7a6138ae11
On ARM Neon at least, denormals flush to zero, which may not match regular FP behavior. LOG=N BUG=v8:4124 Review-Url: https://codereview.chromium.org/2598583002 Cr-Commit-Position: refs/heads/master@{#41895}
443 lines
17 KiB
C++
443 lines
17 KiB
C++
// Copyright 2016 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/wasm/wasm-macro-gen.h"
|
|
|
|
#include "test/cctest/cctest.h"
|
|
#include "test/cctest/compiler/value-helper.h"
|
|
#include "test/cctest/wasm/wasm-run-utils.h"
|
|
|
|
using namespace v8::base;
|
|
using namespace v8::internal;
|
|
using namespace v8::internal::compiler;
|
|
using namespace v8::internal::wasm;
|
|
|
|
namespace {
|
|
|
|
typedef float (*FloatUnOp)(float);
|
|
typedef float (*FloatBinOp)(float, float);
|
|
typedef int32_t (*FloatCompareOp)(float, float);
|
|
typedef int32_t (*Int32BinOp)(int32_t, int32_t);
|
|
|
|
template <typename T>
|
|
T Negate(T a) {
|
|
return -a;
|
|
}
|
|
|
|
template <typename T>
|
|
T Add(T a, T b) {
|
|
return a + b;
|
|
}
|
|
|
|
template <typename T>
|
|
T Sub(T a, T b) {
|
|
return a - b;
|
|
}
|
|
|
|
template <typename T>
|
|
int32_t Equal(T a, T b) {
|
|
return a == b ? 0xFFFFFFFF : 0;
|
|
}
|
|
|
|
template <typename T>
|
|
int32_t NotEqual(T a, T b) {
|
|
return a != b ? 0xFFFFFFFF : 0;
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_ARM
|
|
int32_t Equal(float a, float b) { return a == b ? 0xFFFFFFFF : 0; }
|
|
|
|
int32_t NotEqual(float a, float b) { return a != b ? 0xFFFFFFFF : 0; }
|
|
#endif // V8_TARGET_ARCH_ARM
|
|
|
|
} // namespace
|
|
|
|
// TODO(gdeepti): These are tests using sample values to verify functional
|
|
// correctness of opcodes, add more tests for a range of values and macroize
|
|
// tests.
|
|
|
|
// TODO(bbudge) Figure out how to compare floats in Wasm code that can handle
|
|
// NaNs. For now, our tests avoid using NaNs.
|
|
#define WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lane_value, lane_index) \
|
|
WASM_IF(WASM_##LANE_TYPE##_NE(WASM_GET_LOCAL(lane_value), \
|
|
WASM_SIMD_##TYPE##_EXTRACT_LANE( \
|
|
lane_index, WASM_GET_LOCAL(value))), \
|
|
WASM_RETURN1(WASM_ZERO))
|
|
|
|
#define WASM_SIMD_CHECK4(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3) \
|
|
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0) \
|
|
, WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1), \
|
|
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2), \
|
|
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3)
|
|
|
|
#define WASM_SIMD_CHECK_SPLAT4(TYPE, value, LANE_TYPE, lv) \
|
|
WASM_SIMD_CHECK4(TYPE, value, LANE_TYPE, lv, lv, lv, lv)
|
|
|
|
#define WASM_SIMD_CHECK_F32_LANE(TYPE, value, lane_value, lane_index) \
|
|
WASM_IF( \
|
|
WASM_I32_NE(WASM_I32_REINTERPRET_F32(WASM_GET_LOCAL(lane_value)), \
|
|
WASM_I32_REINTERPRET_F32(WASM_SIMD_##TYPE##_EXTRACT_LANE( \
|
|
lane_index, WASM_GET_LOCAL(value)))), \
|
|
WASM_RETURN1(WASM_ZERO))
|
|
|
|
#define WASM_SIMD_CHECK4_F32(TYPE, value, lv0, lv1, lv2, lv3) \
|
|
WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv0, 0) \
|
|
, WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv1, 1), \
|
|
WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv2, 2), \
|
|
WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv3, 3)
|
|
|
|
#define WASM_SIMD_CHECK_SPLAT4_F32(TYPE, value, lv) \
|
|
WASM_SIMD_CHECK4_F32(TYPE, value, lv, lv, lv, lv)
|
|
|
|
#if V8_TARGET_ARCH_ARM
|
|
WASM_EXEC_TEST(F32x4Splat) {
|
|
FLAG_wasm_simd_prototype = true;
|
|
|
|
WasmRunner<int32_t, float> r(kExecuteCompiled);
|
|
byte lane_val = 0;
|
|
byte simd = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_BLOCK(WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(
|
|
WASM_GET_LOCAL(lane_val))),
|
|
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd, lane_val),
|
|
WASM_RETURN1(WASM_ONE)));
|
|
|
|
FOR_FLOAT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
|
|
}
|
|
|
|
WASM_EXEC_TEST(F32x4ReplaceLane) {
|
|
FLAG_wasm_simd_prototype = true;
|
|
WasmRunner<int32_t, float, float> r(kExecuteCompiled);
|
|
byte old_val = 0;
|
|
byte new_val = 1;
|
|
byte simd = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_BLOCK(
|
|
WASM_SET_LOCAL(simd,
|
|
WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(old_val))),
|
|
WASM_SET_LOCAL(
|
|
simd, WASM_SIMD_F32x4_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
|
|
WASM_GET_LOCAL(new_val))),
|
|
WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, old_val, old_val,
|
|
old_val),
|
|
WASM_SET_LOCAL(
|
|
simd, WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
|
|
WASM_GET_LOCAL(new_val))),
|
|
WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, new_val, old_val,
|
|
old_val),
|
|
WASM_SET_LOCAL(
|
|
simd, WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
|
|
WASM_GET_LOCAL(new_val))),
|
|
WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, new_val, new_val,
|
|
old_val),
|
|
WASM_SET_LOCAL(
|
|
simd, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
|
|
WASM_GET_LOCAL(new_val))),
|
|
WASM_SIMD_CHECK_SPLAT4(F32x4, simd, F32, new_val),
|
|
WASM_RETURN1(WASM_ONE)));
|
|
|
|
CHECK_EQ(1, r.Call(3.14159, -1.5));
|
|
}
|
|
|
|
// Tests both signed and unsigned conversion.
|
|
WASM_EXEC_TEST(F32x4FromInt32x4) {
|
|
FLAG_wasm_simd_prototype = true;
|
|
WasmRunner<int32_t, int32_t, float, float> r(kExecuteCompiled);
|
|
byte a = 0;
|
|
byte expected_signed = 1;
|
|
byte expected_unsigned = 2;
|
|
byte simd0 = r.AllocateLocal(kWasmS128);
|
|
byte simd1 = r.AllocateLocal(kWasmS128);
|
|
byte simd2 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_BLOCK(
|
|
WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
|
|
WASM_SET_LOCAL(
|
|
simd1, WASM_SIMD_F32x4_FROM_I32x4(WASM_GET_LOCAL(simd0))),
|
|
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd1, expected_signed),
|
|
WASM_SET_LOCAL(
|
|
simd2, WASM_SIMD_F32x4_FROM_U32x4(WASM_GET_LOCAL(simd0))),
|
|
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd2, expected_unsigned),
|
|
WASM_RETURN1(WASM_ONE)));
|
|
|
|
FOR_INT32_INPUTS(i) {
|
|
CHECK_EQ(1, r.Call(*i, static_cast<float>(*i),
|
|
static_cast<float>(static_cast<uint32_t>(*i))));
|
|
}
|
|
}
|
|
|
|
WASM_EXEC_TEST(S32x4Select) {
|
|
FLAG_wasm_simd_prototype = true;
|
|
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
|
|
byte val1 = 0;
|
|
byte val2 = 1;
|
|
byte mask = r.AllocateLocal(kWasmS128);
|
|
byte src1 = r.AllocateLocal(kWasmS128);
|
|
byte src2 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r,
|
|
WASM_BLOCK(
|
|
WASM_SET_LOCAL(mask, WASM_SIMD_I32x4_SPLAT(WASM_ZERO)),
|
|
WASM_SET_LOCAL(src1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(val1))),
|
|
WASM_SET_LOCAL(src2, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(val2))),
|
|
WASM_SET_LOCAL(mask, WASM_SIMD_I32x4_REPLACE_LANE(
|
|
1, WASM_GET_LOCAL(mask), WASM_I32V(-1))),
|
|
WASM_SET_LOCAL(mask, WASM_SIMD_I32x4_REPLACE_LANE(
|
|
2, WASM_GET_LOCAL(mask), WASM_I32V(-1))),
|
|
WASM_SET_LOCAL(mask, WASM_SIMD_S32x4_SELECT(WASM_GET_LOCAL(mask),
|
|
WASM_GET_LOCAL(src1),
|
|
WASM_GET_LOCAL(src2))),
|
|
WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val2, 0),
|
|
WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val1, 1),
|
|
WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val1, 2),
|
|
WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val2, 3),
|
|
WASM_RETURN1(WASM_ONE)));
|
|
|
|
CHECK_EQ(1, r.Call(0x1234, 0x5678));
|
|
}
|
|
|
|
void RunF32x4UnOpTest(WasmOpcode simd_op, FloatUnOp expected_op) {
|
|
FLAG_wasm_simd_prototype = true;
|
|
WasmRunner<int32_t, float, float> r(kExecuteCompiled);
|
|
byte a = 0;
|
|
byte expected = 1;
|
|
byte simd = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_BLOCK(
|
|
WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
|
|
WASM_SET_LOCAL(
|
|
simd, WASM_SIMD_UNOP(simd_op & 0xffu, WASM_GET_LOCAL(simd))),
|
|
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd, expected),
|
|
WASM_RETURN1(WASM_ONE)));
|
|
|
|
FOR_FLOAT32_INPUTS(i) {
|
|
if (std::isnan(*i)) continue;
|
|
CHECK_EQ(1, r.Call(*i, expected_op(*i)));
|
|
}
|
|
}
|
|
|
|
WASM_EXEC_TEST(F32x4Abs) { RunF32x4UnOpTest(kExprF32x4Abs, std::abs); }
|
|
WASM_EXEC_TEST(F32x4Neg) { RunF32x4UnOpTest(kExprF32x4Neg, Negate); }
|
|
|
|
void RunF32x4BinOpTest(WasmOpcode simd_op, FloatBinOp expected_op) {
|
|
FLAG_wasm_simd_prototype = true;
|
|
WasmRunner<int32_t, float, float, float> r(kExecuteCompiled);
|
|
byte a = 0;
|
|
byte b = 1;
|
|
byte expected = 2;
|
|
byte simd0 = r.AllocateLocal(kWasmS128);
|
|
byte simd1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_BLOCK(
|
|
WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
|
|
WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(b))),
|
|
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op & 0xffu,
|
|
WASM_GET_LOCAL(simd0),
|
|
WASM_GET_LOCAL(simd1))),
|
|
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd1, expected),
|
|
WASM_RETURN1(WASM_ONE)));
|
|
|
|
FOR_FLOAT32_INPUTS(i) {
|
|
if (std::isnan(*i)) continue;
|
|
FOR_FLOAT32_INPUTS(j) {
|
|
if (std::isnan(*j)) continue;
|
|
float expected = expected_op(*i, *j);
|
|
// SIMD on some platforms may handle denormalized numbers differently.
|
|
// TODO(bbudge) On platforms that flush denorms to zero, test with
|
|
// expected == 0.
|
|
if (std::fpclassify(expected) == FP_SUBNORMAL) continue;
|
|
CHECK_EQ(1, r.Call(*i, *j, expected));
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_EXEC_TEST(F32x4Add) { RunF32x4BinOpTest(kExprF32x4Add, Add); }
|
|
WASM_EXEC_TEST(F32x4Sub) { RunF32x4BinOpTest(kExprF32x4Sub, Sub); }
|
|
|
|
void RunF32x4CompareOpTest(WasmOpcode simd_op, FloatCompareOp expected_op) {
|
|
FLAG_wasm_simd_prototype = true;
|
|
WasmRunner<int32_t, float, float, int32_t> r(kExecuteCompiled);
|
|
byte a = 0;
|
|
byte b = 1;
|
|
byte expected = 2;
|
|
byte simd0 = r.AllocateLocal(kWasmS128);
|
|
byte simd1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_BLOCK(
|
|
WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
|
|
WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(b))),
|
|
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op & 0xffu,
|
|
WASM_GET_LOCAL(simd0),
|
|
WASM_GET_LOCAL(simd1))),
|
|
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected),
|
|
WASM_RETURN1(WASM_ONE)));
|
|
|
|
FOR_FLOAT32_INPUTS(i) {
|
|
if (std::isnan(*i)) continue;
|
|
FOR_FLOAT32_INPUTS(j) {
|
|
if (std::isnan(*j)) continue;
|
|
// SIMD on some platforms may handle denormalized numbers differently.
|
|
// Check for number pairs that are very close together.
|
|
if (std::fpclassify(*i - *j) == FP_SUBNORMAL) continue;
|
|
CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j)));
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_EXEC_TEST(F32x4Equal) { RunF32x4CompareOpTest(kExprF32x4Eq, Equal); }
|
|
WASM_EXEC_TEST(F32x4NotEqual) { RunF32x4CompareOpTest(kExprF32x4Ne, NotEqual); }
|
|
#endif // V8_TARGET_ARCH_ARM
|
|
|
|
WASM_EXEC_TEST(I32x4Splat) {
|
|
FLAG_wasm_simd_prototype = true;
|
|
|
|
// Store SIMD value in a local variable, use extract lane to check lane values
|
|
// This test is not a test for ExtractLane as Splat does not create
|
|
// interesting SIMD values.
|
|
//
|
|
// SetLocal(1, I32x4Splat(Local(0)));
|
|
// For each lane index
|
|
// if(Local(0) != I32x4ExtractLane(Local(1), index)
|
|
// return 0
|
|
//
|
|
// return 1
|
|
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
|
|
byte lane_val = 0;
|
|
byte simd = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_BLOCK(WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(
|
|
WASM_GET_LOCAL(lane_val))),
|
|
WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, lane_val),
|
|
WASM_RETURN1(WASM_ONE)));
|
|
|
|
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
|
|
}
|
|
|
|
WASM_EXEC_TEST(I32x4ReplaceLane) {
|
|
FLAG_wasm_simd_prototype = true;
|
|
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
|
|
byte old_val = 0;
|
|
byte new_val = 1;
|
|
byte simd = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_BLOCK(
|
|
WASM_SET_LOCAL(simd,
|
|
WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(old_val))),
|
|
WASM_SET_LOCAL(
|
|
simd, WASM_SIMD_I32x4_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
|
|
WASM_GET_LOCAL(new_val))),
|
|
WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, old_val, old_val,
|
|
old_val),
|
|
WASM_SET_LOCAL(
|
|
simd, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
|
|
WASM_GET_LOCAL(new_val))),
|
|
WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, new_val, old_val,
|
|
old_val),
|
|
WASM_SET_LOCAL(
|
|
simd, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
|
|
WASM_GET_LOCAL(new_val))),
|
|
WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, new_val, new_val,
|
|
old_val),
|
|
WASM_SET_LOCAL(
|
|
simd, WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
|
|
WASM_GET_LOCAL(new_val))),
|
|
WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, new_val),
|
|
WASM_RETURN1(WASM_ONE)));
|
|
|
|
CHECK_EQ(1, r.Call(1, 2));
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_ARM
|
|
|
|
// Determines if conversion from float to int will be valid.
|
|
bool CanRoundToZeroAndConvert(double val, bool unsigned_integer) {
|
|
const double max_uint = static_cast<double>(0xffffffffu);
|
|
const double max_int = static_cast<double>(kMaxInt);
|
|
const double min_int = static_cast<double>(kMinInt);
|
|
|
|
// Check for NaN.
|
|
if (val != val) {
|
|
return false;
|
|
}
|
|
|
|
// Round to zero and check for overflow. This code works because 32 bit
|
|
// integers can be exactly represented by ieee-754 64bit floating-point
|
|
// values.
|
|
return unsigned_integer ? (val < (max_uint + 1.0)) && (val > -1)
|
|
: (val < (max_int + 1.0)) && (val > (min_int - 1.0));
|
|
}
|
|
|
|
int ConvertInvalidValue(double val, bool unsigned_integer) {
|
|
if (val != val) {
|
|
return 0;
|
|
} else {
|
|
if (unsigned_integer) {
|
|
return (val < 0) ? 0 : 0xffffffffu;
|
|
} else {
|
|
return (val < 0) ? kMinInt : kMaxInt;
|
|
}
|
|
}
|
|
}
|
|
|
|
int32_t ConvertToInt(double val, bool unsigned_integer) {
|
|
int32_t result =
|
|
unsigned_integer ? static_cast<uint32_t>(val) : static_cast<int32_t>(val);
|
|
|
|
if (!CanRoundToZeroAndConvert(val, unsigned_integer)) {
|
|
result = ConvertInvalidValue(val, unsigned_integer);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Tests both signed and unsigned conversion.
|
|
WASM_EXEC_TEST(I32x4FromFloat32x4) {
|
|
FLAG_wasm_simd_prototype = true;
|
|
WasmRunner<int32_t, float, int32_t, int32_t> r(kExecuteCompiled);
|
|
byte a = 0;
|
|
byte expected_signed = 1;
|
|
byte expected_unsigned = 2;
|
|
byte simd0 = r.AllocateLocal(kWasmS128);
|
|
byte simd1 = r.AllocateLocal(kWasmS128);
|
|
byte simd2 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_BLOCK(
|
|
WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
|
|
WASM_SET_LOCAL(
|
|
simd1, WASM_SIMD_I32x4_FROM_F32x4(WASM_GET_LOCAL(simd0))),
|
|
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected_signed),
|
|
WASM_SET_LOCAL(
|
|
simd2, WASM_SIMD_U32x4_FROM_F32x4(WASM_GET_LOCAL(simd0))),
|
|
WASM_SIMD_CHECK_SPLAT4(I32x4, simd2, I32, expected_unsigned),
|
|
WASM_RETURN1(WASM_ONE)));
|
|
|
|
FOR_FLOAT32_INPUTS(i) {
|
|
int32_t signed_value = ConvertToInt(*i, false);
|
|
int32_t unsigned_value = ConvertToInt(*i, true);
|
|
CHECK_EQ(1, r.Call(*i, signed_value, unsigned_value));
|
|
}
|
|
}
|
|
#endif // V8_TARGET_ARCH_ARM
|
|
|
|
void RunI32x4BinOpTest(WasmOpcode simd_op, Int32BinOp expected_op) {
|
|
FLAG_wasm_simd_prototype = true;
|
|
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
|
|
byte a = 0;
|
|
byte b = 1;
|
|
byte expected = 2;
|
|
byte simd0 = r.AllocateLocal(kWasmS128);
|
|
byte simd1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_BLOCK(
|
|
WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
|
|
WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(b))),
|
|
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op & 0xffu,
|
|
WASM_GET_LOCAL(simd0),
|
|
WASM_GET_LOCAL(simd1))),
|
|
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected),
|
|
WASM_RETURN1(WASM_ONE)));
|
|
|
|
FOR_INT32_INPUTS(i) {
|
|
FOR_INT32_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
|
|
}
|
|
}
|
|
|
|
WASM_EXEC_TEST(I32x4Add) { RunI32x4BinOpTest(kExprI32x4Add, Add); }
|
|
|
|
WASM_EXEC_TEST(I32x4Sub) { RunI32x4BinOpTest(kExprI32x4Sub, Sub); }
|
|
|
|
#if V8_TARGET_ARCH_ARM
|
|
WASM_EXEC_TEST(I32x4Equal) { RunI32x4BinOpTest(kExprI32x4Eq, Equal); }
|
|
|
|
WASM_EXEC_TEST(I32x4NotEqual) { RunI32x4BinOpTest(kExprI32x4Ne, NotEqual); }
|
|
#endif // V8_TARGET_ARCH_ARM
|