v8/src/ic/stub-cache.h
ishell c97535f57e [ic] Support non-code handlers in megamorphic stub cache.
BUG=

Review-Url: https://codereview.chromium.org/2412043003
Cr-Commit-Position: refs/heads/master@{#40255}
2016-10-13 12:02:27 +00:00

178 lines
6.2 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_STUB_CACHE_H_
#define V8_STUB_CACHE_H_
#include "src/macro-assembler.h"
namespace v8 {
namespace internal {
class SmallMapList;
// The stub cache is used for megamorphic property accesses.
// It maps (map, name, type) to property access handlers. The cache does not
// need explicit invalidation when a prototype chain is modified, since the
// handlers verify the chain.
class SCTableReference {
public:
Address address() const { return address_; }
private:
explicit SCTableReference(Address address) : address_(address) {}
Address address_;
friend class StubCache;
};
class StubCache {
public:
struct Entry {
Name* key;
Object* value;
Map* map;
};
void Initialize();
// Access cache for entry hash(name, map).
Object* Set(Name* name, Map* map, Object* handler);
Object* Get(Name* name, Map* map);
// Clear the lookup table (@ mark compact collection).
void Clear();
// Collect all maps that match the name.
void CollectMatchingMaps(SmallMapList* types, Handle<Name> name,
Handle<Context> native_context, Zone* zone);
// Generate code for probing the stub cache table.
// Arguments extra, extra2 and extra3 may be used to pass additional scratch
// registers. Set to no_reg if not needed.
// If leave_frame is true, then exit a frame before the tail call.
void GenerateProbe(MacroAssembler* masm, Register receiver, Register name,
Register scratch, Register extra, Register extra2 = no_reg,
Register extra3 = no_reg);
enum Table { kPrimary, kSecondary };
SCTableReference key_reference(StubCache::Table table) {
return SCTableReference(
reinterpret_cast<Address>(&first_entry(table)->key));
}
SCTableReference map_reference(StubCache::Table table) {
return SCTableReference(
reinterpret_cast<Address>(&first_entry(table)->map));
}
SCTableReference value_reference(StubCache::Table table) {
return SCTableReference(
reinterpret_cast<Address>(&first_entry(table)->value));
}
StubCache::Entry* first_entry(StubCache::Table table) {
switch (table) {
case StubCache::kPrimary:
return StubCache::primary_;
case StubCache::kSecondary:
return StubCache::secondary_;
}
UNREACHABLE();
return NULL;
}
Isolate* isolate() { return isolate_; }
Code::Kind ic_kind() const { return ic_kind_; }
// Setting the entry size such that the index is shifted by Name::kHashShift
// is convenient; shifting down the length field (to extract the hash code)
// automatically discards the hash bit field.
static const int kCacheIndexShift = Name::kHashShift;
static const int kPrimaryTableBits = 11;
static const int kPrimaryTableSize = (1 << kPrimaryTableBits);
static const int kSecondaryTableBits = 9;
static const int kSecondaryTableSize = (1 << kSecondaryTableBits);
// Some magic number used in primary and secondary hash computations.
static const int kPrimaryMagic = 0x3d532433;
static const int kSecondaryMagic = 0xb16b00b5;
static int PrimaryOffsetForTesting(Name* name, Map* map) {
return PrimaryOffset(name, map);
}
static int SecondaryOffsetForTesting(Name* name, int seed) {
return SecondaryOffset(name, seed);
}
// The constructor is made public only for the purposes of testing.
StubCache(Isolate* isolate, Code::Kind ic_kind);
private:
// The stub cache has a primary and secondary level. The two levels have
// different hashing algorithms in order to avoid simultaneous collisions
// in both caches. Unlike a probing strategy (quadratic or otherwise) the
// update strategy on updates is fairly clear and simple: Any existing entry
// in the primary cache is moved to the secondary cache, and secondary cache
// entries are overwritten.
// Hash algorithm for the primary table. This algorithm is replicated in
// assembler for every architecture. Returns an index into the table that
// is scaled by 1 << kCacheIndexShift.
static int PrimaryOffset(Name* name, Map* map) {
STATIC_ASSERT(kCacheIndexShift == Name::kHashShift);
// Compute the hash of the name (use entire hash field).
DCHECK(name->HasHashCode());
uint32_t field = name->hash_field();
// Using only the low bits in 64-bit mode is unlikely to increase the
// risk of collision even if the heap is spread over an area larger than
// 4Gb (and not at all if it isn't).
uint32_t map_low32bits =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map));
// Base the offset on a simple combination of name and map.
uint32_t key = (map_low32bits + field) ^ kPrimaryMagic;
return key & ((kPrimaryTableSize - 1) << kCacheIndexShift);
}
// Hash algorithm for the secondary table. This algorithm is replicated in
// assembler for every architecture. Returns an index into the table that
// is scaled by 1 << kCacheIndexShift.
static int SecondaryOffset(Name* name, int seed) {
// Use the seed from the primary cache in the secondary cache.
uint32_t name_low32bits =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name));
uint32_t key = (seed - name_low32bits) + kSecondaryMagic;
return key & ((kSecondaryTableSize - 1) << kCacheIndexShift);
}
// Compute the entry for a given offset in exactly the same way as
// we do in generated code. We generate an hash code that already
// ends in Name::kHashShift 0s. Then we multiply it so it is a multiple
// of sizeof(Entry). This makes it easier to avoid making mistakes
// in the hashed offset computations.
static Entry* entry(Entry* table, int offset) {
const int multiplier = sizeof(*table) >> Name::kHashShift;
return reinterpret_cast<Entry*>(reinterpret_cast<Address>(table) +
offset * multiplier);
}
private:
Entry primary_[kPrimaryTableSize];
Entry secondary_[kSecondaryTableSize];
Isolate* isolate_;
Code::Kind ic_kind_;
friend class Isolate;
friend class SCTableReference;
DISALLOW_COPY_AND_ASSIGN(StubCache);
};
} // namespace internal
} // namespace v8
#endif // V8_STUB_CACHE_H_