v8/test/unittests/heap/gc-idle-time-handler-unittest.cc
2015-05-15 16:06:08 +00:00

648 lines
24 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits>
#include "src/heap/gc-idle-time-handler.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace v8 {
namespace internal {
namespace {
class GCIdleTimeHandlerTest : public ::testing::Test {
public:
GCIdleTimeHandlerTest() {}
virtual ~GCIdleTimeHandlerTest() {}
GCIdleTimeHandler* handler() { return &handler_; }
GCIdleTimeHandler::HeapState DefaultHeapState() {
GCIdleTimeHandler::HeapState result;
result.contexts_disposed = 0;
result.contexts_disposal_rate = GCIdleTimeHandler::kHighContextDisposalRate;
result.size_of_objects = kSizeOfObjects;
result.incremental_marking_stopped = false;
result.can_start_incremental_marking = true;
result.sweeping_in_progress = false;
result.sweeping_completed = false;
result.mark_compact_speed_in_bytes_per_ms = kMarkCompactSpeed;
result.incremental_marking_speed_in_bytes_per_ms = kMarkingSpeed;
result.scavenge_speed_in_bytes_per_ms = kScavengeSpeed;
result.used_new_space_size = 0;
result.new_space_capacity = kNewSpaceCapacity;
result.new_space_allocation_throughput_in_bytes_per_ms =
kNewSpaceAllocationThroughput;
return result;
}
void TransitionToReduceMemoryMode(
const GCIdleTimeHandler::HeapState& heap_state) {
handler()->NotifyScavenge();
EXPECT_EQ(GCIdleTimeHandler::kReduceLatency, handler()->mode());
double idle_time_ms = GCIdleTimeHandler::kMinLongIdleTime;
int limit = GCIdleTimeHandler::kLongIdleNotificationsBeforeMutatorIsIdle;
bool incremental = !heap_state.incremental_marking_stopped ||
heap_state.can_start_incremental_marking;
for (int i = 0; i < limit; i++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(incremental ? DO_INCREMENTAL_MARKING : DO_NOTHING, action.type);
}
handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(GCIdleTimeHandler::kReduceMemory, handler()->mode());
}
void TransitionToDoneMode(const GCIdleTimeHandler::HeapState& heap_state,
double idle_time_ms,
GCIdleTimeActionType expected) {
EXPECT_EQ(GCIdleTimeHandler::kReduceMemory, handler()->mode());
int limit = GCIdleTimeHandler::kMaxIdleMarkCompacts;
for (int i = 0; i < limit; i++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(expected, action.type);
EXPECT_TRUE(action.reduce_memory);
handler()->NotifyMarkCompact();
handler()->NotifyIdleMarkCompact();
}
handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(GCIdleTimeHandler::kDone, handler()->mode());
}
void TransitionToReduceLatencyMode(
const GCIdleTimeHandler::HeapState& heap_state) {
EXPECT_EQ(GCIdleTimeHandler::kDone, handler()->mode());
int limit = GCIdleTimeHandler::kGCsBeforeMutatorIsActive;
double idle_time_ms = GCIdleTimeHandler::kMinLongIdleTime;
for (int i = 0; i < limit; i++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DONE, action.type);
if (i % 2 == 0) {
handler()->NotifyScavenge();
} else {
handler()->NotifyMarkCompact();
}
}
handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(GCIdleTimeHandler::kReduceLatency, handler()->mode());
}
static const size_t kSizeOfObjects = 100 * MB;
static const size_t kMarkCompactSpeed = 200 * KB;
static const size_t kMarkingSpeed = 200 * KB;
static const size_t kScavengeSpeed = 100 * KB;
static const size_t kNewSpaceCapacity = 1 * MB;
static const size_t kNewSpaceAllocationThroughput = 10 * KB;
static const int kMaxNotifications = 1000;
private:
GCIdleTimeHandler handler_;
};
} // namespace
TEST(GCIdleTimeHandler, EstimateMarkingStepSizeInitial) {
size_t step_size = GCIdleTimeHandler::EstimateMarkingStepSize(1, 0);
EXPECT_EQ(
static_cast<size_t>(GCIdleTimeHandler::kInitialConservativeMarkingSpeed *
GCIdleTimeHandler::kConservativeTimeRatio),
step_size);
}
TEST(GCIdleTimeHandler, EstimateMarkingStepSizeNonZero) {
size_t marking_speed_in_bytes_per_millisecond = 100;
size_t step_size = GCIdleTimeHandler::EstimateMarkingStepSize(
1, marking_speed_in_bytes_per_millisecond);
EXPECT_EQ(static_cast<size_t>(marking_speed_in_bytes_per_millisecond *
GCIdleTimeHandler::kConservativeTimeRatio),
step_size);
}
TEST(GCIdleTimeHandler, EstimateMarkingStepSizeOverflow1) {
size_t step_size = GCIdleTimeHandler::EstimateMarkingStepSize(
10, std::numeric_limits<size_t>::max());
EXPECT_EQ(static_cast<size_t>(GCIdleTimeHandler::kMaximumMarkingStepSize),
step_size);
}
TEST(GCIdleTimeHandler, EstimateMarkingStepSizeOverflow2) {
size_t step_size = GCIdleTimeHandler::EstimateMarkingStepSize(
std::numeric_limits<size_t>::max(), 10);
EXPECT_EQ(static_cast<size_t>(GCIdleTimeHandler::kMaximumMarkingStepSize),
step_size);
}
TEST(GCIdleTimeHandler, EstimateMarkCompactTimeInitial) {
size_t size = 100 * MB;
size_t time = GCIdleTimeHandler::EstimateMarkCompactTime(size, 0);
EXPECT_EQ(size / GCIdleTimeHandler::kInitialConservativeMarkCompactSpeed,
time);
}
TEST(GCIdleTimeHandler, EstimateMarkCompactTimeNonZero) {
size_t size = 100 * MB;
size_t speed = 1 * MB;
size_t time = GCIdleTimeHandler::EstimateMarkCompactTime(size, speed);
EXPECT_EQ(size / speed, time);
}
TEST(GCIdleTimeHandler, EstimateMarkCompactTimeMax) {
size_t size = std::numeric_limits<size_t>::max();
size_t speed = 1;
size_t time = GCIdleTimeHandler::EstimateMarkCompactTime(size, speed);
EXPECT_EQ(GCIdleTimeHandler::kMaxMarkCompactTimeInMs, time);
}
TEST_F(GCIdleTimeHandlerTest, DoScavengeEmptyNewSpace) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
int idle_time_ms = 16;
EXPECT_FALSE(GCIdleTimeHandler::ShouldDoScavenge(
idle_time_ms, heap_state.new_space_capacity,
heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms,
heap_state.new_space_allocation_throughput_in_bytes_per_ms));
}
TEST_F(GCIdleTimeHandlerTest, DoScavengeFullNewSpace) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.used_new_space_size = kNewSpaceCapacity;
int idle_time_ms = 16;
EXPECT_TRUE(GCIdleTimeHandler::ShouldDoScavenge(
idle_time_ms, heap_state.new_space_capacity,
heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms,
heap_state.new_space_allocation_throughput_in_bytes_per_ms));
}
TEST_F(GCIdleTimeHandlerTest, DoScavengeUnknownScavengeSpeed) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.used_new_space_size = kNewSpaceCapacity;
heap_state.scavenge_speed_in_bytes_per_ms = 0;
int idle_time_ms = 8;
EXPECT_FALSE(GCIdleTimeHandler::ShouldDoScavenge(
idle_time_ms, heap_state.new_space_capacity,
heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms,
heap_state.new_space_allocation_throughput_in_bytes_per_ms));
}
TEST_F(GCIdleTimeHandlerTest, DoScavengeLowScavengeSpeed) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.used_new_space_size = kNewSpaceCapacity;
heap_state.scavenge_speed_in_bytes_per_ms = 1 * KB;
int idle_time_ms = 16;
EXPECT_FALSE(GCIdleTimeHandler::ShouldDoScavenge(
idle_time_ms, heap_state.new_space_capacity,
heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms,
heap_state.new_space_allocation_throughput_in_bytes_per_ms));
}
TEST_F(GCIdleTimeHandlerTest, DoScavengeHighScavengeSpeed) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.used_new_space_size = kNewSpaceCapacity;
heap_state.scavenge_speed_in_bytes_per_ms = kNewSpaceCapacity;
int idle_time_ms = 16;
EXPECT_TRUE(GCIdleTimeHandler::ShouldDoScavenge(
idle_time_ms, heap_state.new_space_capacity,
heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms,
heap_state.new_space_allocation_throughput_in_bytes_per_ms));
}
TEST_F(GCIdleTimeHandlerTest, DoNotScavengeSmallNewSpaceSize) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.used_new_space_size = (MB / 2) - 1;
heap_state.scavenge_speed_in_bytes_per_ms = kNewSpaceCapacity;
int idle_time_ms = 16;
EXPECT_FALSE(GCIdleTimeHandler::ShouldDoScavenge(
idle_time_ms, heap_state.new_space_capacity,
heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms,
heap_state.new_space_allocation_throughput_in_bytes_per_ms));
}
TEST_F(GCIdleTimeHandlerTest, ShouldDoMarkCompact) {
size_t idle_time_ms = GCIdleTimeHandler::kMaxScheduledIdleTime;
EXPECT_TRUE(GCIdleTimeHandler::ShouldDoMarkCompact(idle_time_ms, 0, 0));
}
TEST_F(GCIdleTimeHandlerTest, DontDoMarkCompact) {
size_t idle_time_ms = 1;
EXPECT_FALSE(GCIdleTimeHandler::ShouldDoMarkCompact(
idle_time_ms, kSizeOfObjects, kMarkingSpeed));
}
TEST_F(GCIdleTimeHandlerTest, ShouldDoFinalIncrementalMarkCompact) {
size_t idle_time_ms = 16;
EXPECT_TRUE(GCIdleTimeHandler::ShouldDoFinalIncrementalMarkCompact(
idle_time_ms, 0, 0));
}
TEST_F(GCIdleTimeHandlerTest, DontDoFinalIncrementalMarkCompact) {
size_t idle_time_ms = 1;
EXPECT_FALSE(GCIdleTimeHandler::ShouldDoFinalIncrementalMarkCompact(
idle_time_ms, kSizeOfObjects, kMarkingSpeed));
}
TEST_F(GCIdleTimeHandlerTest, ContextDisposeLowRate) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.contexts_disposed = 1;
heap_state.incremental_marking_stopped = true;
double idle_time_ms = 0;
for (int mode = 0; mode < 1; mode++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_NOTHING, action.type);
TransitionToReduceMemoryMode(heap_state);
}
}
TEST_F(GCIdleTimeHandlerTest, ContextDisposeHighRate) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.contexts_disposed = 1;
heap_state.contexts_disposal_rate =
GCIdleTimeHandler::kHighContextDisposalRate - 1;
heap_state.incremental_marking_stopped = true;
double idle_time_ms = 0;
for (int mode = 0; mode < 1; mode++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_FULL_GC, action.type);
heap_state.contexts_disposal_rate = 0.0;
TransitionToReduceMemoryMode(heap_state);
}
}
TEST_F(GCIdleTimeHandlerTest, AfterContextDisposeZeroIdleTime) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.contexts_disposed = 1;
heap_state.contexts_disposal_rate = 1.0;
heap_state.incremental_marking_stopped = true;
double idle_time_ms = 0;
for (int mode = 0; mode < 1; mode++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_FULL_GC, action.type);
heap_state.contexts_disposal_rate = 0.0;
TransitionToReduceMemoryMode(heap_state);
}
}
TEST_F(GCIdleTimeHandlerTest, AfterContextDisposeSmallIdleTime1) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.contexts_disposed = 1;
heap_state.contexts_disposal_rate =
GCIdleTimeHandler::kHighContextDisposalRate;
heap_state.incremental_marking_stopped = true;
size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms;
double idle_time_ms =
static_cast<double>(heap_state.size_of_objects / speed - 1);
for (int mode = 0; mode < 1; mode++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
heap_state.contexts_disposal_rate = 0.0;
TransitionToReduceMemoryMode(heap_state);
}
}
TEST_F(GCIdleTimeHandlerTest, AfterContextDisposeSmallIdleTime2) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.contexts_disposed = 1;
heap_state.contexts_disposal_rate =
GCIdleTimeHandler::kHighContextDisposalRate;
size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms;
double idle_time_ms =
static_cast<double>(heap_state.size_of_objects / speed - 1);
for (int mode = 0; mode < 1; mode++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
heap_state.contexts_disposal_rate = 0.0;
TransitionToReduceMemoryMode(heap_state);
}
}
TEST_F(GCIdleTimeHandlerTest, IncrementalMarking1) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
size_t speed = heap_state.incremental_marking_speed_in_bytes_per_ms;
double idle_time_ms = 10;
for (int mode = 0; mode < 1; mode++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
EXPECT_GT(speed * static_cast<size_t>(idle_time_ms),
static_cast<size_t>(action.parameter));
EXPECT_LT(0, action.parameter);
TransitionToReduceMemoryMode(heap_state);
}
}
TEST_F(GCIdleTimeHandlerTest, IncrementalMarking2) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
size_t speed = heap_state.incremental_marking_speed_in_bytes_per_ms;
double idle_time_ms = 10;
for (int mode = 0; mode < 1; mode++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
EXPECT_GT(speed * static_cast<size_t>(idle_time_ms),
static_cast<size_t>(action.parameter));
EXPECT_LT(0, action.parameter);
TransitionToReduceMemoryMode(heap_state);
}
}
TEST_F(GCIdleTimeHandlerTest, NotEnoughTime) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms;
double idle_time_ms =
static_cast<double>(heap_state.size_of_objects / speed - 1);
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_NOTHING, action.type);
TransitionToReduceMemoryMode(heap_state);
action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
}
TEST_F(GCIdleTimeHandlerTest, FinalizeSweeping) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
for (int mode = 0; mode < 1; mode++) {
heap_state.sweeping_in_progress = true;
heap_state.sweeping_completed = true;
double idle_time_ms = 10.0;
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_FINALIZE_SWEEPING, action.type);
heap_state.sweeping_in_progress = false;
heap_state.sweeping_completed = false;
TransitionToReduceMemoryMode(heap_state);
}
}
TEST_F(GCIdleTimeHandlerTest, CannotFinalizeSweeping) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
for (int mode = 0; mode < 1; mode++) {
heap_state.sweeping_in_progress = true;
heap_state.sweeping_completed = false;
double idle_time_ms = 10.0;
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_NOTHING, action.type);
heap_state.sweeping_in_progress = false;
heap_state.sweeping_completed = false;
TransitionToReduceMemoryMode(heap_state);
}
}
TEST_F(GCIdleTimeHandlerTest, Scavenge) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
int idle_time_ms = 10;
for (int mode = 0; mode < 1; mode++) {
heap_state.used_new_space_size =
heap_state.new_space_capacity -
(kNewSpaceAllocationThroughput * idle_time_ms);
GCIdleTimeAction action =
handler()->Compute(static_cast<double>(idle_time_ms), heap_state);
EXPECT_EQ(DO_SCAVENGE, action.type);
heap_state.used_new_space_size = 0;
TransitionToReduceMemoryMode(heap_state);
}
}
TEST_F(GCIdleTimeHandlerTest, ScavengeAndDone) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
int idle_time_ms = 10;
heap_state.can_start_incremental_marking = false;
heap_state.incremental_marking_stopped = true;
for (int mode = 0; mode < 1; mode++) {
heap_state.used_new_space_size =
heap_state.new_space_capacity -
(kNewSpaceAllocationThroughput * idle_time_ms);
GCIdleTimeAction action =
handler()->Compute(static_cast<double>(idle_time_ms), heap_state);
EXPECT_EQ(DO_SCAVENGE, action.type);
heap_state.used_new_space_size = 0;
action = handler()->Compute(static_cast<double>(idle_time_ms), heap_state);
EXPECT_EQ(DO_NOTHING, action.type);
TransitionToReduceMemoryMode(heap_state);
}
}
TEST_F(GCIdleTimeHandlerTest, StopEventually1) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
double idle_time_ms = GCIdleTimeHandler::kMinLongIdleTime;
bool stopped = false;
for (int i = 0; i < kMaxNotifications && !stopped; i++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
if (action.type == DO_INCREMENTAL_MARKING || action.type == DO_FULL_GC) {
handler()->NotifyMarkCompact();
handler()->NotifyIdleMarkCompact();
}
if (action.type == DONE) stopped = true;
}
EXPECT_TRUE(stopped);
}
TEST_F(GCIdleTimeHandlerTest, StopEventually2) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms;
double idle_time_ms =
static_cast<double>(heap_state.size_of_objects / speed + 1);
TransitionToReduceMemoryMode(heap_state);
TransitionToDoneMode(heap_state, idle_time_ms, DO_FULL_GC);
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DONE, action.type);
}
TEST_F(GCIdleTimeHandlerTest, StopEventually3) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
double idle_time_ms = 10;
TransitionToReduceMemoryMode(heap_state);
TransitionToDoneMode(heap_state, idle_time_ms, DO_INCREMENTAL_MARKING);
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DONE, action.type);
}
TEST_F(GCIdleTimeHandlerTest, ContinueAfterStop1) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms;
double idle_time_ms =
static_cast<double>(heap_state.size_of_objects / speed + 1);
TransitionToReduceMemoryMode(heap_state);
TransitionToDoneMode(heap_state, idle_time_ms, DO_FULL_GC);
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DONE, action.type);
TransitionToReduceLatencyMode(heap_state);
heap_state.can_start_incremental_marking = true;
action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
EXPECT_FALSE(action.reduce_memory);
EXPECT_EQ(GCIdleTimeHandler::kReduceLatency, handler()->mode());
}
TEST_F(GCIdleTimeHandlerTest, ContinueAfterStop2) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
double idle_time_ms = 10;
TransitionToReduceMemoryMode(heap_state);
TransitionToDoneMode(heap_state, idle_time_ms, DO_INCREMENTAL_MARKING);
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DONE, action.type);
TransitionToReduceLatencyMode(heap_state);
heap_state.can_start_incremental_marking = true;
action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
EXPECT_FALSE(action.reduce_memory);
EXPECT_EQ(GCIdleTimeHandler::kReduceLatency, handler()->mode());
}
TEST_F(GCIdleTimeHandlerTest, ZeroIdleTimeNothingToDo) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
for (int i = 0; i < kMaxNotifications; i++) {
GCIdleTimeAction action = handler()->Compute(0, heap_state);
EXPECT_EQ(DO_NOTHING, action.type);
}
}
TEST_F(GCIdleTimeHandlerTest, SmallIdleTimeNothingToDo) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
for (int i = 0; i < kMaxNotifications; i++) {
GCIdleTimeAction action = handler()->Compute(10, heap_state);
EXPECT_EQ(DO_NOTHING, action.type);
}
}
TEST_F(GCIdleTimeHandlerTest, StayInReduceLatencyModeBecauseOfScavenges) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
double idle_time_ms = GCIdleTimeHandler::kMinLongIdleTime;
int limit = GCIdleTimeHandler::kLongIdleNotificationsBeforeMutatorIsIdle;
for (int i = 0; i < kMaxNotifications; i++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_NOTHING, action.type);
if ((i + 1) % limit == 0) handler()->NotifyScavenge();
EXPECT_EQ(GCIdleTimeHandler::kReduceLatency, handler()->mode());
}
}
TEST_F(GCIdleTimeHandlerTest, StayInReduceLatencyModeBecauseOfMarkCompacts) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
double idle_time_ms = GCIdleTimeHandler::kMinLongIdleTime;
int limit = GCIdleTimeHandler::kLongIdleNotificationsBeforeMutatorIsIdle;
for (int i = 0; i < kMaxNotifications; i++) {
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_NOTHING, action.type);
if ((i + 1) % limit == 0) handler()->NotifyMarkCompact();
EXPECT_EQ(GCIdleTimeHandler::kReduceLatency, handler()->mode());
}
}
TEST_F(GCIdleTimeHandlerTest, ReduceMemoryToReduceLatency) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
double idle_time_ms = GCIdleTimeHandler::kMinLongIdleTime;
int limit = GCIdleTimeHandler::kMaxIdleMarkCompacts;
for (int idle_gc = 0; idle_gc < limit; idle_gc++) {
TransitionToReduceMemoryMode(heap_state);
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
EXPECT_TRUE(action.reduce_memory);
EXPECT_EQ(GCIdleTimeHandler::kReduceMemory, handler()->mode());
for (int i = 0; i < idle_gc; i++) {
action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
EXPECT_TRUE(action.reduce_memory);
// ReduceMemory mode should tolerate one mutator GC per idle GC.
handler()->NotifyScavenge();
// Notify idle GC.
handler()->NotifyMarkCompact();
handler()->NotifyIdleMarkCompact();
}
// Transition to ReduceLatency mode after doing |idle_gc| idle GCs.
handler()->NotifyScavenge();
action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_NOTHING, action.type);
EXPECT_FALSE(action.reduce_memory);
EXPECT_EQ(GCIdleTimeHandler::kReduceLatency, handler()->mode());
}
}
TEST_F(GCIdleTimeHandlerTest, ReduceMemoryToDone) {
GCIdleTimeHandler::HeapState heap_state = DefaultHeapState();
heap_state.incremental_marking_stopped = true;
heap_state.can_start_incremental_marking = false;
double idle_time_ms = GCIdleTimeHandler::kMinLongIdleTime;
int limit = GCIdleTimeHandler::kMaxIdleMarkCompacts;
TransitionToReduceMemoryMode(heap_state);
GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
EXPECT_TRUE(action.reduce_memory);
for (int i = 0; i < limit; i++) {
action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type);
EXPECT_TRUE(action.reduce_memory);
EXPECT_EQ(GCIdleTimeHandler::kReduceMemory, handler()->mode());
// ReduceMemory mode should tolerate one mutator GC per idle GC.
handler()->NotifyScavenge();
// Notify idle GC.
handler()->NotifyMarkCompact();
handler()->NotifyIdleMarkCompact();
}
action = handler()->Compute(idle_time_ms, heap_state);
EXPECT_EQ(DONE, action.type);
}
} // namespace internal
} // namespace v8