SPLAT(WASM_F32(2.0)))),
WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(3)), WASM_BR(1))),
WASM_SET_LOCAL(0, WASM_I32V(1)),
WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(1)),
WASM_F32(27.25)),
WASM_SET_LOCAL(0, WASM_I32V(0))),
WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GET_LOCAL(1)),
WASM_F32(25.5)),
WASM_SET_LOCAL(0, WASM_I32V(0))),
WASM_GET_LOCAL(0));
CHECK_EQ(1, r.Call());
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_X64
template <typename T, int numLanes = 4>
void SetVectorByLanes(T* v, const std::array<T, numLanes>& arr) {
for (int lane = 0; lane < numLanes; lane++) {
const T& value = arr[lane];
#if defined(V8_TARGET_BIG_ENDIAN)
v[numLanes - 1 - lane] = value;
#else
v[lane] = value;
#endif
}
}
template <typename T>
const T& GetScalar(T* v, int lane) {
constexpr int kElems = kSimd128Size / sizeof(T);
#if defined(V8_TARGET_BIG_ENDIAN)
const int index = kElems - 1 - lane;
#else
const int index = lane;
#endif
USE(kElems);
DCHECK(index >= 0 && index < kElems);
return v[index];
}
WASM_EXEC_COMPILED_TEST(SimdI32x4GetGlobal) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
int32_t* global = r.module().AddGlobal<int32_t>(kWasmS128);
SetVectorByLanes(global, {{0, 1, 2, 3}});
r.AllocateLocal(kWasmI32);
BUILD(
r, WASM_SET_LOCAL(1, WASM_I32V(1)),
WASM_IF(WASM_I32_NE(WASM_I32V(0),
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_I32V(1),
WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_I32V(2),
WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_I32V(3),
WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_GET_LOCAL(1));
CHECK_EQ(1, r.Call(0));
}
WASM_EXEC_COMPILED_TEST(SimdI32x4SetGlobal) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
int32_t* global = r.module().AddGlobal<int32_t>(kWasmS128);
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(23))),
WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_GLOBAL(0),
WASM_I32V(34))),
WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_GLOBAL(0),
WASM_I32V(45))),
WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GET_GLOBAL(0),
WASM_I32V(56))),
WASM_I32V(1));
CHECK_EQ(1, r.Call(0));
CHECK_EQ(GetScalar(global, 0), 23);
CHECK_EQ(GetScalar(global, 1), 34);
CHECK_EQ(GetScalar(global, 2), 45);
CHECK_EQ(GetScalar(global, 3), 56);
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_X64
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(SimdF32x4GetGlobal) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
float* global = r.module().AddGlobal<float>(kWasmS128);
SetVectorByLanes<float>(global, {{0.0, 1.5, 2.25, 3.5}});
r.AllocateLocal(kWasmI32);
BUILD(
r, WASM_SET_LOCAL(1, WASM_I32V(1)),
WASM_IF(WASM_F32_NE(WASM_F32(0.0),
WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_IF(WASM_F32_NE(WASM_F32(1.5),
WASM_SIMD_F32x4_EXTRACT_LANE(1, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_IF(WASM_F32_NE(WASM_F32(2.25),
WASM_SIMD_F32x4_EXTRACT_LANE(2, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_IF(WASM_F32_NE(WASM_F32(3.5),
WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_GET_LOCAL(1));
CHECK_EQ(1, r.Call(0));
}
WASM_EXEC_COMPILED_TEST(SimdF32x4SetGlobal) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
float* global = r.module().AddGlobal<float>(kWasmS128);
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_SPLAT(WASM_F32(13.5))),
WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GET_GLOBAL(0),
WASM_F32(45.5))),
WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GET_GLOBAL(0),
WASM_F32(32.25))),
WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_GLOBAL(0),
WASM_F32(65.0))),
WASM_I32V(1));
CHECK_EQ(1, r.Call(0));
CHECK_EQ(GetScalar(global, 0), 13.5f);
CHECK_EQ(GetScalar(global, 1), 45.5f);
CHECK_EQ(GetScalar(global, 2), 32.25f);
CHECK_EQ(GetScalar(global, 3), 65.0f);
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_X64
WASM_EXEC_COMPILED_TEST(SimdLoadStoreLoad) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
int32_t* memory = r.module().AddMemoryElems<int32_t>(4);
BUILD(r,
WASM_STORE_MEM(MachineType::Simd128(), WASM_ZERO,
WASM_LOAD_MEM(MachineType::Simd128(), WASM_ZERO)),
WASM_SIMD_I32x4_EXTRACT_LANE(
0, WASM_LOAD_MEM(MachineType::Simd128(), WASM_ZERO)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i;
r.module().WriteMemory(&memory[0], expected);
CHECK_EQ(expected, r.Call());
}
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET || V8_TARGET_ARCH_X64