89c762edf4
There is nothing virtual about a CodeGenerator since we either generate code for one platform or for the other. Review URL: http://codereview.chromium.org/6334 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@480 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
4170 lines
129 KiB
C++
4170 lines
129 KiB
C++
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#include "bootstrapper.h"
|
|
#include "codegen-inl.h"
|
|
#include "debug.h"
|
|
#include "scopes.h"
|
|
#include "runtime.h"
|
|
|
|
namespace v8 { namespace internal {
|
|
|
|
// -------------------------------------------------------------------------
|
|
// CodeGenState implementation.
|
|
|
|
CodeGenState::CodeGenState(CodeGenerator* owner)
|
|
: owner_(owner),
|
|
typeof_state_(NOT_INSIDE_TYPEOF),
|
|
true_target_(NULL),
|
|
false_target_(NULL),
|
|
previous_(NULL) {
|
|
owner_->set_state(this);
|
|
}
|
|
|
|
|
|
CodeGenState::CodeGenState(CodeGenerator* owner,
|
|
TypeofState typeof_state,
|
|
Label* true_target,
|
|
Label* false_target)
|
|
: owner_(owner),
|
|
typeof_state_(typeof_state),
|
|
true_target_(true_target),
|
|
false_target_(false_target),
|
|
previous_(owner->state()) {
|
|
owner_->set_state(this);
|
|
}
|
|
|
|
|
|
CodeGenState::~CodeGenState() {
|
|
ASSERT(owner_->state() == this);
|
|
owner_->set_state(previous_);
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// CodeGenerator implementation
|
|
|
|
#define __ masm_->
|
|
|
|
CodeGenerator::CodeGenerator(int buffer_size, Handle<Script> script,
|
|
bool is_eval)
|
|
: is_eval_(is_eval),
|
|
script_(script),
|
|
deferred_(8),
|
|
masm_(new MacroAssembler(NULL, buffer_size)),
|
|
scope_(NULL),
|
|
cc_reg_(al),
|
|
state_(NULL),
|
|
break_stack_height_(0) {
|
|
}
|
|
|
|
|
|
// Calling conventions:
|
|
|
|
// r0: the number of arguments
|
|
// fp: frame pointer
|
|
// sp: stack pointer
|
|
// pp: caller's parameter pointer
|
|
// cp: callee's context
|
|
|
|
void CodeGenerator::GenCode(FunctionLiteral* fun) {
|
|
Scope* scope = fun->scope();
|
|
ZoneList<Statement*>* body = fun->body();
|
|
|
|
// Initialize state.
|
|
{ CodeGenState state(this);
|
|
scope_ = scope;
|
|
cc_reg_ = al;
|
|
|
|
// Entry
|
|
// stack: function, receiver, arguments, return address
|
|
// r0: number of arguments
|
|
// sp: stack pointer
|
|
// fp: frame pointer
|
|
// pp: caller's parameter pointer
|
|
// cp: callee's context
|
|
|
|
{ Comment cmnt(masm_, "[ enter JS frame");
|
|
EnterJSFrame();
|
|
}
|
|
// tos: code slot
|
|
#ifdef DEBUG
|
|
if (strlen(FLAG_stop_at) > 0 &&
|
|
fun->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
|
|
__ stop("stop-at");
|
|
}
|
|
#endif
|
|
|
|
// Allocate space for locals and initialize them.
|
|
if (scope->num_stack_slots() > 0) {
|
|
Comment cmnt(masm_, "[ allocate space for locals");
|
|
// Initialize stack slots with 'undefined' value.
|
|
__ mov(ip, Operand(Factory::undefined_value()));
|
|
for (int i = 0; i < scope->num_stack_slots(); i++) {
|
|
__ push(ip);
|
|
}
|
|
}
|
|
|
|
if (scope->num_heap_slots() > 0) {
|
|
// Allocate local context.
|
|
// Get outer context and create a new context based on it.
|
|
__ ldr(r0, FunctionOperand());
|
|
__ push(r0);
|
|
__ CallRuntime(Runtime::kNewContext, 1); // r0 holds the result
|
|
|
|
if (kDebug) {
|
|
Label verified_true;
|
|
__ cmp(r0, Operand(cp));
|
|
__ b(eq, &verified_true);
|
|
__ stop("NewContext: r0 is expected to be the same as cp");
|
|
__ bind(&verified_true);
|
|
}
|
|
// Update context local.
|
|
__ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
|
}
|
|
|
|
// TODO(1241774): Improve this code!!!
|
|
// 1) only needed if we have a context
|
|
// 2) no need to recompute context ptr every single time
|
|
// 3) don't copy parameter operand code from SlotOperand!
|
|
{
|
|
Comment cmnt2(masm_, "[ copy context parameters into .context");
|
|
|
|
// Note that iteration order is relevant here! If we have the same
|
|
// parameter twice (e.g., function (x, y, x)), and that parameter
|
|
// needs to be copied into the context, it must be the last argument
|
|
// passed to the parameter that needs to be copied. This is a rare
|
|
// case so we don't check for it, instead we rely on the copying
|
|
// order: such a parameter is copied repeatedly into the same
|
|
// context location and thus the last value is what is seen inside
|
|
// the function.
|
|
for (int i = 0; i < scope->num_parameters(); i++) {
|
|
Variable* par = scope->parameter(i);
|
|
Slot* slot = par->slot();
|
|
if (slot != NULL && slot->type() == Slot::CONTEXT) {
|
|
ASSERT(!scope->is_global_scope()); // no parameters in global scope
|
|
__ ldr(r1, ParameterOperand(i));
|
|
// Loads r2 with context; used below in RecordWrite.
|
|
__ str(r1, SlotOperand(slot, r2));
|
|
// Load the offset into r3.
|
|
int slot_offset =
|
|
FixedArray::kHeaderSize + slot->index() * kPointerSize;
|
|
__ mov(r3, Operand(slot_offset));
|
|
__ RecordWrite(r2, r3, r1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Store the arguments object.
|
|
// This must happen after context initialization because
|
|
// the arguments array may be stored in the context!
|
|
if (scope->arguments() != NULL) {
|
|
ASSERT(scope->arguments_shadow() != NULL);
|
|
Comment cmnt(masm_, "[ allocate arguments object");
|
|
{ Reference shadow_ref(this, scope->arguments_shadow());
|
|
{ Reference arguments_ref(this, scope->arguments());
|
|
ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
|
|
__ ldr(r2, FunctionOperand());
|
|
// The receiver is below the arguments, the return address,
|
|
// and the frame pointer on the stack.
|
|
const int kReceiverDisplacement = 2 + scope->num_parameters();
|
|
__ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize));
|
|
__ mov(r0, Operand(Smi::FromInt(scope->num_parameters())));
|
|
__ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit());
|
|
__ CallStub(&stub);
|
|
__ push(r0);
|
|
arguments_ref.SetValue(NOT_CONST_INIT);
|
|
}
|
|
shadow_ref.SetValue(NOT_CONST_INIT);
|
|
}
|
|
__ pop(r0); // Value is no longer needed.
|
|
}
|
|
|
|
// Generate code to 'execute' declarations and initialize
|
|
// functions (source elements). In case of an illegal
|
|
// redeclaration we need to handle that instead of processing the
|
|
// declarations.
|
|
if (scope->HasIllegalRedeclaration()) {
|
|
Comment cmnt(masm_, "[ illegal redeclarations");
|
|
scope->VisitIllegalRedeclaration(this);
|
|
} else {
|
|
Comment cmnt(masm_, "[ declarations");
|
|
// ProcessDeclarations calls DeclareGlobals indirectly
|
|
ProcessDeclarations(scope->declarations());
|
|
|
|
// Bail out if a stack-overflow exception occurred when
|
|
// processing declarations.
|
|
if (HasStackOverflow()) return;
|
|
}
|
|
|
|
if (FLAG_trace) {
|
|
// Push a valid value as the parameter. The runtime call only uses
|
|
// it as the return value to indicate non-failure.
|
|
__ mov(r0, Operand(Smi::FromInt(0)));
|
|
__ push(r0);
|
|
__ CallRuntime(Runtime::kTraceEnter, 1);
|
|
}
|
|
CheckStack();
|
|
|
|
// Compile the body of the function in a vanilla state. Don't
|
|
// bother compiling all the code if the scope has an illegal
|
|
// redeclaration.
|
|
if (!scope->HasIllegalRedeclaration()) {
|
|
Comment cmnt(masm_, "[ function body");
|
|
#ifdef DEBUG
|
|
bool is_builtin = Bootstrapper::IsActive();
|
|
bool should_trace =
|
|
is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
|
|
if (should_trace) {
|
|
// Push a valid value as the parameter. The runtime call only uses
|
|
// it as the return value to indicate non-failure.
|
|
__ mov(r0, Operand(Smi::FromInt(0)));
|
|
__ push(r0);
|
|
__ CallRuntime(Runtime::kDebugTrace, 1);
|
|
}
|
|
#endif
|
|
VisitStatements(body);
|
|
}
|
|
}
|
|
|
|
// exit
|
|
// r0: result
|
|
// sp: stack pointer
|
|
// fp: frame pointer
|
|
// pp: parameter pointer
|
|
// cp: callee's context
|
|
__ mov(r0, Operand(Factory::undefined_value()));
|
|
|
|
__ bind(&function_return_);
|
|
if (FLAG_trace) {
|
|
// Push the return value on the stack as the parameter.
|
|
// Runtime::TraceExit returns the parameter as it is.
|
|
__ push(r0);
|
|
__ CallRuntime(Runtime::kTraceExit, 1);
|
|
}
|
|
|
|
// Tear down the frame which will restore the caller's frame pointer and the
|
|
// link register.
|
|
ExitJSFrame();
|
|
|
|
__ add(sp, sp, Operand((scope_->num_parameters() + 1) * kPointerSize));
|
|
__ mov(pc, lr);
|
|
|
|
// Code generation state must be reset.
|
|
scope_ = NULL;
|
|
ASSERT(!has_cc());
|
|
ASSERT(state_ == NULL);
|
|
}
|
|
|
|
|
|
MemOperand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
|
|
// Currently, this assertion will fail if we try to assign to
|
|
// a constant variable that is constant because it is read-only
|
|
// (such as the variable referring to a named function expression).
|
|
// We need to implement assignments to read-only variables.
|
|
// Ideally, we should do this during AST generation (by converting
|
|
// such assignments into expression statements); however, in general
|
|
// we may not be able to make the decision until past AST generation,
|
|
// that is when the entire program is known.
|
|
ASSERT(slot != NULL);
|
|
int index = slot->index();
|
|
switch (slot->type()) {
|
|
case Slot::PARAMETER:
|
|
return ParameterOperand(index);
|
|
|
|
case Slot::LOCAL: {
|
|
ASSERT(0 <= index && index < scope()->num_stack_slots());
|
|
const int kLocalOffset = JavaScriptFrameConstants::kLocal0Offset;
|
|
return MemOperand(fp, kLocalOffset - index * kPointerSize);
|
|
}
|
|
|
|
case Slot::CONTEXT: {
|
|
// Follow the context chain if necessary.
|
|
ASSERT(!tmp.is(cp)); // do not overwrite context register
|
|
Register context = cp;
|
|
int chain_length = scope()->ContextChainLength(slot->var()->scope());
|
|
for (int i = chain_length; i-- > 0;) {
|
|
// Load the closure.
|
|
// (All contexts, even 'with' contexts, have a closure,
|
|
// and it is the same for all contexts inside a function.
|
|
// There is no need to go to the function context first.)
|
|
__ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
|
|
// Load the function context (which is the incoming, outer context).
|
|
__ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
|
|
context = tmp;
|
|
}
|
|
// We may have a 'with' context now. Get the function context.
|
|
// (In fact this mov may never be the needed, since the scope analysis
|
|
// may not permit a direct context access in this case and thus we are
|
|
// always at a function context. However it is safe to dereference be-
|
|
// cause the function context of a function context is itself. Before
|
|
// deleting this mov we should try to create a counter-example first,
|
|
// though...)
|
|
__ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
|
|
return ContextOperand(tmp, index);
|
|
}
|
|
|
|
default:
|
|
UNREACHABLE();
|
|
return MemOperand(r0, 0);
|
|
}
|
|
}
|
|
|
|
|
|
// Loads a value on the stack. If it is a boolean value, the result may have
|
|
// been (partially) translated into branches, or it may have set the condition
|
|
// code register. If force_cc is set, the value is forced to set the condition
|
|
// code register and no value is pushed. If the condition code register was set,
|
|
// has_cc() is true and cc_reg_ contains the condition to test for 'true'.
|
|
void CodeGenerator::LoadCondition(Expression* x,
|
|
TypeofState typeof_state,
|
|
Label* true_target,
|
|
Label* false_target,
|
|
bool force_cc) {
|
|
ASSERT(!has_cc());
|
|
|
|
{ CodeGenState new_state(this, typeof_state, true_target, false_target);
|
|
Visit(x);
|
|
}
|
|
if (force_cc && !has_cc()) {
|
|
// Convert the TOS value to a boolean in the condition code register.
|
|
ToBoolean(true_target, false_target);
|
|
}
|
|
ASSERT(has_cc() || !force_cc);
|
|
}
|
|
|
|
|
|
void CodeGenerator::Load(Expression* x, TypeofState typeof_state) {
|
|
Label true_target;
|
|
Label false_target;
|
|
LoadCondition(x, typeof_state, &true_target, &false_target, false);
|
|
|
|
if (has_cc()) {
|
|
// convert cc_reg_ into a bool
|
|
Label loaded, materialize_true;
|
|
__ b(cc_reg_, &materialize_true);
|
|
__ mov(r0, Operand(Factory::false_value()));
|
|
__ push(r0);
|
|
__ b(&loaded);
|
|
__ bind(&materialize_true);
|
|
__ mov(r0, Operand(Factory::true_value()));
|
|
__ push(r0);
|
|
__ bind(&loaded);
|
|
cc_reg_ = al;
|
|
}
|
|
|
|
if (true_target.is_linked() || false_target.is_linked()) {
|
|
// we have at least one condition value
|
|
// that has been "translated" into a branch,
|
|
// thus it needs to be loaded explicitly again
|
|
Label loaded;
|
|
__ b(&loaded); // don't lose current TOS
|
|
bool both = true_target.is_linked() && false_target.is_linked();
|
|
// reincarnate "true", if necessary
|
|
if (true_target.is_linked()) {
|
|
__ bind(&true_target);
|
|
__ mov(r0, Operand(Factory::true_value()));
|
|
__ push(r0);
|
|
}
|
|
// if both "true" and "false" need to be reincarnated,
|
|
// jump across code for "false"
|
|
if (both)
|
|
__ b(&loaded);
|
|
// reincarnate "false", if necessary
|
|
if (false_target.is_linked()) {
|
|
__ bind(&false_target);
|
|
__ mov(r0, Operand(Factory::false_value()));
|
|
__ push(r0);
|
|
}
|
|
// everything is loaded at this point
|
|
__ bind(&loaded);
|
|
}
|
|
ASSERT(!has_cc());
|
|
}
|
|
|
|
|
|
void CodeGenerator::LoadGlobal() {
|
|
__ ldr(r0, GlobalObject());
|
|
__ push(r0);
|
|
}
|
|
|
|
|
|
// TODO(1241834): Get rid of this function in favor of just using Load, now
|
|
// that we have the INSIDE_TYPEOF typeof state. => Need to handle global
|
|
// variables w/o reference errors elsewhere.
|
|
void CodeGenerator::LoadTypeofExpression(Expression* x) {
|
|
Variable* variable = x->AsVariableProxy()->AsVariable();
|
|
if (variable != NULL && !variable->is_this() && variable->is_global()) {
|
|
// NOTE: This is somewhat nasty. We force the compiler to load
|
|
// the variable as if through '<global>.<variable>' to make sure we
|
|
// do not get reference errors.
|
|
Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
|
|
Literal key(variable->name());
|
|
// TODO(1241834): Fetch the position from the variable instead of using
|
|
// no position.
|
|
Property property(&global, &key, RelocInfo::kNoPosition);
|
|
Load(&property);
|
|
} else {
|
|
Load(x, INSIDE_TYPEOF);
|
|
}
|
|
}
|
|
|
|
|
|
Reference::Reference(CodeGenerator* cgen, Expression* expression)
|
|
: cgen_(cgen), expression_(expression), type_(ILLEGAL) {
|
|
cgen->LoadReference(this);
|
|
}
|
|
|
|
|
|
Reference::~Reference() {
|
|
cgen_->UnloadReference(this);
|
|
}
|
|
|
|
|
|
void CodeGenerator::LoadReference(Reference* ref) {
|
|
Comment cmnt(masm_, "[ LoadReference");
|
|
|
|
Expression* e = ref->expression();
|
|
Property* property = e->AsProperty();
|
|
Variable* var = e->AsVariableProxy()->AsVariable();
|
|
|
|
if (property != NULL) {
|
|
// The expression is either a property or a variable proxy that rewrites
|
|
// to a property.
|
|
Load(property->obj());
|
|
// We use a named reference if the key is a literal symbol, unless it is
|
|
// a string that can be legally parsed as an integer. This is because
|
|
// otherwise we will not get into the slow case code that handles [] on
|
|
// String objects.
|
|
Literal* literal = property->key()->AsLiteral();
|
|
uint32_t dummy;
|
|
if (literal != NULL &&
|
|
literal->handle()->IsSymbol() &&
|
|
!String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) {
|
|
ref->set_type(Reference::NAMED);
|
|
} else {
|
|
Load(property->key());
|
|
ref->set_type(Reference::KEYED);
|
|
}
|
|
} else if (var != NULL) {
|
|
// The expression is a variable proxy that does not rewrite to a
|
|
// property. Global variables are treated as named property references.
|
|
if (var->is_global()) {
|
|
LoadGlobal();
|
|
ref->set_type(Reference::NAMED);
|
|
} else {
|
|
ASSERT(var->slot() != NULL);
|
|
ref->set_type(Reference::SLOT);
|
|
}
|
|
} else {
|
|
// Anything else is a runtime error.
|
|
Load(e);
|
|
__ CallRuntime(Runtime::kThrowReferenceError, 1);
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::UnloadReference(Reference* ref) {
|
|
Comment cmnt(masm_, "[ UnloadReference");
|
|
|
|
int size = ref->size();
|
|
if (size <= 0) {
|
|
// Do nothing. No popping is necessary.
|
|
} else {
|
|
__ pop(r0);
|
|
__ add(sp, sp, Operand(size * kPointerSize));
|
|
__ push(r0);
|
|
}
|
|
}
|
|
|
|
|
|
// ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given
|
|
// register to a boolean in the condition code register. The code
|
|
// may jump to 'false_target' in case the register converts to 'false'.
|
|
void CodeGenerator::ToBoolean(Label* true_target,
|
|
Label* false_target) {
|
|
// Note: The generated code snippet does not change stack variables.
|
|
// Only the condition code should be set.
|
|
__ pop(r0);
|
|
|
|
// Fast case checks
|
|
|
|
// Check if the value is 'false'.
|
|
__ cmp(r0, Operand(Factory::false_value()));
|
|
__ b(eq, false_target);
|
|
|
|
// Check if the value is 'true'.
|
|
__ cmp(r0, Operand(Factory::true_value()));
|
|
__ b(eq, true_target);
|
|
|
|
// Check if the value is 'undefined'.
|
|
__ cmp(r0, Operand(Factory::undefined_value()));
|
|
__ b(eq, false_target);
|
|
|
|
// Check if the value is a smi.
|
|
__ cmp(r0, Operand(Smi::FromInt(0)));
|
|
__ b(eq, false_target);
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
__ b(eq, true_target);
|
|
|
|
// Slow case: call the runtime.
|
|
__ push(r0);
|
|
__ CallRuntime(Runtime::kToBool, 1);
|
|
|
|
// Convert result (r0) to condition code
|
|
__ cmp(r0, Operand(Factory::false_value()));
|
|
|
|
cc_reg_ = ne;
|
|
}
|
|
|
|
|
|
class GetPropertyStub : public CodeStub {
|
|
public:
|
|
GetPropertyStub() { }
|
|
|
|
private:
|
|
Major MajorKey() { return GetProperty; }
|
|
int MinorKey() { return 0; }
|
|
void Generate(MacroAssembler* masm);
|
|
};
|
|
|
|
|
|
class SetPropertyStub : public CodeStub {
|
|
public:
|
|
SetPropertyStub() { }
|
|
|
|
private:
|
|
Major MajorKey() { return SetProperty; }
|
|
int MinorKey() { return 0; }
|
|
void Generate(MacroAssembler* masm);
|
|
};
|
|
|
|
|
|
class GenericBinaryOpStub : public CodeStub {
|
|
public:
|
|
explicit GenericBinaryOpStub(Token::Value op) : op_(op) { }
|
|
|
|
private:
|
|
Token::Value op_;
|
|
|
|
Major MajorKey() { return GenericBinaryOp; }
|
|
int MinorKey() { return static_cast<int>(op_); }
|
|
void Generate(MacroAssembler* masm);
|
|
|
|
const char* GetName() {
|
|
switch (op_) {
|
|
case Token::ADD: return "GenericBinaryOpStub_ADD";
|
|
case Token::SUB: return "GenericBinaryOpStub_SUB";
|
|
case Token::MUL: return "GenericBinaryOpStub_MUL";
|
|
case Token::DIV: return "GenericBinaryOpStub_DIV";
|
|
case Token::BIT_OR: return "GenericBinaryOpStub_BIT_OR";
|
|
case Token::BIT_AND: return "GenericBinaryOpStub_BIT_AND";
|
|
case Token::BIT_XOR: return "GenericBinaryOpStub_BIT_XOR";
|
|
case Token::SAR: return "GenericBinaryOpStub_SAR";
|
|
case Token::SHL: return "GenericBinaryOpStub_SHL";
|
|
case Token::SHR: return "GenericBinaryOpStub_SHR";
|
|
default: return "GenericBinaryOpStub";
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
void Print() { PrintF("GenericBinaryOpStub (%s)\n", Token::String(op_)); }
|
|
#endif
|
|
};
|
|
|
|
|
|
class InvokeBuiltinStub : public CodeStub {
|
|
public:
|
|
enum Kind { Inc, Dec, ToNumber };
|
|
InvokeBuiltinStub(Kind kind, int argc) : kind_(kind), argc_(argc) { }
|
|
|
|
private:
|
|
Kind kind_;
|
|
int argc_;
|
|
|
|
Major MajorKey() { return InvokeBuiltin; }
|
|
int MinorKey() { return (argc_ << 3) | static_cast<int>(kind_); }
|
|
void Generate(MacroAssembler* masm);
|
|
|
|
#ifdef DEBUG
|
|
void Print() {
|
|
PrintF("InvokeBuiltinStub (kind %d, argc, %d)\n",
|
|
static_cast<int>(kind_),
|
|
argc_);
|
|
}
|
|
#endif
|
|
};
|
|
|
|
|
|
void CodeGenerator::GenericBinaryOperation(Token::Value op) {
|
|
// sp[0] : y
|
|
// sp[1] : x
|
|
// result : r0
|
|
|
|
// Stub is entered with a call: 'return address' is in lr.
|
|
switch (op) {
|
|
case Token::ADD: // fall through.
|
|
case Token::SUB: // fall through.
|
|
case Token::MUL:
|
|
case Token::BIT_OR:
|
|
case Token::BIT_AND:
|
|
case Token::BIT_XOR:
|
|
case Token::SHL:
|
|
case Token::SHR:
|
|
case Token::SAR: {
|
|
__ pop(r0); // r0 : y
|
|
__ pop(r1); // r1 : x
|
|
GenericBinaryOpStub stub(op);
|
|
__ CallStub(&stub);
|
|
break;
|
|
}
|
|
|
|
case Token::DIV: {
|
|
__ mov(r0, Operand(1));
|
|
__ InvokeBuiltin(Builtins::DIV, CALL_JS);
|
|
break;
|
|
}
|
|
|
|
case Token::MOD: {
|
|
__ mov(r0, Operand(1));
|
|
__ InvokeBuiltin(Builtins::MOD, CALL_JS);
|
|
break;
|
|
}
|
|
|
|
case Token::COMMA:
|
|
__ pop(r0);
|
|
// simply discard left value
|
|
__ pop();
|
|
break;
|
|
|
|
default:
|
|
// Other cases should have been handled before this point.
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
class DeferredInlinedSmiOperation: public DeferredCode {
|
|
public:
|
|
DeferredInlinedSmiOperation(CodeGenerator* generator, Token::Value op,
|
|
int value, bool reversed) :
|
|
DeferredCode(generator), op_(op), value_(value), reversed_(reversed) {
|
|
set_comment("[ DeferredInlinedSmiOperation");
|
|
}
|
|
|
|
virtual void Generate() {
|
|
switch (op_) {
|
|
case Token::ADD: {
|
|
if (reversed_) {
|
|
// revert optimistic add
|
|
__ sub(r0, r0, Operand(Smi::FromInt(value_)));
|
|
__ mov(r1, Operand(Smi::FromInt(value_))); // x
|
|
} else {
|
|
// revert optimistic add
|
|
__ sub(r1, r0, Operand(Smi::FromInt(value_)));
|
|
__ mov(r0, Operand(Smi::FromInt(value_)));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Token::SUB: {
|
|
if (reversed_) {
|
|
// revert optimistic sub
|
|
__ rsb(r0, r0, Operand(Smi::FromInt(value_)));
|
|
__ mov(r1, Operand(Smi::FromInt(value_)));
|
|
} else {
|
|
__ add(r1, r0, Operand(Smi::FromInt(value_)));
|
|
__ mov(r0, Operand(Smi::FromInt(value_)));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Token::BIT_OR:
|
|
case Token::BIT_XOR:
|
|
case Token::BIT_AND: {
|
|
if (reversed_) {
|
|
__ mov(r1, Operand(Smi::FromInt(value_)));
|
|
} else {
|
|
__ mov(r1, Operand(r0));
|
|
__ mov(r0, Operand(Smi::FromInt(value_)));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Token::SHL:
|
|
case Token::SHR:
|
|
case Token::SAR: {
|
|
if (!reversed_) {
|
|
__ mov(r1, Operand(r0));
|
|
__ mov(r0, Operand(Smi::FromInt(value_)));
|
|
} else {
|
|
UNREACHABLE(); // should have been handled in SmiOperation
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
// other cases should have been handled before this point.
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
GenericBinaryOpStub igostub(op_);
|
|
__ CallStub(&igostub);
|
|
}
|
|
|
|
private:
|
|
Token::Value op_;
|
|
int value_;
|
|
bool reversed_;
|
|
};
|
|
|
|
|
|
void CodeGenerator::SmiOperation(Token::Value op,
|
|
Handle<Object> value,
|
|
bool reversed) {
|
|
// NOTE: This is an attempt to inline (a bit) more of the code for
|
|
// some possible smi operations (like + and -) when (at least) one
|
|
// of the operands is a literal smi. With this optimization, the
|
|
// performance of the system is increased by ~15%, and the generated
|
|
// code size is increased by ~1% (measured on a combination of
|
|
// different benchmarks).
|
|
|
|
// sp[0] : operand
|
|
|
|
int int_value = Smi::cast(*value)->value();
|
|
|
|
Label exit;
|
|
__ pop(r0);
|
|
|
|
switch (op) {
|
|
case Token::ADD: {
|
|
DeferredCode* deferred =
|
|
new DeferredInlinedSmiOperation(this, op, int_value, reversed);
|
|
|
|
__ add(r0, r0, Operand(value), SetCC);
|
|
__ b(vs, deferred->enter());
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
__ b(ne, deferred->enter());
|
|
__ bind(deferred->exit());
|
|
break;
|
|
}
|
|
|
|
case Token::SUB: {
|
|
DeferredCode* deferred =
|
|
new DeferredInlinedSmiOperation(this, op, int_value, reversed);
|
|
|
|
if (!reversed) {
|
|
__ sub(r0, r0, Operand(value), SetCC);
|
|
} else {
|
|
__ rsb(r0, r0, Operand(value), SetCC);
|
|
}
|
|
__ b(vs, deferred->enter());
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
__ b(ne, deferred->enter());
|
|
__ bind(deferred->exit());
|
|
break;
|
|
}
|
|
|
|
case Token::BIT_OR:
|
|
case Token::BIT_XOR:
|
|
case Token::BIT_AND: {
|
|
DeferredCode* deferred =
|
|
new DeferredInlinedSmiOperation(this, op, int_value, reversed);
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
__ b(ne, deferred->enter());
|
|
switch (op) {
|
|
case Token::BIT_OR: __ orr(r0, r0, Operand(value)); break;
|
|
case Token::BIT_XOR: __ eor(r0, r0, Operand(value)); break;
|
|
case Token::BIT_AND: __ and_(r0, r0, Operand(value)); break;
|
|
default: UNREACHABLE();
|
|
}
|
|
__ bind(deferred->exit());
|
|
break;
|
|
}
|
|
|
|
case Token::SHL:
|
|
case Token::SHR:
|
|
case Token::SAR: {
|
|
if (reversed) {
|
|
__ mov(ip, Operand(value));
|
|
__ push(ip);
|
|
__ push(r0);
|
|
GenericBinaryOperation(op);
|
|
|
|
} else {
|
|
int shift_value = int_value & 0x1f; // least significant 5 bits
|
|
DeferredCode* deferred =
|
|
new DeferredInlinedSmiOperation(this, op, shift_value, false);
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
__ b(ne, deferred->enter());
|
|
__ mov(r2, Operand(r0, ASR, kSmiTagSize)); // remove tags
|
|
switch (op) {
|
|
case Token::SHL: {
|
|
__ mov(r2, Operand(r2, LSL, shift_value));
|
|
// check that the *unsigned* result fits in a smi
|
|
__ add(r3, r2, Operand(0x40000000), SetCC);
|
|
__ b(mi, deferred->enter());
|
|
break;
|
|
}
|
|
case Token::SHR: {
|
|
// LSR by immediate 0 means shifting 32 bits.
|
|
if (shift_value != 0) {
|
|
__ mov(r2, Operand(r2, LSR, shift_value));
|
|
}
|
|
// check that the *unsigned* result fits in a smi
|
|
// neither of the two high-order bits can be set:
|
|
// - 0x80000000: high bit would be lost when smi tagging
|
|
// - 0x40000000: this number would convert to negative when
|
|
// smi tagging these two cases can only happen with shifts
|
|
// by 0 or 1 when handed a valid smi
|
|
__ and_(r3, r2, Operand(0xc0000000), SetCC);
|
|
__ b(ne, deferred->enter());
|
|
break;
|
|
}
|
|
case Token::SAR: {
|
|
if (shift_value != 0) {
|
|
// ASR by immediate 0 means shifting 32 bits.
|
|
__ mov(r2, Operand(r2, ASR, shift_value));
|
|
}
|
|
break;
|
|
}
|
|
default: UNREACHABLE();
|
|
}
|
|
__ mov(r0, Operand(r2, LSL, kSmiTagSize));
|
|
__ bind(deferred->exit());
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
if (!reversed) {
|
|
__ push(r0);
|
|
__ mov(r0, Operand(value));
|
|
__ push(r0);
|
|
} else {
|
|
__ mov(ip, Operand(value));
|
|
__ push(ip);
|
|
__ push(r0);
|
|
}
|
|
GenericBinaryOperation(op);
|
|
break;
|
|
}
|
|
|
|
__ bind(&exit);
|
|
}
|
|
|
|
|
|
void CodeGenerator::Comparison(Condition cc, bool strict) {
|
|
// sp[0] : y
|
|
// sp[1] : x
|
|
// result : cc register
|
|
|
|
// Strict only makes sense for equality comparisons.
|
|
ASSERT(!strict || cc == eq);
|
|
|
|
Label exit, smi;
|
|
// Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
|
|
if (cc == gt || cc == le) {
|
|
cc = ReverseCondition(cc);
|
|
__ pop(r1);
|
|
__ pop(r0);
|
|
} else {
|
|
__ pop(r0);
|
|
__ pop(r1);
|
|
}
|
|
__ orr(r2, r0, Operand(r1));
|
|
__ tst(r2, Operand(kSmiTagMask));
|
|
__ b(eq, &smi);
|
|
|
|
// Perform non-smi comparison by runtime call.
|
|
__ push(r1);
|
|
|
|
// Figure out which native to call and setup the arguments.
|
|
Builtins::JavaScript native;
|
|
int argc;
|
|
if (cc == eq) {
|
|
native = strict ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
|
|
argc = 1;
|
|
} else {
|
|
native = Builtins::COMPARE;
|
|
int ncr; // NaN compare result
|
|
if (cc == lt || cc == le) {
|
|
ncr = GREATER;
|
|
} else {
|
|
ASSERT(cc == gt || cc == ge); // remaining cases
|
|
ncr = LESS;
|
|
}
|
|
__ push(r0);
|
|
__ mov(r0, Operand(Smi::FromInt(ncr)));
|
|
argc = 2;
|
|
}
|
|
|
|
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
|
|
// tagged as a small integer.
|
|
__ push(r0);
|
|
__ mov(r0, Operand(argc));
|
|
__ InvokeBuiltin(native, CALL_JS);
|
|
__ cmp(r0, Operand(0));
|
|
__ b(&exit);
|
|
|
|
// test smi equality by pointer comparison.
|
|
__ bind(&smi);
|
|
__ cmp(r1, Operand(r0));
|
|
|
|
__ bind(&exit);
|
|
cc_reg_ = cc;
|
|
}
|
|
|
|
|
|
class CallFunctionStub: public CodeStub {
|
|
public:
|
|
explicit CallFunctionStub(int argc) : argc_(argc) {}
|
|
|
|
void Generate(MacroAssembler* masm);
|
|
|
|
private:
|
|
int argc_;
|
|
|
|
#if defined(DEBUG)
|
|
void Print() { PrintF("CallFunctionStub (argc %d)\n", argc_); }
|
|
#endif // defined(DEBUG)
|
|
|
|
Major MajorKey() { return CallFunction; }
|
|
int MinorKey() { return argc_; }
|
|
};
|
|
|
|
|
|
// Call the function on the stack with the given arguments.
|
|
void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
|
|
int position) {
|
|
// Push the arguments ("left-to-right") on the stack.
|
|
for (int i = 0; i < args->length(); i++) {
|
|
Load(args->at(i));
|
|
}
|
|
|
|
// Record the position for debugging purposes.
|
|
__ RecordPosition(position);
|
|
|
|
// Use the shared code stub to call the function.
|
|
CallFunctionStub call_function(args->length());
|
|
__ CallStub(&call_function);
|
|
|
|
// Restore context and pop function from the stack.
|
|
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
|
__ pop(); // discard the TOS
|
|
}
|
|
|
|
|
|
void CodeGenerator::Branch(bool if_true, Label* L) {
|
|
ASSERT(has_cc());
|
|
Condition cc = if_true ? cc_reg_ : NegateCondition(cc_reg_);
|
|
__ b(cc, L);
|
|
cc_reg_ = al;
|
|
}
|
|
|
|
|
|
void CodeGenerator::CheckStack() {
|
|
if (FLAG_check_stack) {
|
|
Comment cmnt(masm_, "[ check stack");
|
|
StackCheckStub stub;
|
|
__ CallStub(&stub);
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitBlock(Block* node) {
|
|
Comment cmnt(masm_, "[ Block");
|
|
if (FLAG_debug_info) RecordStatementPosition(node);
|
|
node->set_break_stack_height(break_stack_height_);
|
|
VisitStatements(node->statements());
|
|
__ bind(node->break_target());
|
|
}
|
|
|
|
|
|
void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
|
|
__ mov(r0, Operand(pairs));
|
|
__ push(r0);
|
|
__ push(cp);
|
|
__ mov(r0, Operand(Smi::FromInt(is_eval() ? 1 : 0)));
|
|
__ push(r0);
|
|
__ CallRuntime(Runtime::kDeclareGlobals, 3);
|
|
// The result is discarded.
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitDeclaration(Declaration* node) {
|
|
Comment cmnt(masm_, "[ Declaration");
|
|
Variable* var = node->proxy()->var();
|
|
ASSERT(var != NULL); // must have been resolved
|
|
Slot* slot = var->slot();
|
|
|
|
// If it was not possible to allocate the variable at compile time,
|
|
// we need to "declare" it at runtime to make sure it actually
|
|
// exists in the local context.
|
|
if (slot != NULL && slot->type() == Slot::LOOKUP) {
|
|
// Variables with a "LOOKUP" slot were introduced as non-locals
|
|
// during variable resolution and must have mode DYNAMIC.
|
|
ASSERT(var->mode() == Variable::DYNAMIC);
|
|
// For now, just do a runtime call.
|
|
__ push(cp);
|
|
__ mov(r0, Operand(var->name()));
|
|
__ push(r0);
|
|
// Declaration nodes are always declared in only two modes.
|
|
ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
|
|
PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
|
|
__ mov(r0, Operand(Smi::FromInt(attr)));
|
|
__ push(r0);
|
|
// Push initial value, if any.
|
|
// Note: For variables we must not push an initial value (such as
|
|
// 'undefined') because we may have a (legal) redeclaration and we
|
|
// must not destroy the current value.
|
|
if (node->mode() == Variable::CONST) {
|
|
__ mov(r0, Operand(Factory::the_hole_value()));
|
|
__ push(r0);
|
|
} else if (node->fun() != NULL) {
|
|
Load(node->fun());
|
|
} else {
|
|
__ mov(r0, Operand(0)); // no initial value!
|
|
__ push(r0);
|
|
}
|
|
__ CallRuntime(Runtime::kDeclareContextSlot, 4);
|
|
// Ignore the return value (declarations are statements).
|
|
return;
|
|
}
|
|
|
|
ASSERT(!var->is_global());
|
|
|
|
// If we have a function or a constant, we need to initialize the variable.
|
|
Expression* val = NULL;
|
|
if (node->mode() == Variable::CONST) {
|
|
val = new Literal(Factory::the_hole_value());
|
|
} else {
|
|
val = node->fun(); // NULL if we don't have a function
|
|
}
|
|
|
|
if (val != NULL) {
|
|
// Set initial value.
|
|
Reference target(this, node->proxy());
|
|
ASSERT(target.is_slot());
|
|
Load(val);
|
|
target.SetValue(NOT_CONST_INIT);
|
|
// Get rid of the assigned value (declarations are statements). It's
|
|
// safe to pop the value lying on top of the reference before unloading
|
|
// the reference itself (which preserves the top of stack) because we
|
|
// know it is a zero-sized reference.
|
|
__ pop();
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
|
|
Comment cmnt(masm_, "[ ExpressionStatement");
|
|
if (FLAG_debug_info) RecordStatementPosition(node);
|
|
Expression* expression = node->expression();
|
|
expression->MarkAsStatement();
|
|
Load(expression);
|
|
__ pop();
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
|
|
Comment cmnt(masm_, "// EmptyStatement");
|
|
// nothing to do
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitIfStatement(IfStatement* node) {
|
|
Comment cmnt(masm_, "[ IfStatement");
|
|
// Generate different code depending on which
|
|
// parts of the if statement are present or not.
|
|
bool has_then_stm = node->HasThenStatement();
|
|
bool has_else_stm = node->HasElseStatement();
|
|
|
|
if (FLAG_debug_info) RecordStatementPosition(node);
|
|
|
|
Label exit;
|
|
if (has_then_stm && has_else_stm) {
|
|
Comment cmnt(masm_, "[ IfThenElse");
|
|
Label then;
|
|
Label else_;
|
|
// if (cond)
|
|
LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &then, &else_, true);
|
|
Branch(false, &else_);
|
|
// then
|
|
__ bind(&then);
|
|
Visit(node->then_statement());
|
|
__ b(&exit);
|
|
// else
|
|
__ bind(&else_);
|
|
Visit(node->else_statement());
|
|
|
|
} else if (has_then_stm) {
|
|
Comment cmnt(masm_, "[ IfThen");
|
|
ASSERT(!has_else_stm);
|
|
Label then;
|
|
// if (cond)
|
|
LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &then, &exit, true);
|
|
Branch(false, &exit);
|
|
// then
|
|
__ bind(&then);
|
|
Visit(node->then_statement());
|
|
|
|
} else if (has_else_stm) {
|
|
Comment cmnt(masm_, "[ IfElse");
|
|
ASSERT(!has_then_stm);
|
|
Label else_;
|
|
// if (!cond)
|
|
LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &exit, &else_, true);
|
|
Branch(true, &exit);
|
|
// else
|
|
__ bind(&else_);
|
|
Visit(node->else_statement());
|
|
|
|
} else {
|
|
Comment cmnt(masm_, "[ If");
|
|
ASSERT(!has_then_stm && !has_else_stm);
|
|
// if (cond)
|
|
LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &exit, &exit, false);
|
|
if (has_cc()) {
|
|
cc_reg_ = al;
|
|
} else {
|
|
__ pop(r0); // __ Pop(no_reg)
|
|
}
|
|
}
|
|
|
|
// end
|
|
__ bind(&exit);
|
|
}
|
|
|
|
|
|
void CodeGenerator::CleanStack(int num_bytes) {
|
|
ASSERT(num_bytes >= 0);
|
|
if (num_bytes > 0) {
|
|
__ add(sp, sp, Operand(num_bytes));
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
|
|
Comment cmnt(masm_, "[ ContinueStatement");
|
|
if (FLAG_debug_info) RecordStatementPosition(node);
|
|
CleanStack(break_stack_height_ - node->target()->break_stack_height());
|
|
__ b(node->target()->continue_target());
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
|
|
Comment cmnt(masm_, "[ BreakStatement");
|
|
if (FLAG_debug_info) RecordStatementPosition(node);
|
|
CleanStack(break_stack_height_ - node->target()->break_stack_height());
|
|
__ b(node->target()->break_target());
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
|
|
Comment cmnt(masm_, "[ ReturnStatement");
|
|
if (FLAG_debug_info) RecordStatementPosition(node);
|
|
Load(node->expression());
|
|
// Move the function result into r0.
|
|
__ pop(r0);
|
|
|
|
__ b(&function_return_);
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
|
|
Comment cmnt(masm_, "[ WithEnterStatement");
|
|
if (FLAG_debug_info) RecordStatementPosition(node);
|
|
Load(node->expression());
|
|
__ CallRuntime(Runtime::kPushContext, 1);
|
|
if (kDebug) {
|
|
Label verified_true;
|
|
__ cmp(r0, Operand(cp));
|
|
__ b(eq, &verified_true);
|
|
__ stop("PushContext: r0 is expected to be the same as cp");
|
|
__ bind(&verified_true);
|
|
}
|
|
// Update context local.
|
|
__ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
|
|
Comment cmnt(masm_, "[ WithExitStatement");
|
|
// Pop context.
|
|
__ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX));
|
|
// Update context local.
|
|
__ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
|
}
|
|
|
|
|
|
int CodeGenerator::FastCaseSwitchMaxOverheadFactor() {
|
|
return kFastSwitchMaxOverheadFactor;
|
|
}
|
|
|
|
int CodeGenerator::FastCaseSwitchMinCaseCount() {
|
|
return kFastSwitchMinCaseCount;
|
|
}
|
|
|
|
|
|
void CodeGenerator::GenerateFastCaseSwitchJumpTable(
|
|
SwitchStatement* node, int min_index, int range, Label *fail_label,
|
|
SmartPointer<Label*> &case_targets, SmartPointer<Label> &case_labels) {
|
|
|
|
ASSERT(kSmiTag == 0 && kSmiTagSize <= 2);
|
|
|
|
__ pop(r0);
|
|
if (min_index != 0) {
|
|
// small positive numbers can be immediate operands.
|
|
if (min_index < 0) {
|
|
__ add(r0, r0, Operand(Smi::FromInt(-min_index)));
|
|
} else {
|
|
__ sub(r0, r0, Operand(Smi::FromInt(min_index)));
|
|
}
|
|
}
|
|
__ tst(r0, Operand(0x80000000 | kSmiTagMask));
|
|
__ b(ne, fail_label);
|
|
__ cmp(r0, Operand(Smi::FromInt(range)));
|
|
__ b(ge, fail_label);
|
|
__ add(pc, pc, Operand(r0, LSL, 2 - kSmiTagSize));
|
|
// One extra instruction offsets the table, so the table's start address is
|
|
// the pc-register at the above add.
|
|
__ stop("Unreachable: Switch table alignment");
|
|
|
|
// table containing branch operations.
|
|
for (int i = 0; i < range; i++) {
|
|
__ b(case_targets[i]);
|
|
}
|
|
|
|
GenerateFastCaseSwitchCases(node, case_labels);
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
|
|
Comment cmnt(masm_, "[ SwitchStatement");
|
|
if (FLAG_debug_info) RecordStatementPosition(node);
|
|
node->set_break_stack_height(break_stack_height_);
|
|
|
|
Load(node->tag());
|
|
|
|
if (TryGenerateFastCaseSwitchStatement(node)) {
|
|
return;
|
|
}
|
|
|
|
Label next, fall_through, default_case;
|
|
ZoneList<CaseClause*>* cases = node->cases();
|
|
int length = cases->length();
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
CaseClause* clause = cases->at(i);
|
|
|
|
Comment cmnt(masm_, "[ case clause");
|
|
|
|
if (clause->is_default()) {
|
|
// Continue matching cases. The program will execute the default case's
|
|
// statements if it does not match any of the cases.
|
|
__ b(&next);
|
|
|
|
// Bind the default case label, so we can branch to it when we
|
|
// have compared against all other cases.
|
|
ASSERT(default_case.is_unused()); // at most one default clause
|
|
__ bind(&default_case);
|
|
} else {
|
|
__ bind(&next);
|
|
next.Unuse();
|
|
__ ldr(r0, MemOperand(sp, 0));
|
|
__ push(r0); // duplicate TOS
|
|
Load(clause->label());
|
|
Comparison(eq, true);
|
|
Branch(false, &next);
|
|
}
|
|
|
|
// Entering the case statement for the first time. Remove the switch value
|
|
// from the stack.
|
|
__ pop(r0);
|
|
|
|
// Generate code for the body.
|
|
// This is also the target for the fall through from the previous case's
|
|
// statements which has to skip over the matching code and the popping of
|
|
// the switch value.
|
|
__ bind(&fall_through);
|
|
fall_through.Unuse();
|
|
VisitStatements(clause->statements());
|
|
__ b(&fall_through);
|
|
}
|
|
|
|
__ bind(&next);
|
|
// Reached the end of the case statements without matching any of the cases.
|
|
if (default_case.is_bound()) {
|
|
// A default case exists -> execute its statements.
|
|
__ b(&default_case);
|
|
} else {
|
|
// Remove the switch value from the stack.
|
|
__ pop(r0);
|
|
}
|
|
|
|
__ bind(&fall_through);
|
|
__ bind(node->break_target());
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitLoopStatement(LoopStatement* node) {
|
|
Comment cmnt(masm_, "[ LoopStatement");
|
|
if (FLAG_debug_info) RecordStatementPosition(node);
|
|
node->set_break_stack_height(break_stack_height_);
|
|
|
|
// simple condition analysis
|
|
enum { ALWAYS_TRUE, ALWAYS_FALSE, DONT_KNOW } info = DONT_KNOW;
|
|
if (node->cond() == NULL) {
|
|
ASSERT(node->type() == LoopStatement::FOR_LOOP);
|
|
info = ALWAYS_TRUE;
|
|
} else {
|
|
Literal* lit = node->cond()->AsLiteral();
|
|
if (lit != NULL) {
|
|
if (lit->IsTrue()) {
|
|
info = ALWAYS_TRUE;
|
|
} else if (lit->IsFalse()) {
|
|
info = ALWAYS_FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
Label loop, entry;
|
|
|
|
// init
|
|
if (node->init() != NULL) {
|
|
ASSERT(node->type() == LoopStatement::FOR_LOOP);
|
|
Visit(node->init());
|
|
}
|
|
if (node->type() != LoopStatement::DO_LOOP && info != ALWAYS_TRUE) {
|
|
__ b(&entry);
|
|
}
|
|
|
|
// body
|
|
__ bind(&loop);
|
|
Visit(node->body());
|
|
|
|
// next
|
|
__ bind(node->continue_target());
|
|
if (node->next() != NULL) {
|
|
// Record source position of the statement as this code which is after the
|
|
// code for the body actually belongs to the loop statement and not the
|
|
// body.
|
|
if (FLAG_debug_info) __ RecordPosition(node->statement_pos());
|
|
ASSERT(node->type() == LoopStatement::FOR_LOOP);
|
|
Visit(node->next());
|
|
}
|
|
|
|
// cond
|
|
__ bind(&entry);
|
|
switch (info) {
|
|
case ALWAYS_TRUE:
|
|
CheckStack(); // TODO(1222600): ignore if body contains calls.
|
|
__ b(&loop);
|
|
break;
|
|
case ALWAYS_FALSE:
|
|
break;
|
|
case DONT_KNOW:
|
|
CheckStack(); // TODO(1222600): ignore if body contains calls.
|
|
LoadCondition(node->cond(),
|
|
NOT_INSIDE_TYPEOF,
|
|
&loop,
|
|
node->break_target(),
|
|
true);
|
|
Branch(true, &loop);
|
|
break;
|
|
}
|
|
|
|
// exit
|
|
__ bind(node->break_target());
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitForInStatement(ForInStatement* node) {
|
|
Comment cmnt(masm_, "[ ForInStatement");
|
|
if (FLAG_debug_info) RecordStatementPosition(node);
|
|
|
|
// We keep stuff on the stack while the body is executing.
|
|
// Record it, so that a break/continue crossing this statement
|
|
// can restore the stack.
|
|
const int kForInStackSize = 5 * kPointerSize;
|
|
break_stack_height_ += kForInStackSize;
|
|
node->set_break_stack_height(break_stack_height_);
|
|
|
|
Label loop, next, entry, cleanup, exit, primitive, jsobject;
|
|
Label filter_key, end_del_check, fixed_array, non_string;
|
|
|
|
// Get the object to enumerate over (converted to JSObject).
|
|
Load(node->enumerable());
|
|
__ pop(r0);
|
|
|
|
// Both SpiderMonkey and kjs ignore null and undefined in contrast
|
|
// to the specification. 12.6.4 mandates a call to ToObject.
|
|
__ cmp(r0, Operand(Factory::undefined_value()));
|
|
__ b(eq, &exit);
|
|
__ cmp(r0, Operand(Factory::null_value()));
|
|
__ b(eq, &exit);
|
|
|
|
// Stack layout in body:
|
|
// [iteration counter (Smi)]
|
|
// [length of array]
|
|
// [FixedArray]
|
|
// [Map or 0]
|
|
// [Object]
|
|
|
|
// Check if enumerable is already a JSObject
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
__ b(eq, &primitive);
|
|
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
|
|
__ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
|
|
__ cmp(r1, Operand(FIRST_JS_OBJECT_TYPE));
|
|
__ b(hs, &jsobject);
|
|
|
|
__ bind(&primitive);
|
|
__ push(r0);
|
|
__ mov(r0, Operand(0));
|
|
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
|
|
|
|
|
|
__ bind(&jsobject);
|
|
|
|
// Get the set of properties (as a FixedArray or Map).
|
|
__ push(r0); // duplicate the object being enumerated
|
|
__ push(r0);
|
|
__ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
|
|
|
|
// If we got a Map, we can do a fast modification check.
|
|
// Otherwise, we got a FixedArray, and we have to do a slow check.
|
|
__ mov(r2, Operand(r0));
|
|
__ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
|
|
__ cmp(r1, Operand(Factory::meta_map()));
|
|
__ b(ne, &fixed_array);
|
|
|
|
// Get enum cache
|
|
__ mov(r1, Operand(r0));
|
|
__ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset));
|
|
__ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset));
|
|
__ ldr(r2,
|
|
FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset));
|
|
|
|
__ push(r0); // map
|
|
__ push(r2); // enum cache bridge cache
|
|
__ ldr(r0, FieldMemOperand(r2, FixedArray::kLengthOffset));
|
|
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
|
|
__ push(r0);
|
|
__ mov(r0, Operand(Smi::FromInt(0)));
|
|
__ push(r0);
|
|
__ b(&entry);
|
|
|
|
|
|
__ bind(&fixed_array);
|
|
|
|
__ mov(r1, Operand(Smi::FromInt(0)));
|
|
__ push(r1); // insert 0 in place of Map
|
|
__ push(r0);
|
|
|
|
// Push the length of the array and the initial index onto the stack.
|
|
__ ldr(r0, FieldMemOperand(r0, FixedArray::kLengthOffset));
|
|
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
|
|
__ push(r0);
|
|
__ mov(r0, Operand(Smi::FromInt(0))); // init index
|
|
__ push(r0);
|
|
|
|
__ b(&entry);
|
|
|
|
// Body.
|
|
__ bind(&loop);
|
|
Visit(node->body());
|
|
|
|
// Next.
|
|
__ bind(node->continue_target());
|
|
__ bind(&next);
|
|
__ pop(r0);
|
|
__ add(r0, r0, Operand(Smi::FromInt(1)));
|
|
__ push(r0);
|
|
|
|
// Condition.
|
|
__ bind(&entry);
|
|
|
|
// sp[0] : index
|
|
// sp[1] : array/enum cache length
|
|
// sp[2] : array or enum cache
|
|
// sp[3] : 0 or map
|
|
// sp[4] : enumerable
|
|
__ ldr(r0, MemOperand(sp, 0 * kPointerSize)); // load the current count
|
|
__ ldr(r1, MemOperand(sp, 1 * kPointerSize)); // load the length
|
|
__ cmp(r0, Operand(r1)); // compare to the array length
|
|
__ b(hs, &cleanup);
|
|
|
|
__ ldr(r0, MemOperand(sp, 0 * kPointerSize));
|
|
|
|
// Get the i'th entry of the array.
|
|
__ ldr(r2, MemOperand(sp, 2 * kPointerSize));
|
|
__ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
|
__ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
|
|
|
|
// Get Map or 0.
|
|
__ ldr(r2, MemOperand(sp, 3 * kPointerSize));
|
|
// Check if this (still) matches the map of the enumerable.
|
|
// If not, we have to filter the key.
|
|
__ ldr(r1, MemOperand(sp, 4 * kPointerSize));
|
|
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
__ cmp(r1, Operand(r2));
|
|
__ b(eq, &end_del_check);
|
|
|
|
// Convert the entry to a string (or null if it isn't a property anymore).
|
|
__ ldr(r0, MemOperand(sp, 4 * kPointerSize)); // push enumerable
|
|
__ push(r0);
|
|
__ push(r3); // push entry
|
|
__ mov(r0, Operand(1));
|
|
__ InvokeBuiltin(Builtins::FILTER_KEY, CALL_JS);
|
|
__ mov(r3, Operand(r0));
|
|
|
|
// If the property has been removed while iterating, we just skip it.
|
|
__ cmp(r3, Operand(Factory::null_value()));
|
|
__ b(eq, &next);
|
|
|
|
|
|
__ bind(&end_del_check);
|
|
|
|
// Store the entry in the 'each' expression and take another spin in the loop.
|
|
// r3: i'th entry of the enum cache (or string there of)
|
|
__ push(r3); // push entry
|
|
{ Reference each(this, node->each());
|
|
if (!each.is_illegal()) {
|
|
if (each.size() > 0) {
|
|
__ ldr(r0, MemOperand(sp, kPointerSize * each.size()));
|
|
__ push(r0);
|
|
}
|
|
// If the reference was to a slot we rely on the convenient property
|
|
// that it doesn't matter whether a value (eg, r3 pushed above) is
|
|
// right on top of or right underneath a zero-sized reference.
|
|
each.SetValue(NOT_CONST_INIT);
|
|
if (each.size() > 0) {
|
|
// It's safe to pop the value lying on top of the reference before
|
|
// unloading the reference itself (which preserves the top of stack,
|
|
// ie, now the topmost value of the non-zero sized reference), since
|
|
// we will discard the top of stack after unloading the reference
|
|
// anyway.
|
|
__ pop(r0);
|
|
}
|
|
}
|
|
}
|
|
// Discard the i'th entry pushed above or else the remainder of the
|
|
// reference, whichever is currently on top of the stack.
|
|
__ pop();
|
|
CheckStack(); // TODO(1222600): ignore if body contains calls.
|
|
__ jmp(&loop);
|
|
|
|
// Cleanup.
|
|
__ bind(&cleanup);
|
|
__ bind(node->break_target());
|
|
__ add(sp, sp, Operand(5 * kPointerSize));
|
|
|
|
// Exit.
|
|
__ bind(&exit);
|
|
|
|
break_stack_height_ -= kForInStackSize;
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitTryCatch(TryCatch* node) {
|
|
Comment cmnt(masm_, "[ TryCatch");
|
|
|
|
Label try_block, exit;
|
|
|
|
__ bl(&try_block);
|
|
|
|
// --- Catch block ---
|
|
|
|
// Store the caught exception in the catch variable.
|
|
__ push(r0);
|
|
{ Reference ref(this, node->catch_var());
|
|
ASSERT(ref.is_slot());
|
|
// Here we make use of the convenient property that it doesn't matter
|
|
// whether a value is immediately on top of or underneath a zero-sized
|
|
// reference.
|
|
ref.SetValue(NOT_CONST_INIT);
|
|
}
|
|
|
|
// Remove the exception from the stack.
|
|
__ pop();
|
|
|
|
VisitStatements(node->catch_block()->statements());
|
|
__ b(&exit);
|
|
|
|
|
|
// --- Try block ---
|
|
__ bind(&try_block);
|
|
|
|
__ PushTryHandler(IN_JAVASCRIPT, TRY_CATCH_HANDLER);
|
|
|
|
// Introduce shadow labels for all escapes from the try block,
|
|
// including returns. We should probably try to unify the escaping
|
|
// labels and the return label.
|
|
int nof_escapes = node->escaping_labels()->length();
|
|
List<LabelShadow*> shadows(1 + nof_escapes);
|
|
shadows.Add(new LabelShadow(&function_return_));
|
|
for (int i = 0; i < nof_escapes; i++) {
|
|
shadows.Add(new LabelShadow(node->escaping_labels()->at(i)));
|
|
}
|
|
|
|
// Generate code for the statements in the try block.
|
|
VisitStatements(node->try_block()->statements());
|
|
__ pop(r0); // Discard the result.
|
|
|
|
// Stop the introduced shadowing and count the number of required unlinks.
|
|
int nof_unlinks = 0;
|
|
for (int i = 0; i <= nof_escapes; i++) {
|
|
shadows[i]->StopShadowing();
|
|
if (shadows[i]->is_linked()) nof_unlinks++;
|
|
}
|
|
|
|
// Unlink from try chain.
|
|
// TOS contains code slot
|
|
const int kNextOffset = StackHandlerConstants::kNextOffset +
|
|
StackHandlerConstants::kAddressDisplacement;
|
|
__ ldr(r1, MemOperand(sp, kNextOffset)); // read next_sp
|
|
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
|
|
__ str(r1, MemOperand(r3));
|
|
ASSERT(StackHandlerConstants::kCodeOffset == 0); // first field is code
|
|
__ add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
|
|
// Code slot popped.
|
|
if (nof_unlinks > 0) __ b(&exit);
|
|
|
|
// Generate unlink code for all used shadow labels.
|
|
for (int i = 0; i <= nof_escapes; i++) {
|
|
if (shadows[i]->is_linked()) {
|
|
// Unlink from try chain;
|
|
__ bind(shadows[i]);
|
|
|
|
// Reload sp from the top handler, because some statements that we
|
|
// break from (eg, for...in) may have left stuff on the stack.
|
|
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
|
|
__ ldr(sp, MemOperand(r3));
|
|
|
|
__ ldr(r1, MemOperand(sp, kNextOffset));
|
|
__ str(r1, MemOperand(r3));
|
|
ASSERT(StackHandlerConstants::kCodeOffset == 0); // first field is code
|
|
__ add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
|
|
// Code slot popped.
|
|
|
|
__ b(shadows[i]->shadowed());
|
|
}
|
|
}
|
|
|
|
__ bind(&exit);
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitTryFinally(TryFinally* node) {
|
|
Comment cmnt(masm_, "[ TryFinally");
|
|
|
|
// State: Used to keep track of reason for entering the finally
|
|
// block. Should probably be extended to hold information for
|
|
// break/continue from within the try block.
|
|
enum { FALLING, THROWING, JUMPING };
|
|
|
|
Label exit, unlink, try_block, finally_block;
|
|
|
|
__ bl(&try_block);
|
|
|
|
__ push(r0); // save exception object on the stack
|
|
// In case of thrown exceptions, this is where we continue.
|
|
__ mov(r2, Operand(Smi::FromInt(THROWING)));
|
|
__ b(&finally_block);
|
|
|
|
|
|
// --- Try block ---
|
|
__ bind(&try_block);
|
|
|
|
__ PushTryHandler(IN_JAVASCRIPT, TRY_FINALLY_HANDLER);
|
|
|
|
// Introduce shadow labels for all escapes from the try block,
|
|
// including returns. We should probably try to unify the escaping
|
|
// labels and the return label.
|
|
int nof_escapes = node->escaping_labels()->length();
|
|
List<LabelShadow*> shadows(1 + nof_escapes);
|
|
shadows.Add(new LabelShadow(&function_return_));
|
|
for (int i = 0; i < nof_escapes; i++) {
|
|
shadows.Add(new LabelShadow(node->escaping_labels()->at(i)));
|
|
}
|
|
|
|
// Generate code for the statements in the try block.
|
|
VisitStatements(node->try_block()->statements());
|
|
|
|
// Stop the introduced shadowing and count the number of required
|
|
// unlinks.
|
|
int nof_unlinks = 0;
|
|
for (int i = 0; i <= nof_escapes; i++) {
|
|
shadows[i]->StopShadowing();
|
|
if (shadows[i]->is_linked()) nof_unlinks++;
|
|
}
|
|
|
|
// Set the state on the stack to FALLING.
|
|
__ mov(r0, Operand(Factory::undefined_value())); // fake TOS
|
|
__ push(r0);
|
|
__ mov(r2, Operand(Smi::FromInt(FALLING)));
|
|
if (nof_unlinks > 0) __ b(&unlink);
|
|
|
|
// Generate code that sets the state for all used shadow labels.
|
|
for (int i = 0; i <= nof_escapes; i++) {
|
|
if (shadows[i]->is_linked()) {
|
|
__ bind(shadows[i]);
|
|
if (shadows[i]->shadowed() == &function_return_) {
|
|
__ push(r0); // Materialize the return value on the stack
|
|
} else {
|
|
// Fake TOS for break and continue (not return).
|
|
__ mov(r0, Operand(Factory::undefined_value()));
|
|
__ push(r0);
|
|
}
|
|
__ mov(r2, Operand(Smi::FromInt(JUMPING + i)));
|
|
__ b(&unlink);
|
|
}
|
|
}
|
|
|
|
// Unlink from try chain;
|
|
__ bind(&unlink);
|
|
|
|
__ pop(r0); // Store TOS in r0 across stack manipulation
|
|
// Reload sp from the top handler, because some statements that we
|
|
// break from (eg, for...in) may have left stuff on the stack.
|
|
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
|
|
__ ldr(sp, MemOperand(r3));
|
|
const int kNextOffset = StackHandlerConstants::kNextOffset +
|
|
StackHandlerConstants::kAddressDisplacement;
|
|
__ ldr(r1, MemOperand(sp, kNextOffset));
|
|
__ str(r1, MemOperand(r3));
|
|
ASSERT(StackHandlerConstants::kCodeOffset == 0); // first field is code
|
|
__ add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
|
|
// Code slot popped.
|
|
__ push(r0);
|
|
|
|
// --- Finally block ---
|
|
__ bind(&finally_block);
|
|
|
|
// Push the state on the stack.
|
|
__ push(r2);
|
|
|
|
// We keep two elements on the stack - the (possibly faked) result
|
|
// and the state - while evaluating the finally block. Record it, so
|
|
// that a break/continue crossing this statement can restore the
|
|
// stack.
|
|
const int kFinallyStackSize = 2 * kPointerSize;
|
|
break_stack_height_ += kFinallyStackSize;
|
|
|
|
// Generate code for the statements in the finally block.
|
|
VisitStatements(node->finally_block()->statements());
|
|
|
|
// Restore state and return value or faked TOS.
|
|
__ pop(r2);
|
|
__ pop(r0);
|
|
break_stack_height_ -= kFinallyStackSize;
|
|
|
|
// Generate code that jumps to the right destination for all used
|
|
// shadow labels.
|
|
for (int i = 0; i <= nof_escapes; i++) {
|
|
if (shadows[i]->is_bound()) {
|
|
__ cmp(r2, Operand(Smi::FromInt(JUMPING + i)));
|
|
if (shadows[i]->shadowed() != &function_return_) {
|
|
Label next;
|
|
__ b(ne, &next);
|
|
__ b(shadows[i]->shadowed());
|
|
__ bind(&next);
|
|
} else {
|
|
__ b(eq, shadows[i]->shadowed());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if we need to rethrow the exception.
|
|
__ cmp(r2, Operand(Smi::FromInt(THROWING)));
|
|
__ b(ne, &exit);
|
|
|
|
// Rethrow exception.
|
|
__ push(r0);
|
|
__ CallRuntime(Runtime::kReThrow, 1);
|
|
|
|
// Done.
|
|
__ bind(&exit);
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
|
|
Comment cmnt(masm_, "[ DebuggerStatament");
|
|
if (FLAG_debug_info) RecordStatementPosition(node);
|
|
__ CallRuntime(Runtime::kDebugBreak, 1);
|
|
__ push(r0);
|
|
}
|
|
|
|
|
|
void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) {
|
|
ASSERT(boilerplate->IsBoilerplate());
|
|
|
|
// Push the boilerplate on the stack.
|
|
__ mov(r0, Operand(boilerplate));
|
|
__ push(r0);
|
|
|
|
// Create a new closure.
|
|
__ push(cp);
|
|
__ CallRuntime(Runtime::kNewClosure, 2);
|
|
__ push(r0);
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
|
|
Comment cmnt(masm_, "[ FunctionLiteral");
|
|
|
|
// Build the function boilerplate and instantiate it.
|
|
Handle<JSFunction> boilerplate = BuildBoilerplate(node);
|
|
// Check for stack-overflow exception.
|
|
if (HasStackOverflow()) return;
|
|
InstantiateBoilerplate(boilerplate);
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitFunctionBoilerplateLiteral(
|
|
FunctionBoilerplateLiteral* node) {
|
|
Comment cmnt(masm_, "[ FunctionBoilerplateLiteral");
|
|
InstantiateBoilerplate(node->boilerplate());
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitConditional(Conditional* node) {
|
|
Comment cmnt(masm_, "[ Conditional");
|
|
Label then, else_, exit;
|
|
LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &then, &else_, true);
|
|
Branch(false, &else_);
|
|
__ bind(&then);
|
|
Load(node->then_expression(), typeof_state());
|
|
__ b(&exit);
|
|
__ bind(&else_);
|
|
Load(node->else_expression(), typeof_state());
|
|
__ bind(&exit);
|
|
}
|
|
|
|
|
|
void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
|
|
if (slot->type() == Slot::LOOKUP) {
|
|
ASSERT(slot->var()->mode() == Variable::DYNAMIC);
|
|
|
|
// For now, just do a runtime call.
|
|
__ push(cp);
|
|
__ mov(r0, Operand(slot->var()->name()));
|
|
__ push(r0);
|
|
|
|
if (typeof_state == INSIDE_TYPEOF) {
|
|
__ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
|
|
} else {
|
|
__ CallRuntime(Runtime::kLoadContextSlot, 2);
|
|
}
|
|
__ push(r0);
|
|
|
|
} else {
|
|
// Note: We would like to keep the assert below, but it fires because of
|
|
// some nasty code in LoadTypeofExpression() which should be removed...
|
|
// ASSERT(slot->var()->mode() != Variable::DYNAMIC);
|
|
|
|
// Special handling for locals allocated in registers.
|
|
__ ldr(r0, SlotOperand(slot, r2));
|
|
__ push(r0);
|
|
if (slot->var()->mode() == Variable::CONST) {
|
|
// Const slots may contain 'the hole' value (the constant hasn't been
|
|
// initialized yet) which needs to be converted into the 'undefined'
|
|
// value.
|
|
Comment cmnt(masm_, "[ Unhole const");
|
|
__ pop(r0);
|
|
__ cmp(r0, Operand(Factory::the_hole_value()));
|
|
__ mov(r0, Operand(Factory::undefined_value()), LeaveCC, eq);
|
|
__ push(r0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitSlot(Slot* node) {
|
|
Comment cmnt(masm_, "[ Slot");
|
|
LoadFromSlot(node, typeof_state());
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
|
|
Comment cmnt(masm_, "[ VariableProxy");
|
|
|
|
Variable* var = node->var();
|
|
Expression* expr = var->rewrite();
|
|
if (expr != NULL) {
|
|
Visit(expr);
|
|
} else {
|
|
ASSERT(var->is_global());
|
|
Reference ref(this, node);
|
|
ref.GetValue(typeof_state());
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitLiteral(Literal* node) {
|
|
Comment cmnt(masm_, "[ Literal");
|
|
__ mov(r0, Operand(node->handle()));
|
|
__ push(r0);
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
|
|
Comment cmnt(masm_, "[ RexExp Literal");
|
|
|
|
// Retrieve the literal array and check the allocated entry.
|
|
|
|
// Load the function of this activation.
|
|
__ ldr(r1, FunctionOperand());
|
|
|
|
// Load the literals array of the function.
|
|
__ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
|
|
|
|
// Load the literal at the ast saved index.
|
|
int literal_offset =
|
|
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
|
|
__ ldr(r2, FieldMemOperand(r1, literal_offset));
|
|
|
|
Label done;
|
|
__ cmp(r2, Operand(Factory::undefined_value()));
|
|
__ b(ne, &done);
|
|
|
|
// If the entry is undefined we call the runtime system to computed
|
|
// the literal.
|
|
__ push(r1); // literal array (0)
|
|
__ mov(r0, Operand(Smi::FromInt(node->literal_index())));
|
|
__ push(r0); // literal index (1)
|
|
__ mov(r0, Operand(node->pattern())); // RegExp pattern (2)
|
|
__ push(r0);
|
|
__ mov(r0, Operand(node->flags())); // RegExp flags (3)
|
|
__ push(r0);
|
|
__ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
|
|
__ mov(r2, Operand(r0));
|
|
|
|
__ bind(&done);
|
|
// Push the literal.
|
|
__ push(r2);
|
|
}
|
|
|
|
|
|
// This deferred code stub will be used for creating the boilerplate
|
|
// by calling Runtime_CreateObjectLiteral.
|
|
// Each created boilerplate is stored in the JSFunction and they are
|
|
// therefore context dependent.
|
|
class ObjectLiteralDeferred: public DeferredCode {
|
|
public:
|
|
ObjectLiteralDeferred(CodeGenerator* generator, ObjectLiteral* node)
|
|
: DeferredCode(generator), node_(node) {
|
|
set_comment("[ ObjectLiteralDeferred");
|
|
}
|
|
virtual void Generate();
|
|
private:
|
|
ObjectLiteral* node_;
|
|
};
|
|
|
|
|
|
void ObjectLiteralDeferred::Generate() {
|
|
// If the entry is undefined we call the runtime system to computed
|
|
// the literal.
|
|
|
|
// Literal array (0).
|
|
__ push(r1);
|
|
// Literal index (1).
|
|
__ mov(r0, Operand(Smi::FromInt(node_->literal_index())));
|
|
__ push(r0);
|
|
// Constant properties (2).
|
|
__ mov(r0, Operand(node_->constant_properties()));
|
|
__ push(r0);
|
|
__ CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3);
|
|
__ mov(r2, Operand(r0));
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
|
|
Comment cmnt(masm_, "[ ObjectLiteral");
|
|
|
|
ObjectLiteralDeferred* deferred = new ObjectLiteralDeferred(this, node);
|
|
|
|
// Retrieve the literal array and check the allocated entry.
|
|
|
|
// Load the function of this activation.
|
|
__ ldr(r1, FunctionOperand());
|
|
|
|
// Load the literals array of the function.
|
|
__ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
|
|
|
|
// Load the literal at the ast saved index.
|
|
int literal_offset =
|
|
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
|
|
__ ldr(r2, FieldMemOperand(r1, literal_offset));
|
|
|
|
// Check whether we need to materialize the object literal boilerplate.
|
|
// If so, jump to the deferred code.
|
|
__ cmp(r2, Operand(Factory::undefined_value()));
|
|
__ b(eq, deferred->enter());
|
|
__ bind(deferred->exit());
|
|
|
|
// Push the object literal boilerplate.
|
|
__ push(r2);
|
|
|
|
// Clone the boilerplate object.
|
|
__ CallRuntime(Runtime::kCloneObjectLiteralBoilerplate, 1);
|
|
__ push(r0); // save the result
|
|
// r0: cloned object literal
|
|
|
|
for (int i = 0; i < node->properties()->length(); i++) {
|
|
ObjectLiteral::Property* property = node->properties()->at(i);
|
|
Literal* key = property->key();
|
|
Expression* value = property->value();
|
|
switch (property->kind()) {
|
|
case ObjectLiteral::Property::CONSTANT: break;
|
|
case ObjectLiteral::Property::COMPUTED: // fall through
|
|
case ObjectLiteral::Property::PROTOTYPE: {
|
|
__ push(r0); // dup the result
|
|
Load(key);
|
|
Load(value);
|
|
__ CallRuntime(Runtime::kSetProperty, 3);
|
|
// restore r0
|
|
__ ldr(r0, MemOperand(sp, 0));
|
|
break;
|
|
}
|
|
case ObjectLiteral::Property::SETTER: {
|
|
__ push(r0);
|
|
Load(key);
|
|
__ mov(r0, Operand(Smi::FromInt(1)));
|
|
__ push(r0);
|
|
Load(value);
|
|
__ CallRuntime(Runtime::kDefineAccessor, 4);
|
|
__ ldr(r0, MemOperand(sp, 0));
|
|
break;
|
|
}
|
|
case ObjectLiteral::Property::GETTER: {
|
|
__ push(r0);
|
|
Load(key);
|
|
__ mov(r0, Operand(Smi::FromInt(0)));
|
|
__ push(r0);
|
|
Load(value);
|
|
__ CallRuntime(Runtime::kDefineAccessor, 4);
|
|
__ ldr(r0, MemOperand(sp, 0));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
|
|
Comment cmnt(masm_, "[ ArrayLiteral");
|
|
|
|
// Call runtime to create the array literal.
|
|
__ mov(r0, Operand(node->literals()));
|
|
__ push(r0);
|
|
// Load the function of this frame.
|
|
__ ldr(r0, FunctionOperand());
|
|
__ ldr(r0, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
|
|
__ push(r0);
|
|
__ CallRuntime(Runtime::kCreateArrayLiteral, 2);
|
|
|
|
// Push the resulting array literal on the stack.
|
|
__ push(r0);
|
|
|
|
// Generate code to set the elements in the array that are not
|
|
// literals.
|
|
for (int i = 0; i < node->values()->length(); i++) {
|
|
Expression* value = node->values()->at(i);
|
|
|
|
// If value is literal the property value is already
|
|
// set in the boilerplate object.
|
|
if (value->AsLiteral() == NULL) {
|
|
// The property must be set by generated code.
|
|
Load(value);
|
|
__ pop(r0);
|
|
|
|
// Fetch the object literal
|
|
__ ldr(r1, MemOperand(sp, 0));
|
|
// Get the elements array.
|
|
__ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset));
|
|
|
|
// Write to the indexed properties array.
|
|
int offset = i * kPointerSize + Array::kHeaderSize;
|
|
__ str(r0, FieldMemOperand(r1, offset));
|
|
|
|
// Update the write barrier for the array address.
|
|
__ mov(r3, Operand(offset));
|
|
__ RecordWrite(r1, r3, r2);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitAssignment(Assignment* node) {
|
|
Comment cmnt(masm_, "[ Assignment");
|
|
if (FLAG_debug_info) RecordStatementPosition(node);
|
|
|
|
Reference target(this, node->target());
|
|
if (target.is_illegal()) return;
|
|
|
|
if (node->op() == Token::ASSIGN ||
|
|
node->op() == Token::INIT_VAR ||
|
|
node->op() == Token::INIT_CONST) {
|
|
Load(node->value());
|
|
|
|
} else {
|
|
target.GetValue(NOT_INSIDE_TYPEOF);
|
|
Literal* literal = node->value()->AsLiteral();
|
|
if (literal != NULL && literal->handle()->IsSmi()) {
|
|
SmiOperation(node->binary_op(), literal->handle(), false);
|
|
__ push(r0);
|
|
|
|
} else {
|
|
Load(node->value());
|
|
GenericBinaryOperation(node->binary_op());
|
|
__ push(r0);
|
|
}
|
|
}
|
|
|
|
Variable* var = node->target()->AsVariableProxy()->AsVariable();
|
|
if (var != NULL &&
|
|
(var->mode() == Variable::CONST) &&
|
|
node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
|
|
// Assignment ignored - leave the value on the stack.
|
|
|
|
} else {
|
|
__ RecordPosition(node->position());
|
|
if (node->op() == Token::INIT_CONST) {
|
|
// Dynamic constant initializations must use the function context
|
|
// and initialize the actual constant declared. Dynamic variable
|
|
// initializations are simply assignments and use SetValue.
|
|
target.SetValue(CONST_INIT);
|
|
} else {
|
|
target.SetValue(NOT_CONST_INIT);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitThrow(Throw* node) {
|
|
Comment cmnt(masm_, "[ Throw");
|
|
|
|
Load(node->exception());
|
|
__ RecordPosition(node->position());
|
|
__ CallRuntime(Runtime::kThrow, 1);
|
|
__ push(r0);
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitProperty(Property* node) {
|
|
Comment cmnt(masm_, "[ Property");
|
|
|
|
Reference property(this, node);
|
|
property.GetValue(typeof_state());
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitCall(Call* node) {
|
|
Comment cmnt(masm_, "[ Call");
|
|
|
|
ZoneList<Expression*>* args = node->arguments();
|
|
|
|
if (FLAG_debug_info) RecordStatementPosition(node);
|
|
// Standard function call.
|
|
|
|
// Check if the function is a variable or a property.
|
|
Expression* function = node->expression();
|
|
Variable* var = function->AsVariableProxy()->AsVariable();
|
|
Property* property = function->AsProperty();
|
|
|
|
// ------------------------------------------------------------------------
|
|
// Fast-case: Use inline caching.
|
|
// ---
|
|
// According to ECMA-262, section 11.2.3, page 44, the function to call
|
|
// must be resolved after the arguments have been evaluated. The IC code
|
|
// automatically handles this by loading the arguments before the function
|
|
// is resolved in cache misses (this also holds for megamorphic calls).
|
|
// ------------------------------------------------------------------------
|
|
|
|
if (var != NULL && !var->is_this() && var->is_global()) {
|
|
// ----------------------------------
|
|
// JavaScript example: 'foo(1, 2, 3)' // foo is global
|
|
// ----------------------------------
|
|
|
|
// Push the name of the function and the receiver onto the stack.
|
|
__ mov(r0, Operand(var->name()));
|
|
__ push(r0);
|
|
LoadGlobal();
|
|
|
|
// Load the arguments.
|
|
for (int i = 0; i < args->length(); i++) Load(args->at(i));
|
|
|
|
// Setup the receiver register and call the IC initialization code.
|
|
Handle<Code> stub = ComputeCallInitialize(args->length());
|
|
__ RecordPosition(node->position());
|
|
__ Call(stub, RelocInfo::CODE_TARGET_CONTEXT);
|
|
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
|
// Remove the function from the stack.
|
|
__ pop();
|
|
__ push(r0);
|
|
|
|
} else if (var != NULL && var->slot() != NULL &&
|
|
var->slot()->type() == Slot::LOOKUP) {
|
|
// ----------------------------------
|
|
// JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj
|
|
// ----------------------------------
|
|
|
|
// Load the function
|
|
__ push(cp);
|
|
__ mov(r0, Operand(var->name()));
|
|
__ push(r0);
|
|
__ CallRuntime(Runtime::kLoadContextSlot, 2);
|
|
// r0: slot value; r1: receiver
|
|
|
|
// Load the receiver.
|
|
__ push(r0); // function
|
|
__ push(r1); // receiver
|
|
|
|
// Call the function.
|
|
CallWithArguments(args, node->position());
|
|
__ push(r0);
|
|
|
|
} else if (property != NULL) {
|
|
// Check if the key is a literal string.
|
|
Literal* literal = property->key()->AsLiteral();
|
|
|
|
if (literal != NULL && literal->handle()->IsSymbol()) {
|
|
// ------------------------------------------------------------------
|
|
// JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
|
|
// ------------------------------------------------------------------
|
|
|
|
// Push the name of the function and the receiver onto the stack.
|
|
__ mov(r0, Operand(literal->handle()));
|
|
__ push(r0);
|
|
Load(property->obj());
|
|
|
|
// Load the arguments.
|
|
for (int i = 0; i < args->length(); i++) Load(args->at(i));
|
|
|
|
// Set the receiver register and call the IC initialization code.
|
|
Handle<Code> stub = ComputeCallInitialize(args->length());
|
|
__ RecordPosition(node->position());
|
|
__ Call(stub, RelocInfo::CODE_TARGET);
|
|
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
|
|
|
// Remove the function from the stack.
|
|
__ pop();
|
|
|
|
__ push(r0); // push after get rid of function from the stack
|
|
|
|
} else {
|
|
// -------------------------------------------
|
|
// JavaScript example: 'array[index](1, 2, 3)'
|
|
// -------------------------------------------
|
|
|
|
// Load the function to call from the property through a reference.
|
|
Reference ref(this, property);
|
|
ref.GetValue(NOT_INSIDE_TYPEOF); // receiver
|
|
|
|
// Pass receiver to called function.
|
|
__ ldr(r0, MemOperand(sp, ref.size() * kPointerSize));
|
|
__ push(r0);
|
|
// Call the function.
|
|
CallWithArguments(args, node->position());
|
|
__ push(r0);
|
|
}
|
|
|
|
} else {
|
|
// ----------------------------------
|
|
// JavaScript example: 'foo(1, 2, 3)' // foo is not global
|
|
// ----------------------------------
|
|
|
|
// Load the function.
|
|
Load(function);
|
|
// Pass the global object as the receiver.
|
|
LoadGlobal();
|
|
// Call the function.
|
|
CallWithArguments(args, node->position());
|
|
__ push(r0);
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitCallNew(CallNew* node) {
|
|
Comment cmnt(masm_, "[ CallNew");
|
|
|
|
// According to ECMA-262, section 11.2.2, page 44, the function
|
|
// expression in new calls must be evaluated before the
|
|
// arguments. This is different from ordinary calls, where the
|
|
// actual function to call is resolved after the arguments have been
|
|
// evaluated.
|
|
|
|
// Compute function to call and use the global object as the
|
|
// receiver.
|
|
Load(node->expression());
|
|
LoadGlobal();
|
|
|
|
// Push the arguments ("left-to-right") on the stack.
|
|
ZoneList<Expression*>* args = node->arguments();
|
|
for (int i = 0; i < args->length(); i++) Load(args->at(i));
|
|
|
|
// r0: the number of arguments.
|
|
__ mov(r0, Operand(args->length()));
|
|
|
|
// Load the function into r1 as per calling convention.
|
|
__ ldr(r1, MemOperand(sp, (args->length() + 1) * kPointerSize));
|
|
|
|
// Call the construct call builtin that handles allocation and
|
|
// constructor invocation.
|
|
__ RecordPosition(RelocInfo::POSITION);
|
|
__ Call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)),
|
|
RelocInfo::CONSTRUCT_CALL);
|
|
|
|
// Discard old TOS value and push r0 on the stack (same as Pop(), push(r0)).
|
|
__ str(r0, MemOperand(sp, 0 * kPointerSize));
|
|
}
|
|
|
|
|
|
void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
|
|
ASSERT(args->length() == 1);
|
|
Label leave;
|
|
Load(args->at(0));
|
|
__ pop(r0); // r0 contains object.
|
|
// if (object->IsSmi()) return the object.
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
__ b(eq, &leave);
|
|
// It is a heap object - get map.
|
|
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
|
|
__ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
|
|
// if (!object->IsJSValue()) return the object.
|
|
__ cmp(r1, Operand(JS_VALUE_TYPE));
|
|
__ b(ne, &leave);
|
|
// Load the value.
|
|
__ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset));
|
|
__ bind(&leave);
|
|
__ push(r0);
|
|
}
|
|
|
|
|
|
void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
|
|
ASSERT(args->length() == 2);
|
|
Label leave;
|
|
Load(args->at(0)); // Load the object.
|
|
Load(args->at(1)); // Load the value.
|
|
__ pop(r0); // r0 contains value
|
|
__ pop(r1); // r1 contains object
|
|
// if (object->IsSmi()) return object.
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
__ b(eq, &leave);
|
|
// It is a heap object - get map.
|
|
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
|
|
// if (!object->IsJSValue()) return object.
|
|
__ cmp(r2, Operand(JS_VALUE_TYPE));
|
|
__ b(ne, &leave);
|
|
// Store the value.
|
|
__ str(r0, FieldMemOperand(r1, JSValue::kValueOffset));
|
|
// Update the write barrier.
|
|
__ mov(r2, Operand(JSValue::kValueOffset - kHeapObjectTag));
|
|
__ RecordWrite(r1, r2, r3);
|
|
// Leave.
|
|
__ bind(&leave);
|
|
__ push(r0);
|
|
}
|
|
|
|
|
|
void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
|
|
ASSERT(args->length() == 1);
|
|
Load(args->at(0));
|
|
__ pop(r0);
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
cc_reg_ = eq;
|
|
}
|
|
|
|
|
|
void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
|
|
ASSERT(args->length() == 1);
|
|
Load(args->at(0));
|
|
__ pop(r0);
|
|
__ tst(r0, Operand(kSmiTagMask | 0x80000000));
|
|
cc_reg_ = eq;
|
|
}
|
|
|
|
|
|
// This should generate code that performs a charCodeAt() call or returns
|
|
// undefined in order to trigger the slow case, Runtime_StringCharCodeAt.
|
|
// It is not yet implemented on ARM, so it always goes to the slow case.
|
|
void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) {
|
|
ASSERT(args->length() == 2);
|
|
__ mov(r0, Operand(Factory::undefined_value()));
|
|
__ push(r0);
|
|
}
|
|
|
|
|
|
void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
|
|
ASSERT(args->length() == 1);
|
|
Load(args->at(0));
|
|
Label answer;
|
|
// We need the CC bits to come out as not_equal in the case where the
|
|
// object is a smi. This can't be done with the usual test opcode so
|
|
// we use XOR to get the right CC bits.
|
|
__ pop(r0);
|
|
__ and_(r1, r0, Operand(kSmiTagMask));
|
|
__ eor(r1, r1, Operand(kSmiTagMask), SetCC);
|
|
__ b(ne, &answer);
|
|
// It is a heap object - get the map.
|
|
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
|
|
__ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
|
|
// Check if the object is a JS array or not.
|
|
__ cmp(r1, Operand(JS_ARRAY_TYPE));
|
|
__ bind(&answer);
|
|
cc_reg_ = eq;
|
|
}
|
|
|
|
|
|
void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
|
|
ASSERT(args->length() == 0);
|
|
|
|
// Seed the result with the formal parameters count, which will be used
|
|
// in case no arguments adaptor frame is found below the current frame.
|
|
__ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
|
|
|
|
// Call the shared stub to get to the arguments.length.
|
|
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH);
|
|
__ CallStub(&stub);
|
|
__ push(r0);
|
|
}
|
|
|
|
|
|
void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) {
|
|
ASSERT(args->length() == 1);
|
|
|
|
// Satisfy contract with ArgumentsAccessStub:
|
|
// Load the key into r1 and the formal parameters count into r0.
|
|
Load(args->at(0));
|
|
__ pop(r1);
|
|
__ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
|
|
|
|
// Call the shared stub to get to arguments[key].
|
|
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
|
|
__ CallStub(&stub);
|
|
__ push(r0);
|
|
}
|
|
|
|
|
|
void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
|
|
ASSERT(args->length() == 2);
|
|
|
|
// Load the two objects into registers and perform the comparison.
|
|
Load(args->at(0));
|
|
Load(args->at(1));
|
|
__ pop(r0);
|
|
__ pop(r1);
|
|
__ cmp(r0, Operand(r1));
|
|
cc_reg_ = eq;
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
|
|
if (CheckForInlineRuntimeCall(node)) return;
|
|
|
|
ZoneList<Expression*>* args = node->arguments();
|
|
Comment cmnt(masm_, "[ CallRuntime");
|
|
Runtime::Function* function = node->function();
|
|
|
|
if (function != NULL) {
|
|
// Push the arguments ("left-to-right").
|
|
for (int i = 0; i < args->length(); i++) Load(args->at(i));
|
|
|
|
// Call the C runtime function.
|
|
__ CallRuntime(function, args->length());
|
|
__ push(r0);
|
|
|
|
} else {
|
|
// Prepare stack for calling JS runtime function.
|
|
__ mov(r0, Operand(node->name()));
|
|
__ push(r0);
|
|
// Push the builtins object found in the current global object.
|
|
__ ldr(r1, GlobalObject());
|
|
__ ldr(r0, FieldMemOperand(r1, GlobalObject::kBuiltinsOffset));
|
|
__ push(r0);
|
|
|
|
for (int i = 0; i < args->length(); i++) Load(args->at(i));
|
|
|
|
// Call the JS runtime function.
|
|
Handle<Code> stub = ComputeCallInitialize(args->length());
|
|
__ Call(stub, RelocInfo::CODE_TARGET);
|
|
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
|
__ pop();
|
|
__ push(r0);
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
|
|
Comment cmnt(masm_, "[ UnaryOperation");
|
|
|
|
Token::Value op = node->op();
|
|
|
|
if (op == Token::NOT) {
|
|
LoadCondition(node->expression(),
|
|
NOT_INSIDE_TYPEOF,
|
|
false_target(),
|
|
true_target(),
|
|
true);
|
|
cc_reg_ = NegateCondition(cc_reg_);
|
|
|
|
} else if (op == Token::DELETE) {
|
|
Property* property = node->expression()->AsProperty();
|
|
Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
|
|
if (property != NULL) {
|
|
Load(property->obj());
|
|
Load(property->key());
|
|
__ mov(r0, Operand(1)); // not counting receiver
|
|
__ InvokeBuiltin(Builtins::DELETE, CALL_JS);
|
|
|
|
} else if (variable != NULL) {
|
|
Slot* slot = variable->slot();
|
|
if (variable->is_global()) {
|
|
LoadGlobal();
|
|
__ mov(r0, Operand(variable->name()));
|
|
__ push(r0);
|
|
__ mov(r0, Operand(1)); // not counting receiver
|
|
__ InvokeBuiltin(Builtins::DELETE, CALL_JS);
|
|
|
|
} else if (slot != NULL && slot->type() == Slot::LOOKUP) {
|
|
// lookup the context holding the named variable
|
|
__ push(cp);
|
|
__ mov(r0, Operand(variable->name()));
|
|
__ push(r0);
|
|
__ CallRuntime(Runtime::kLookupContext, 2);
|
|
// r0: context
|
|
__ push(r0);
|
|
__ mov(r0, Operand(variable->name()));
|
|
__ push(r0);
|
|
__ mov(r0, Operand(1)); // not counting receiver
|
|
__ InvokeBuiltin(Builtins::DELETE, CALL_JS);
|
|
|
|
} else {
|
|
// Default: Result of deleting non-global, not dynamically
|
|
// introduced variables is false.
|
|
__ mov(r0, Operand(Factory::false_value()));
|
|
}
|
|
|
|
} else {
|
|
// Default: Result of deleting expressions is true.
|
|
Load(node->expression()); // may have side-effects
|
|
__ pop();
|
|
__ mov(r0, Operand(Factory::true_value()));
|
|
}
|
|
__ push(r0);
|
|
|
|
} else if (op == Token::TYPEOF) {
|
|
// Special case for loading the typeof expression; see comment on
|
|
// LoadTypeofExpression().
|
|
LoadTypeofExpression(node->expression());
|
|
__ CallRuntime(Runtime::kTypeof, 1);
|
|
__ push(r0); // r0 has result
|
|
|
|
} else {
|
|
Load(node->expression());
|
|
__ pop(r0);
|
|
switch (op) {
|
|
case Token::NOT:
|
|
case Token::DELETE:
|
|
case Token::TYPEOF:
|
|
UNREACHABLE(); // handled above
|
|
break;
|
|
|
|
case Token::SUB: {
|
|
UnarySubStub stub;
|
|
__ CallStub(&stub);
|
|
break;
|
|
}
|
|
|
|
case Token::BIT_NOT: {
|
|
// smi check
|
|
Label smi_label;
|
|
Label continue_label;
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
__ b(eq, &smi_label);
|
|
|
|
__ push(r0);
|
|
__ mov(r0, Operand(0)); // not counting receiver
|
|
__ InvokeBuiltin(Builtins::BIT_NOT, CALL_JS);
|
|
|
|
__ b(&continue_label);
|
|
__ bind(&smi_label);
|
|
__ mvn(r0, Operand(r0));
|
|
__ bic(r0, r0, Operand(kSmiTagMask)); // bit-clear inverted smi-tag
|
|
__ bind(&continue_label);
|
|
break;
|
|
}
|
|
|
|
case Token::VOID:
|
|
// since the stack top is cached in r0, popping and then
|
|
// pushing a value can be done by just writing to r0.
|
|
__ mov(r0, Operand(Factory::undefined_value()));
|
|
break;
|
|
|
|
case Token::ADD: {
|
|
// Smi check.
|
|
Label continue_label;
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
__ b(eq, &continue_label);
|
|
__ push(r0);
|
|
__ mov(r0, Operand(0)); // not counting receiver
|
|
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS);
|
|
__ bind(&continue_label);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
__ push(r0); // r0 has result
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitCountOperation(CountOperation* node) {
|
|
Comment cmnt(masm_, "[ CountOperation");
|
|
|
|
bool is_postfix = node->is_postfix();
|
|
bool is_increment = node->op() == Token::INC;
|
|
|
|
Variable* var = node->expression()->AsVariableProxy()->AsVariable();
|
|
bool is_const = (var != NULL && var->mode() == Variable::CONST);
|
|
|
|
// Postfix: Make room for the result.
|
|
if (is_postfix) {
|
|
__ mov(r0, Operand(0));
|
|
__ push(r0);
|
|
}
|
|
|
|
{ Reference target(this, node->expression());
|
|
if (target.is_illegal()) return;
|
|
target.GetValue(NOT_INSIDE_TYPEOF);
|
|
__ pop(r0);
|
|
|
|
Label slow, exit;
|
|
|
|
// Load the value (1) into register r1.
|
|
__ mov(r1, Operand(Smi::FromInt(1)));
|
|
|
|
// Check for smi operand.
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
__ b(ne, &slow);
|
|
|
|
// Postfix: Store the old value as the result.
|
|
if (is_postfix) __ str(r0, MemOperand(sp, target.size() * kPointerSize));
|
|
|
|
// Perform optimistic increment/decrement.
|
|
if (is_increment) {
|
|
__ add(r0, r0, Operand(r1), SetCC);
|
|
} else {
|
|
__ sub(r0, r0, Operand(r1), SetCC);
|
|
}
|
|
|
|
// If the increment/decrement didn't overflow, we're done.
|
|
__ b(vc, &exit);
|
|
|
|
// Revert optimistic increment/decrement.
|
|
if (is_increment) {
|
|
__ sub(r0, r0, Operand(r1));
|
|
} else {
|
|
__ add(r0, r0, Operand(r1));
|
|
}
|
|
|
|
// Slow case: Convert to number.
|
|
__ bind(&slow);
|
|
|
|
// Postfix: Convert the operand to a number and store it as the result.
|
|
if (is_postfix) {
|
|
InvokeBuiltinStub stub(InvokeBuiltinStub::ToNumber, 2);
|
|
__ CallStub(&stub);
|
|
// Store to result (on the stack).
|
|
__ str(r0, MemOperand(sp, target.size() * kPointerSize));
|
|
}
|
|
|
|
// Compute the new value by calling the right JavaScript native.
|
|
if (is_increment) {
|
|
InvokeBuiltinStub stub(InvokeBuiltinStub::Inc, 1);
|
|
__ CallStub(&stub);
|
|
} else {
|
|
InvokeBuiltinStub stub(InvokeBuiltinStub::Dec, 1);
|
|
__ CallStub(&stub);
|
|
}
|
|
|
|
// Store the new value in the target if not const.
|
|
__ bind(&exit);
|
|
__ push(r0);
|
|
if (!is_const) target.SetValue(NOT_CONST_INIT);
|
|
}
|
|
|
|
// Postfix: Discard the new value and use the old.
|
|
if (is_postfix) __ pop(r0);
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
|
|
Comment cmnt(masm_, "[ BinaryOperation");
|
|
Token::Value op = node->op();
|
|
|
|
// According to ECMA-262 section 11.11, page 58, the binary logical
|
|
// operators must yield the result of one of the two expressions
|
|
// before any ToBoolean() conversions. This means that the value
|
|
// produced by a && or || operator is not necessarily a boolean.
|
|
|
|
// NOTE: If the left hand side produces a materialized value (not in
|
|
// the CC register), we force the right hand side to do the
|
|
// same. This is necessary because we may have to branch to the exit
|
|
// after evaluating the left hand side (due to the shortcut
|
|
// semantics), but the compiler must (statically) know if the result
|
|
// of compiling the binary operation is materialized or not.
|
|
|
|
if (op == Token::AND) {
|
|
Label is_true;
|
|
LoadCondition(node->left(),
|
|
NOT_INSIDE_TYPEOF,
|
|
&is_true,
|
|
false_target(),
|
|
false);
|
|
if (has_cc()) {
|
|
Branch(false, false_target());
|
|
|
|
// Evaluate right side expression.
|
|
__ bind(&is_true);
|
|
LoadCondition(node->right(),
|
|
NOT_INSIDE_TYPEOF,
|
|
true_target(),
|
|
false_target(),
|
|
false);
|
|
|
|
} else {
|
|
Label pop_and_continue, exit;
|
|
|
|
__ ldr(r0, MemOperand(sp, 0)); // dup the stack top
|
|
__ push(r0);
|
|
// Avoid popping the result if it converts to 'false' using the
|
|
// standard ToBoolean() conversion as described in ECMA-262,
|
|
// section 9.2, page 30.
|
|
ToBoolean(&pop_and_continue, &exit);
|
|
Branch(false, &exit);
|
|
|
|
// Pop the result of evaluating the first part.
|
|
__ bind(&pop_and_continue);
|
|
__ pop(r0);
|
|
|
|
// Evaluate right side expression.
|
|
__ bind(&is_true);
|
|
Load(node->right());
|
|
|
|
// Exit (always with a materialized value).
|
|
__ bind(&exit);
|
|
}
|
|
|
|
} else if (op == Token::OR) {
|
|
Label is_false;
|
|
LoadCondition(node->left(),
|
|
NOT_INSIDE_TYPEOF,
|
|
true_target(),
|
|
&is_false,
|
|
false);
|
|
if (has_cc()) {
|
|
Branch(true, true_target());
|
|
|
|
// Evaluate right side expression.
|
|
__ bind(&is_false);
|
|
LoadCondition(node->right(),
|
|
NOT_INSIDE_TYPEOF,
|
|
true_target(),
|
|
false_target(),
|
|
false);
|
|
|
|
} else {
|
|
Label pop_and_continue, exit;
|
|
|
|
__ ldr(r0, MemOperand(sp, 0));
|
|
__ push(r0);
|
|
// Avoid popping the result if it converts to 'true' using the
|
|
// standard ToBoolean() conversion as described in ECMA-262,
|
|
// section 9.2, page 30.
|
|
ToBoolean(&exit, &pop_and_continue);
|
|
Branch(true, &exit);
|
|
|
|
// Pop the result of evaluating the first part.
|
|
__ bind(&pop_and_continue);
|
|
__ pop(r0);
|
|
|
|
// Evaluate right side expression.
|
|
__ bind(&is_false);
|
|
Load(node->right());
|
|
|
|
// Exit (always with a materialized value).
|
|
__ bind(&exit);
|
|
}
|
|
|
|
} else {
|
|
// Optimize for the case where (at least) one of the expressions
|
|
// is a literal small integer.
|
|
Literal* lliteral = node->left()->AsLiteral();
|
|
Literal* rliteral = node->right()->AsLiteral();
|
|
|
|
if (rliteral != NULL && rliteral->handle()->IsSmi()) {
|
|
Load(node->left());
|
|
SmiOperation(node->op(), rliteral->handle(), false);
|
|
|
|
} else if (lliteral != NULL && lliteral->handle()->IsSmi()) {
|
|
Load(node->right());
|
|
SmiOperation(node->op(), lliteral->handle(), true);
|
|
|
|
} else {
|
|
Load(node->left());
|
|
Load(node->right());
|
|
GenericBinaryOperation(node->op());
|
|
}
|
|
__ push(r0);
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitThisFunction(ThisFunction* node) {
|
|
__ ldr(r0, FunctionOperand());
|
|
__ push(r0);
|
|
}
|
|
|
|
|
|
void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
|
|
Comment cmnt(masm_, "[ CompareOperation");
|
|
|
|
// Get the expressions from the node.
|
|
Expression* left = node->left();
|
|
Expression* right = node->right();
|
|
Token::Value op = node->op();
|
|
|
|
// NOTE: To make null checks efficient, we check if either left or
|
|
// right is the literal 'null'. If so, we optimize the code by
|
|
// inlining a null check instead of calling the (very) general
|
|
// runtime routine for checking equality.
|
|
|
|
bool left_is_null =
|
|
left->AsLiteral() != NULL && left->AsLiteral()->IsNull();
|
|
bool right_is_null =
|
|
right->AsLiteral() != NULL && right->AsLiteral()->IsNull();
|
|
|
|
if (op == Token::EQ || op == Token::EQ_STRICT) {
|
|
// The 'null' value is only equal to 'null' or 'undefined'.
|
|
if (left_is_null || right_is_null) {
|
|
Load(left_is_null ? right : left);
|
|
Label exit, undetectable;
|
|
__ pop(r0);
|
|
__ cmp(r0, Operand(Factory::null_value()));
|
|
|
|
// The 'null' value is only equal to 'undefined' if using
|
|
// non-strict comparisons.
|
|
if (op != Token::EQ_STRICT) {
|
|
__ b(eq, &exit);
|
|
__ cmp(r0, Operand(Factory::undefined_value()));
|
|
|
|
// NOTE: it can be undetectable object.
|
|
__ b(eq, &exit);
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
|
|
__ b(ne, &undetectable);
|
|
__ b(false_target());
|
|
|
|
__ bind(&undetectable);
|
|
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
|
|
__ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
|
|
__ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
|
|
__ cmp(r2, Operand(1 << Map::kIsUndetectable));
|
|
}
|
|
|
|
__ bind(&exit);
|
|
|
|
cc_reg_ = eq;
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
// NOTE: To make typeof testing for natives implemented in
|
|
// JavaScript really efficient, we generate special code for
|
|
// expressions of the form: 'typeof <expression> == <string>'.
|
|
|
|
UnaryOperation* operation = left->AsUnaryOperation();
|
|
if ((op == Token::EQ || op == Token::EQ_STRICT) &&
|
|
(operation != NULL && operation->op() == Token::TYPEOF) &&
|
|
(right->AsLiteral() != NULL &&
|
|
right->AsLiteral()->handle()->IsString())) {
|
|
Handle<String> check(String::cast(*right->AsLiteral()->handle()));
|
|
|
|
// Load the operand, move it to register r1.
|
|
LoadTypeofExpression(operation->expression());
|
|
__ pop(r1);
|
|
|
|
if (check->Equals(Heap::number_symbol())) {
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
__ b(eq, true_target());
|
|
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
__ cmp(r1, Operand(Factory::heap_number_map()));
|
|
cc_reg_ = eq;
|
|
|
|
} else if (check->Equals(Heap::string_symbol())) {
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
__ b(eq, false_target());
|
|
|
|
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
|
|
// NOTE: it might be an undetectable string object
|
|
__ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
|
|
__ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
|
|
__ cmp(r2, Operand(1 << Map::kIsUndetectable));
|
|
__ b(eq, false_target());
|
|
|
|
__ ldrb(r2, FieldMemOperand(r1, Map::kInstanceTypeOffset));
|
|
__ cmp(r2, Operand(FIRST_NONSTRING_TYPE));
|
|
cc_reg_ = lt;
|
|
|
|
} else if (check->Equals(Heap::boolean_symbol())) {
|
|
__ cmp(r1, Operand(Factory::true_value()));
|
|
__ b(eq, true_target());
|
|
__ cmp(r1, Operand(Factory::false_value()));
|
|
cc_reg_ = eq;
|
|
|
|
} else if (check->Equals(Heap::undefined_symbol())) {
|
|
__ cmp(r1, Operand(Factory::undefined_value()));
|
|
__ b(eq, true_target());
|
|
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
__ b(eq, false_target());
|
|
|
|
// NOTE: it can be undetectable object.
|
|
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
__ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
|
|
__ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
|
|
__ cmp(r2, Operand(1 << Map::kIsUndetectable));
|
|
|
|
cc_reg_ = eq;
|
|
|
|
} else if (check->Equals(Heap::function_symbol())) {
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
__ b(eq, false_target());
|
|
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
__ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
|
|
__ cmp(r1, Operand(JS_FUNCTION_TYPE));
|
|
cc_reg_ = eq;
|
|
|
|
} else if (check->Equals(Heap::object_symbol())) {
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
__ b(eq, false_target());
|
|
|
|
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
__ cmp(r1, Operand(Factory::null_value()));
|
|
__ b(eq, true_target());
|
|
|
|
// NOTE: it might be an undetectable object.
|
|
__ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset));
|
|
__ and_(r1, r1, Operand(1 << Map::kIsUndetectable));
|
|
__ cmp(r1, Operand(1 << Map::kIsUndetectable));
|
|
__ b(eq, false_target());
|
|
|
|
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
|
|
__ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE));
|
|
__ b(lt, false_target());
|
|
__ cmp(r2, Operand(LAST_JS_OBJECT_TYPE));
|
|
cc_reg_ = le;
|
|
|
|
} else {
|
|
// Uncommon case: Typeof testing against a string literal that
|
|
// is never returned from the typeof operator.
|
|
__ b(false_target());
|
|
}
|
|
return;
|
|
}
|
|
|
|
Load(left);
|
|
Load(right);
|
|
switch (op) {
|
|
case Token::EQ:
|
|
Comparison(eq, false);
|
|
break;
|
|
|
|
case Token::LT:
|
|
Comparison(lt);
|
|
break;
|
|
|
|
case Token::GT:
|
|
Comparison(gt);
|
|
break;
|
|
|
|
case Token::LTE:
|
|
Comparison(le);
|
|
break;
|
|
|
|
case Token::GTE:
|
|
Comparison(ge);
|
|
break;
|
|
|
|
case Token::EQ_STRICT:
|
|
Comparison(eq, true);
|
|
break;
|
|
|
|
case Token::IN:
|
|
__ mov(r0, Operand(1)); // not counting receiver
|
|
__ InvokeBuiltin(Builtins::IN, CALL_JS);
|
|
__ push(r0);
|
|
break;
|
|
|
|
case Token::INSTANCEOF:
|
|
__ mov(r0, Operand(1)); // not counting receiver
|
|
__ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_JS);
|
|
__ tst(r0, Operand(r0));
|
|
cc_reg_ = eq;
|
|
break;
|
|
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::RecordStatementPosition(Node* node) {
|
|
if (FLAG_debug_info) {
|
|
int statement_pos = node->statement_pos();
|
|
if (statement_pos == RelocInfo::kNoPosition) return;
|
|
__ RecordStatementPosition(statement_pos);
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenerator::EnterJSFrame() {
|
|
#if defined(DEBUG)
|
|
{ Label done, fail;
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
__ b(eq, &fail);
|
|
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
|
|
__ cmp(r2, Operand(JS_FUNCTION_TYPE));
|
|
__ b(eq, &done);
|
|
__ bind(&fail);
|
|
__ stop("CodeGenerator::EnterJSFrame - r1 not a function");
|
|
__ bind(&done);
|
|
}
|
|
#endif // DEBUG
|
|
|
|
__ stm(db_w, sp, r1.bit() | cp.bit() | fp.bit() | lr.bit());
|
|
__ add(fp, sp, Operand(2 * kPointerSize)); // Adjust FP to point to saved FP.
|
|
}
|
|
|
|
|
|
void CodeGenerator::ExitJSFrame() {
|
|
// Drop the execution stack down to the frame pointer and restore the caller
|
|
// frame pointer and return address.
|
|
__ mov(sp, fp);
|
|
__ ldm(ia_w, sp, fp.bit() | lr.bit());
|
|
}
|
|
|
|
|
|
#undef __
|
|
#define __ masm->
|
|
|
|
Handle<String> Reference::GetName() {
|
|
ASSERT(type_ == NAMED);
|
|
Property* property = expression_->AsProperty();
|
|
if (property == NULL) {
|
|
// Global variable reference treated as a named property reference.
|
|
VariableProxy* proxy = expression_->AsVariableProxy();
|
|
ASSERT(proxy->AsVariable() != NULL);
|
|
ASSERT(proxy->AsVariable()->is_global());
|
|
return proxy->name();
|
|
} else {
|
|
Literal* raw_name = property->key()->AsLiteral();
|
|
ASSERT(raw_name != NULL);
|
|
return Handle<String>(String::cast(*raw_name->handle()));
|
|
}
|
|
}
|
|
|
|
|
|
void Reference::GetValue(TypeofState typeof_state) {
|
|
ASSERT(!is_illegal());
|
|
ASSERT(!cgen_->has_cc());
|
|
MacroAssembler* masm = cgen_->masm();
|
|
Property* property = expression_->AsProperty();
|
|
if (property != NULL) {
|
|
__ RecordPosition(property->position());
|
|
}
|
|
|
|
switch (type_) {
|
|
case SLOT: {
|
|
Comment cmnt(masm, "[ Load from Slot");
|
|
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
|
|
ASSERT(slot != NULL);
|
|
cgen_->LoadFromSlot(slot, typeof_state);
|
|
break;
|
|
}
|
|
|
|
case NAMED: {
|
|
// TODO(1241834): Make sure that this it is safe to ignore the
|
|
// distinction between expressions in a typeof and not in a typeof. If
|
|
// there is a chance that reference errors can be thrown below, we
|
|
// must distinguish between the two kinds of loads (typeof expression
|
|
// loads must not throw a reference error).
|
|
Comment cmnt(masm, "[ Load from named Property");
|
|
// Setup the name register.
|
|
Handle<String> name(GetName());
|
|
__ mov(r2, Operand(name));
|
|
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
|
|
|
|
Variable* var = expression_->AsVariableProxy()->AsVariable();
|
|
if (var != NULL) {
|
|
ASSERT(var->is_global());
|
|
__ Call(ic, RelocInfo::CODE_TARGET_CONTEXT);
|
|
} else {
|
|
__ Call(ic, RelocInfo::CODE_TARGET);
|
|
}
|
|
__ push(r0);
|
|
break;
|
|
}
|
|
|
|
case KEYED: {
|
|
// TODO(1241834): Make sure that this it is safe to ignore the
|
|
// distinction between expressions in a typeof and not in a typeof.
|
|
Comment cmnt(masm, "[ Load from keyed Property");
|
|
ASSERT(property != NULL);
|
|
// TODO(1224671): Implement inline caching for keyed loads as on ia32.
|
|
GetPropertyStub stub;
|
|
__ CallStub(&stub);
|
|
__ push(r0);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void Reference::SetValue(InitState init_state) {
|
|
ASSERT(!is_illegal());
|
|
ASSERT(!cgen_->has_cc());
|
|
MacroAssembler* masm = cgen_->masm();
|
|
Property* property = expression_->AsProperty();
|
|
if (property != NULL) {
|
|
__ RecordPosition(property->position());
|
|
}
|
|
|
|
switch (type_) {
|
|
case SLOT: {
|
|
Comment cmnt(masm, "[ Store to Slot");
|
|
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
|
|
ASSERT(slot != NULL);
|
|
if (slot->type() == Slot::LOOKUP) {
|
|
ASSERT(slot->var()->mode() == Variable::DYNAMIC);
|
|
|
|
// For now, just do a runtime call.
|
|
__ push(cp);
|
|
__ mov(r0, Operand(slot->var()->name()));
|
|
__ push(r0);
|
|
|
|
if (init_state == CONST_INIT) {
|
|
// Same as the case for a normal store, but ignores attribute
|
|
// (e.g. READ_ONLY) of context slot so that we can initialize
|
|
// const properties (introduced via eval("const foo = (some
|
|
// expr);")). Also, uses the current function context instead of
|
|
// the top context.
|
|
//
|
|
// Note that we must declare the foo upon entry of eval(), via a
|
|
// context slot declaration, but we cannot initialize it at the
|
|
// same time, because the const declaration may be at the end of
|
|
// the eval code (sigh...) and the const variable may have been
|
|
// used before (where its value is 'undefined'). Thus, we can only
|
|
// do the initialization when we actually encounter the expression
|
|
// and when the expression operands are defined and valid, and
|
|
// thus we need the split into 2 operations: declaration of the
|
|
// context slot followed by initialization.
|
|
__ CallRuntime(Runtime::kInitializeConstContextSlot, 3);
|
|
} else {
|
|
__ CallRuntime(Runtime::kStoreContextSlot, 3);
|
|
}
|
|
// Storing a variable must keep the (new) value on the expression
|
|
// stack. This is necessary for compiling assignment expressions.
|
|
__ push(r0);
|
|
|
|
} else {
|
|
ASSERT(slot->var()->mode() != Variable::DYNAMIC);
|
|
|
|
Label exit;
|
|
if (init_state == CONST_INIT) {
|
|
ASSERT(slot->var()->mode() == Variable::CONST);
|
|
// Only the first const initialization must be executed (the slot
|
|
// still contains 'the hole' value). When the assignment is
|
|
// executed, the code is identical to a normal store (see below).
|
|
Comment cmnt(masm, "[ Init const");
|
|
__ ldr(r2, cgen_->SlotOperand(slot, r2));
|
|
__ cmp(r2, Operand(Factory::the_hole_value()));
|
|
__ b(ne, &exit);
|
|
}
|
|
|
|
// We must execute the store. Storing a variable must keep the
|
|
// (new) value on the stack. This is necessary for compiling
|
|
// assignment expressions.
|
|
//
|
|
// Note: We will reach here even with slot->var()->mode() ==
|
|
// Variable::CONST because of const declarations which will
|
|
// initialize consts to 'the hole' value and by doing so, end up
|
|
// calling this code. r2 may be loaded with context; used below in
|
|
// RecordWrite.
|
|
__ pop(r0);
|
|
__ str(r0, cgen_->SlotOperand(slot, r2));
|
|
__ push(r0);
|
|
if (slot->type() == Slot::CONTEXT) {
|
|
// Skip write barrier if the written value is a smi.
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
__ b(eq, &exit);
|
|
// r2 is loaded with context when calling SlotOperand above.
|
|
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
|
|
__ mov(r3, Operand(offset));
|
|
__ RecordWrite(r2, r3, r1);
|
|
}
|
|
// If we definitely did not jump over the assignment, we do not need
|
|
// to bind the exit label. Doing so can defeat peephole
|
|
// optimization.
|
|
if (init_state == CONST_INIT || slot->type() == Slot::CONTEXT) {
|
|
__ bind(&exit);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case NAMED: {
|
|
Comment cmnt(masm, "[ Store to named Property");
|
|
// Call the appropriate IC code.
|
|
__ pop(r0); // value
|
|
// Setup the name register.
|
|
Handle<String> name(GetName());
|
|
__ mov(r2, Operand(name));
|
|
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
|
|
__ Call(ic, RelocInfo::CODE_TARGET);
|
|
__ push(r0);
|
|
break;
|
|
}
|
|
|
|
case KEYED: {
|
|
Comment cmnt(masm, "[ Store to keyed Property");
|
|
Property* property = expression_->AsProperty();
|
|
ASSERT(property != NULL);
|
|
__ RecordPosition(property->position());
|
|
__ pop(r0); // value
|
|
SetPropertyStub stub;
|
|
__ CallStub(&stub);
|
|
__ push(r0);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void GetPropertyStub::Generate(MacroAssembler* masm) {
|
|
// sp[0]: key
|
|
// sp[1]: receiver
|
|
Label slow, fast;
|
|
// Get the key and receiver object from the stack.
|
|
__ ldm(ia, sp, r0.bit() | r1.bit());
|
|
// Check that the key is a smi.
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
__ b(ne, &slow);
|
|
__ mov(r0, Operand(r0, ASR, kSmiTagSize));
|
|
// Check that the object isn't a smi.
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
__ b(eq, &slow);
|
|
|
|
// Check that the object is some kind of JS object EXCEPT JS Value type.
|
|
// In the case that the object is a value-wrapper object,
|
|
// we enter the runtime system to make sure that indexing into string
|
|
// objects work as intended.
|
|
ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE);
|
|
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
|
|
__ cmp(r2, Operand(JS_OBJECT_TYPE));
|
|
__ b(lt, &slow);
|
|
|
|
// Get the elements array of the object.
|
|
__ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset));
|
|
// Check that the object is in fast mode (not dictionary).
|
|
__ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
__ cmp(r3, Operand(Factory::hash_table_map()));
|
|
__ b(eq, &slow);
|
|
// Check that the key (index) is within bounds.
|
|
__ ldr(r3, FieldMemOperand(r1, Array::kLengthOffset));
|
|
__ cmp(r0, Operand(r3));
|
|
__ b(lo, &fast);
|
|
|
|
// Slow case: Push extra copies of the arguments (2).
|
|
__ bind(&slow);
|
|
__ ldm(ia, sp, r0.bit() | r1.bit());
|
|
__ stm(db_w, sp, r0.bit() | r1.bit());
|
|
// Do tail-call to runtime routine.
|
|
__ TailCallRuntime(ExternalReference(Runtime::kGetProperty), 2);
|
|
|
|
// Fast case: Do the load.
|
|
__ bind(&fast);
|
|
__ add(r3, r1, Operand(Array::kHeaderSize - kHeapObjectTag));
|
|
__ ldr(r0, MemOperand(r3, r0, LSL, kPointerSizeLog2));
|
|
__ cmp(r0, Operand(Factory::the_hole_value()));
|
|
// In case the loaded value is the_hole we have to consult GetProperty
|
|
// to ensure the prototype chain is searched.
|
|
__ b(eq, &slow);
|
|
|
|
__ StubReturn(1);
|
|
}
|
|
|
|
|
|
void SetPropertyStub::Generate(MacroAssembler* masm) {
|
|
// r0 : value
|
|
// sp[0] : key
|
|
// sp[1] : receiver
|
|
|
|
Label slow, fast, array, extra, exit;
|
|
// Get the key and the object from the stack.
|
|
__ ldm(ia, sp, r1.bit() | r3.bit()); // r1 = key, r3 = receiver
|
|
// Check that the key is a smi.
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
__ b(ne, &slow);
|
|
// Check that the object isn't a smi.
|
|
__ tst(r3, Operand(kSmiTagMask));
|
|
__ b(eq, &slow);
|
|
// Get the type of the object from its map.
|
|
__ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
|
|
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
|
|
// Check if the object is a JS array or not.
|
|
__ cmp(r2, Operand(JS_ARRAY_TYPE));
|
|
__ b(eq, &array);
|
|
// Check that the object is some kind of JS object.
|
|
__ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE));
|
|
__ b(lt, &slow);
|
|
|
|
|
|
// Object case: Check key against length in the elements array.
|
|
__ ldr(r3, FieldMemOperand(r3, JSObject::kElementsOffset));
|
|
// Check that the object is in fast mode (not dictionary).
|
|
__ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
|
|
__ cmp(r2, Operand(Factory::hash_table_map()));
|
|
__ b(eq, &slow);
|
|
// Untag the key (for checking against untagged length in the fixed array).
|
|
__ mov(r1, Operand(r1, ASR, kSmiTagSize));
|
|
// Compute address to store into and check array bounds.
|
|
__ add(r2, r3, Operand(Array::kHeaderSize - kHeapObjectTag));
|
|
__ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2));
|
|
__ ldr(ip, FieldMemOperand(r3, Array::kLengthOffset));
|
|
__ cmp(r1, Operand(ip));
|
|
__ b(lo, &fast);
|
|
|
|
|
|
// Slow case: Push extra copies of the arguments (3).
|
|
__ bind(&slow);
|
|
__ ldm(ia, sp, r1.bit() | r3.bit()); // r0 == value, r1 == key, r3 == object
|
|
__ stm(db_w, sp, r0.bit() | r1.bit() | r3.bit());
|
|
// Do tail-call to runtime routine.
|
|
__ TailCallRuntime(ExternalReference(Runtime::kSetProperty), 3);
|
|
|
|
|
|
// Extra capacity case: Check if there is extra capacity to
|
|
// perform the store and update the length. Used for adding one
|
|
// element to the array by writing to array[array.length].
|
|
// r0 == value, r1 == key, r2 == elements, r3 == object
|
|
__ bind(&extra);
|
|
__ b(ne, &slow); // do not leave holes in the array
|
|
__ mov(r1, Operand(r1, ASR, kSmiTagSize)); // untag
|
|
__ ldr(ip, FieldMemOperand(r2, Array::kLengthOffset));
|
|
__ cmp(r1, Operand(ip));
|
|
__ b(hs, &slow);
|
|
__ mov(r1, Operand(r1, LSL, kSmiTagSize)); // restore tag
|
|
__ add(r1, r1, Operand(1 << kSmiTagSize)); // and increment
|
|
__ str(r1, FieldMemOperand(r3, JSArray::kLengthOffset));
|
|
__ mov(r3, Operand(r2));
|
|
// NOTE: Computing the address to store into must take the fact
|
|
// that the key has been incremented into account.
|
|
int displacement = Array::kHeaderSize - kHeapObjectTag -
|
|
((1 << kSmiTagSize) * 2);
|
|
__ add(r2, r2, Operand(displacement));
|
|
__ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
|
|
__ b(&fast);
|
|
|
|
|
|
// Array case: Get the length and the elements array from the JS
|
|
// array. Check that the array is in fast mode; if it is the
|
|
// length is always a smi.
|
|
// r0 == value, r3 == object
|
|
__ bind(&array);
|
|
__ ldr(r2, FieldMemOperand(r3, JSObject::kElementsOffset));
|
|
__ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
|
|
__ cmp(r1, Operand(Factory::hash_table_map()));
|
|
__ b(eq, &slow);
|
|
|
|
// Check the key against the length in the array, compute the
|
|
// address to store into and fall through to fast case.
|
|
__ ldr(r1, MemOperand(sp));
|
|
// r0 == value, r1 == key, r2 == elements, r3 == object.
|
|
__ ldr(ip, FieldMemOperand(r3, JSArray::kLengthOffset));
|
|
__ cmp(r1, Operand(ip));
|
|
__ b(hs, &extra);
|
|
__ mov(r3, Operand(r2));
|
|
__ add(r2, r2, Operand(Array::kHeaderSize - kHeapObjectTag));
|
|
__ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
|
|
|
|
|
|
// Fast case: Do the store.
|
|
// r0 == value, r2 == address to store into, r3 == elements
|
|
__ bind(&fast);
|
|
__ str(r0, MemOperand(r2));
|
|
// Skip write barrier if the written value is a smi.
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
__ b(eq, &exit);
|
|
// Update write barrier for the elements array address.
|
|
__ sub(r1, r2, Operand(r3));
|
|
__ RecordWrite(r3, r1, r2);
|
|
__ bind(&exit);
|
|
__ StubReturn(1);
|
|
}
|
|
|
|
|
|
void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
|
|
// r1 : x
|
|
// r0 : y
|
|
// result : r0
|
|
|
|
switch (op_) {
|
|
case Token::ADD: {
|
|
Label slow, exit;
|
|
// fast path
|
|
__ orr(r2, r1, Operand(r0)); // r2 = x | y;
|
|
__ add(r0, r1, Operand(r0), SetCC); // add y optimistically
|
|
// go slow-path in case of overflow
|
|
__ b(vs, &slow);
|
|
// go slow-path in case of non-smi operands
|
|
ASSERT(kSmiTag == 0); // adjust code below
|
|
__ tst(r2, Operand(kSmiTagMask));
|
|
__ b(eq, &exit);
|
|
// slow path
|
|
__ bind(&slow);
|
|
__ sub(r0, r0, Operand(r1)); // revert optimistic add
|
|
__ push(r1);
|
|
__ push(r0);
|
|
__ mov(r0, Operand(1)); // set number of arguments
|
|
__ InvokeBuiltin(Builtins::ADD, JUMP_JS);
|
|
// done
|
|
__ bind(&exit);
|
|
break;
|
|
}
|
|
|
|
case Token::SUB: {
|
|
Label slow, exit;
|
|
// fast path
|
|
__ orr(r2, r1, Operand(r0)); // r2 = x | y;
|
|
__ sub(r3, r1, Operand(r0), SetCC); // subtract y optimistically
|
|
// go slow-path in case of overflow
|
|
__ b(vs, &slow);
|
|
// go slow-path in case of non-smi operands
|
|
ASSERT(kSmiTag == 0); // adjust code below
|
|
__ tst(r2, Operand(kSmiTagMask));
|
|
__ mov(r0, Operand(r3), LeaveCC, eq); // conditionally set r0 to result
|
|
__ b(eq, &exit);
|
|
// slow path
|
|
__ bind(&slow);
|
|
__ push(r1);
|
|
__ push(r0);
|
|
__ mov(r0, Operand(1)); // set number of arguments
|
|
__ InvokeBuiltin(Builtins::SUB, JUMP_JS);
|
|
// done
|
|
__ bind(&exit);
|
|
break;
|
|
}
|
|
|
|
case Token::MUL: {
|
|
Label slow, exit;
|
|
// tag check
|
|
__ orr(r2, r1, Operand(r0)); // r2 = x | y;
|
|
ASSERT(kSmiTag == 0); // adjust code below
|
|
__ tst(r2, Operand(kSmiTagMask));
|
|
__ b(ne, &slow);
|
|
// remove tag from one operand (but keep sign), so that result is smi
|
|
__ mov(ip, Operand(r0, ASR, kSmiTagSize));
|
|
// do multiplication
|
|
__ smull(r3, r2, r1, ip); // r3 = lower 32 bits of ip*r1
|
|
// go slow on overflows (overflow bit is not set)
|
|
__ mov(ip, Operand(r3, ASR, 31));
|
|
__ cmp(ip, Operand(r2)); // no overflow if higher 33 bits are identical
|
|
__ b(ne, &slow);
|
|
// go slow on zero result to handle -0
|
|
__ tst(r3, Operand(r3));
|
|
__ mov(r0, Operand(r3), LeaveCC, ne);
|
|
__ b(ne, &exit);
|
|
// slow case
|
|
__ bind(&slow);
|
|
__ push(r1);
|
|
__ push(r0);
|
|
__ mov(r0, Operand(1)); // set number of arguments
|
|
__ InvokeBuiltin(Builtins::MUL, JUMP_JS);
|
|
// done
|
|
__ bind(&exit);
|
|
break;
|
|
}
|
|
|
|
case Token::BIT_OR:
|
|
case Token::BIT_AND:
|
|
case Token::BIT_XOR: {
|
|
Label slow, exit;
|
|
// tag check
|
|
__ orr(r2, r1, Operand(r0)); // r2 = x | y;
|
|
ASSERT(kSmiTag == 0); // adjust code below
|
|
__ tst(r2, Operand(kSmiTagMask));
|
|
__ b(ne, &slow);
|
|
switch (op_) {
|
|
case Token::BIT_OR: __ orr(r0, r0, Operand(r1)); break;
|
|
case Token::BIT_AND: __ and_(r0, r0, Operand(r1)); break;
|
|
case Token::BIT_XOR: __ eor(r0, r0, Operand(r1)); break;
|
|
default: UNREACHABLE();
|
|
}
|
|
__ b(&exit);
|
|
__ bind(&slow);
|
|
__ push(r1); // restore stack
|
|
__ push(r0);
|
|
__ mov(r0, Operand(1)); // 1 argument (not counting receiver).
|
|
switch (op_) {
|
|
case Token::BIT_OR:
|
|
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS);
|
|
break;
|
|
case Token::BIT_AND:
|
|
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS);
|
|
break;
|
|
case Token::BIT_XOR:
|
|
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
__ bind(&exit);
|
|
break;
|
|
}
|
|
|
|
case Token::SHL:
|
|
case Token::SHR:
|
|
case Token::SAR: {
|
|
Label slow, exit;
|
|
// tag check
|
|
__ orr(r2, r1, Operand(r0)); // r2 = x | y;
|
|
ASSERT(kSmiTag == 0); // adjust code below
|
|
__ tst(r2, Operand(kSmiTagMask));
|
|
__ b(ne, &slow);
|
|
// remove tags from operands (but keep sign)
|
|
__ mov(r3, Operand(r1, ASR, kSmiTagSize)); // x
|
|
__ mov(r2, Operand(r0, ASR, kSmiTagSize)); // y
|
|
// use only the 5 least significant bits of the shift count
|
|
__ and_(r2, r2, Operand(0x1f));
|
|
// perform operation
|
|
switch (op_) {
|
|
case Token::SAR:
|
|
__ mov(r3, Operand(r3, ASR, r2));
|
|
// no checks of result necessary
|
|
break;
|
|
|
|
case Token::SHR:
|
|
__ mov(r3, Operand(r3, LSR, r2));
|
|
// check that the *unsigned* result fits in a smi
|
|
// neither of the two high-order bits can be set:
|
|
// - 0x80000000: high bit would be lost when smi tagging
|
|
// - 0x40000000: this number would convert to negative when
|
|
// smi tagging these two cases can only happen with shifts
|
|
// by 0 or 1 when handed a valid smi
|
|
__ and_(r2, r3, Operand(0xc0000000), SetCC);
|
|
__ b(ne, &slow);
|
|
break;
|
|
|
|
case Token::SHL:
|
|
__ mov(r3, Operand(r3, LSL, r2));
|
|
// check that the *signed* result fits in a smi
|
|
__ add(r2, r3, Operand(0x40000000), SetCC);
|
|
__ b(mi, &slow);
|
|
break;
|
|
|
|
default: UNREACHABLE();
|
|
}
|
|
// tag result and store it in r0
|
|
ASSERT(kSmiTag == 0); // adjust code below
|
|
__ mov(r0, Operand(r3, LSL, kSmiTagSize));
|
|
__ b(&exit);
|
|
// slow case
|
|
__ bind(&slow);
|
|
__ push(r1); // restore stack
|
|
__ push(r0);
|
|
__ mov(r0, Operand(1)); // 1 argument (not counting receiver).
|
|
switch (op_) {
|
|
case Token::SAR: __ InvokeBuiltin(Builtins::SAR, JUMP_JS); break;
|
|
case Token::SHR: __ InvokeBuiltin(Builtins::SHR, JUMP_JS); break;
|
|
case Token::SHL: __ InvokeBuiltin(Builtins::SHL, JUMP_JS); break;
|
|
default: UNREACHABLE();
|
|
}
|
|
__ bind(&exit);
|
|
break;
|
|
}
|
|
|
|
default: UNREACHABLE();
|
|
}
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
void StackCheckStub::Generate(MacroAssembler* masm) {
|
|
Label within_limit;
|
|
__ mov(ip, Operand(ExternalReference::address_of_stack_guard_limit()));
|
|
__ ldr(ip, MemOperand(ip));
|
|
__ cmp(sp, Operand(ip));
|
|
__ b(hs, &within_limit);
|
|
// Do tail-call to runtime routine.
|
|
__ push(r0);
|
|
__ TailCallRuntime(ExternalReference(Runtime::kStackGuard), 1);
|
|
__ bind(&within_limit);
|
|
|
|
__ StubReturn(1);
|
|
}
|
|
|
|
|
|
void UnarySubStub::Generate(MacroAssembler* masm) {
|
|
Label undo;
|
|
Label slow;
|
|
Label done;
|
|
|
|
// Enter runtime system if the value is not a smi.
|
|
__ tst(r0, Operand(kSmiTagMask));
|
|
__ b(ne, &slow);
|
|
|
|
// Enter runtime system if the value of the expression is zero
|
|
// to make sure that we switch between 0 and -0.
|
|
__ cmp(r0, Operand(0));
|
|
__ b(eq, &slow);
|
|
|
|
// The value of the expression is a smi that is not zero. Try
|
|
// optimistic subtraction '0 - value'.
|
|
__ rsb(r1, r0, Operand(0), SetCC);
|
|
__ b(vs, &slow);
|
|
|
|
// If result is a smi we are done.
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
__ mov(r0, Operand(r1), LeaveCC, eq); // conditionally set r0 to result
|
|
__ b(eq, &done);
|
|
|
|
// Enter runtime system.
|
|
__ bind(&slow);
|
|
__ push(r0);
|
|
__ mov(r0, Operand(0)); // set number of arguments
|
|
__ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS);
|
|
|
|
__ bind(&done);
|
|
__ StubReturn(1);
|
|
}
|
|
|
|
|
|
void InvokeBuiltinStub::Generate(MacroAssembler* masm) {
|
|
__ push(r0);
|
|
__ mov(r0, Operand(0)); // set number of arguments
|
|
switch (kind_) {
|
|
case ToNumber: __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_JS); break;
|
|
case Inc: __ InvokeBuiltin(Builtins::INC, JUMP_JS); break;
|
|
case Dec: __ InvokeBuiltin(Builtins::DEC, JUMP_JS); break;
|
|
default: UNREACHABLE();
|
|
}
|
|
__ StubReturn(argc_);
|
|
}
|
|
|
|
|
|
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
|
|
// r0 holds exception
|
|
ASSERT(StackHandlerConstants::kSize == 6 * kPointerSize); // adjust this code
|
|
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
|
|
__ ldr(sp, MemOperand(r3));
|
|
__ pop(r2); // pop next in chain
|
|
__ str(r2, MemOperand(r3));
|
|
// restore parameter- and frame-pointer and pop state.
|
|
__ ldm(ia_w, sp, r3.bit() | pp.bit() | fp.bit());
|
|
// Before returning we restore the context from the frame pointer if not NULL.
|
|
// The frame pointer is NULL in the exception handler of a JS entry frame.
|
|
__ cmp(fp, Operand(0));
|
|
// Set cp to NULL if fp is NULL.
|
|
__ mov(cp, Operand(0), LeaveCC, eq);
|
|
// Restore cp otherwise.
|
|
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
|
|
if (kDebug && FLAG_debug_code) __ mov(lr, Operand(pc));
|
|
__ pop(pc);
|
|
}
|
|
|
|
|
|
void CEntryStub::GenerateThrowOutOfMemory(MacroAssembler* masm) {
|
|
// Fetch top stack handler.
|
|
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
|
|
__ ldr(r3, MemOperand(r3));
|
|
|
|
// Unwind the handlers until the ENTRY handler is found.
|
|
Label loop, done;
|
|
__ bind(&loop);
|
|
// Load the type of the current stack handler.
|
|
const int kStateOffset = StackHandlerConstants::kAddressDisplacement +
|
|
StackHandlerConstants::kStateOffset;
|
|
__ ldr(r2, MemOperand(r3, kStateOffset));
|
|
__ cmp(r2, Operand(StackHandler::ENTRY));
|
|
__ b(eq, &done);
|
|
// Fetch the next handler in the list.
|
|
const int kNextOffset = StackHandlerConstants::kAddressDisplacement +
|
|
StackHandlerConstants::kNextOffset;
|
|
__ ldr(r3, MemOperand(r3, kNextOffset));
|
|
__ jmp(&loop);
|
|
__ bind(&done);
|
|
|
|
// Set the top handler address to next handler past the current ENTRY handler.
|
|
__ ldr(r0, MemOperand(r3, kNextOffset));
|
|
__ mov(r2, Operand(ExternalReference(Top::k_handler_address)));
|
|
__ str(r0, MemOperand(r2));
|
|
|
|
// Set external caught exception to false.
|
|
__ mov(r0, Operand(false));
|
|
ExternalReference external_caught(Top::k_external_caught_exception_address);
|
|
__ mov(r2, Operand(external_caught));
|
|
__ str(r0, MemOperand(r2));
|
|
|
|
// Set pending exception and r0 to out of memory exception.
|
|
Failure* out_of_memory = Failure::OutOfMemoryException();
|
|
__ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
|
|
__ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address)));
|
|
__ str(r0, MemOperand(r2));
|
|
|
|
// Restore the stack to the address of the ENTRY handler
|
|
__ mov(sp, Operand(r3));
|
|
|
|
// restore parameter- and frame-pointer and pop state.
|
|
__ ldm(ia_w, sp, r3.bit() | pp.bit() | fp.bit());
|
|
// Before returning we restore the context from the frame pointer if not NULL.
|
|
// The frame pointer is NULL in the exception handler of a JS entry frame.
|
|
__ cmp(fp, Operand(0));
|
|
// Set cp to NULL if fp is NULL.
|
|
__ mov(cp, Operand(0), LeaveCC, eq);
|
|
// Restore cp otherwise.
|
|
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
|
|
if (kDebug && FLAG_debug_code) __ mov(lr, Operand(pc));
|
|
__ pop(pc);
|
|
}
|
|
|
|
|
|
void CEntryStub::GenerateCore(MacroAssembler* masm,
|
|
Label* throw_normal_exception,
|
|
Label* throw_out_of_memory_exception,
|
|
StackFrame::Type frame_type,
|
|
bool do_gc) {
|
|
// r0: result parameter for PerformGC, if any
|
|
// r4: number of arguments including receiver (C callee-saved)
|
|
// r5: pointer to builtin function (C callee-saved)
|
|
// r6: pointer to the first argument (C callee-saved)
|
|
|
|
if (do_gc) {
|
|
// Passing r0.
|
|
__ Call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY);
|
|
}
|
|
|
|
// Call C built-in.
|
|
// r0 = argc, r1 = argv
|
|
__ mov(r0, Operand(r4));
|
|
__ mov(r1, Operand(r6));
|
|
|
|
// TODO(1242173): To let the GC traverse the return address of the exit
|
|
// frames, we need to know where the return address is. Right now,
|
|
// we push it on the stack to be able to find it again, but we never
|
|
// restore from it in case of changes, which makes it impossible to
|
|
// support moving the C entry code stub. This should be fixed, but currently
|
|
// this is OK because the CEntryStub gets generated so early in the V8 boot
|
|
// sequence that it is not moving ever.
|
|
__ add(lr, pc, Operand(4)); // compute return address: (pc + 8) + 4
|
|
__ push(lr);
|
|
#if !defined(__arm__)
|
|
// Notify the simulator of the transition to C code.
|
|
__ swi(assembler::arm::call_rt_r5);
|
|
#else /* !defined(__arm__) */
|
|
__ mov(pc, Operand(r5));
|
|
#endif /* !defined(__arm__) */
|
|
// result is in r0 or r0:r1 - do not destroy these registers!
|
|
|
|
// check for failure result
|
|
Label failure_returned;
|
|
ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
|
|
// Lower 2 bits of r2 are 0 iff r0 has failure tag.
|
|
__ add(r2, r0, Operand(1));
|
|
__ tst(r2, Operand(kFailureTagMask));
|
|
__ b(eq, &failure_returned);
|
|
|
|
// Exit C frame and return.
|
|
// r0:r1: result
|
|
// sp: stack pointer
|
|
// fp: frame pointer
|
|
// pp: caller's parameter pointer pp (restored as C callee-saved)
|
|
__ LeaveExitFrame(frame_type);
|
|
|
|
// check if we should retry or throw exception
|
|
Label retry;
|
|
__ bind(&failure_returned);
|
|
ASSERT(Failure::RETRY_AFTER_GC == 0);
|
|
__ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
|
|
__ b(eq, &retry);
|
|
|
|
Label continue_exception;
|
|
// If the returned failure is EXCEPTION then promote Top::pending_exception().
|
|
__ cmp(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
|
|
__ b(ne, &continue_exception);
|
|
|
|
// Retrieve the pending exception and clear the variable.
|
|
__ mov(ip, Operand(Factory::the_hole_value().location()));
|
|
__ ldr(r3, MemOperand(ip));
|
|
__ mov(ip, Operand(Top::pending_exception_address()));
|
|
__ ldr(r0, MemOperand(ip));
|
|
__ str(r3, MemOperand(ip));
|
|
|
|
__ bind(&continue_exception);
|
|
// Special handling of out of memory exception.
|
|
Failure* out_of_memory = Failure::OutOfMemoryException();
|
|
__ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
|
|
__ b(eq, throw_out_of_memory_exception);
|
|
|
|
// Handle normal exception.
|
|
__ jmp(throw_normal_exception);
|
|
|
|
__ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
|
|
}
|
|
|
|
|
|
void CEntryStub::GenerateBody(MacroAssembler* masm, bool is_debug_break) {
|
|
// Called from JavaScript; parameters are on stack as if calling JS function
|
|
// r0: number of arguments including receiver
|
|
// r1: pointer to builtin function
|
|
// fp: frame pointer (restored after C call)
|
|
// sp: stack pointer (restored as callee's pp after C call)
|
|
// cp: current context (C callee-saved)
|
|
// pp: caller's parameter pointer pp (C callee-saved)
|
|
|
|
// NOTE: Invocations of builtins may return failure objects
|
|
// instead of a proper result. The builtin entry handles
|
|
// this by performing a garbage collection and retrying the
|
|
// builtin once.
|
|
|
|
StackFrame::Type frame_type = is_debug_break
|
|
? StackFrame::EXIT_DEBUG
|
|
: StackFrame::EXIT;
|
|
|
|
// Enter the exit frame that transitions from JavaScript to C++.
|
|
__ EnterExitFrame(frame_type);
|
|
|
|
// r4: number of arguments (C callee-saved)
|
|
// r5: pointer to builtin function (C callee-saved)
|
|
// r6: pointer to first argument (C callee-saved)
|
|
|
|
Label throw_out_of_memory_exception;
|
|
Label throw_normal_exception;
|
|
|
|
#ifdef DEBUG
|
|
if (FLAG_gc_greedy) {
|
|
Failure* failure = Failure::RetryAfterGC(0, NEW_SPACE);
|
|
__ mov(r0, Operand(reinterpret_cast<intptr_t>(failure)));
|
|
}
|
|
GenerateCore(masm,
|
|
&throw_normal_exception,
|
|
&throw_out_of_memory_exception,
|
|
frame_type,
|
|
FLAG_gc_greedy);
|
|
#else
|
|
GenerateCore(masm,
|
|
&throw_normal_exception,
|
|
&throw_out_of_memory_exception,
|
|
frame_type,
|
|
false);
|
|
#endif
|
|
GenerateCore(masm,
|
|
&throw_normal_exception,
|
|
&throw_out_of_memory_exception,
|
|
frame_type,
|
|
true);
|
|
|
|
__ bind(&throw_out_of_memory_exception);
|
|
GenerateThrowOutOfMemory(masm);
|
|
// control flow for generated will not return.
|
|
|
|
__ bind(&throw_normal_exception);
|
|
GenerateThrowTOS(masm);
|
|
}
|
|
|
|
|
|
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
|
|
// r0: code entry
|
|
// r1: function
|
|
// r2: receiver
|
|
// r3: argc
|
|
// [sp+0]: argv
|
|
|
|
Label invoke, exit;
|
|
|
|
// Called from C, so do not pop argc and args on exit (preserve sp)
|
|
// No need to save register-passed args
|
|
// Save callee-saved registers (incl. cp, pp, and fp), sp, and lr
|
|
__ stm(db_w, sp, kCalleeSaved | lr.bit());
|
|
|
|
// Get address of argv, see stm above.
|
|
// r0: code entry
|
|
// r1: function
|
|
// r2: receiver
|
|
// r3: argc
|
|
__ add(r4, sp, Operand((kNumCalleeSaved + 1)*kPointerSize));
|
|
__ ldr(r4, MemOperand(r4)); // argv
|
|
|
|
// Push a frame with special values setup to mark it as an entry frame.
|
|
// r0: code entry
|
|
// r1: function
|
|
// r2: receiver
|
|
// r3: argc
|
|
// r4: argv
|
|
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
|
|
__ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
|
|
__ mov(r7, Operand(~ArgumentsAdaptorFrame::SENTINEL));
|
|
__ mov(r6, Operand(Smi::FromInt(marker)));
|
|
__ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address)));
|
|
__ ldr(r5, MemOperand(r5));
|
|
__ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | r8.bit());
|
|
|
|
// Setup frame pointer for the frame to be pushed.
|
|
__ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
|
|
|
|
// Call a faked try-block that does the invoke.
|
|
__ bl(&invoke);
|
|
|
|
// Caught exception: Store result (exception) in the pending
|
|
// exception field in the JSEnv and return a failure sentinel.
|
|
// Coming in here the fp will be invalid because the PushTryHandler below
|
|
// sets it to 0 to signal the existence of the JSEntry frame.
|
|
__ mov(ip, Operand(Top::pending_exception_address()));
|
|
__ str(r0, MemOperand(ip));
|
|
__ mov(r0, Operand(Handle<Failure>(Failure::Exception())));
|
|
__ b(&exit);
|
|
|
|
// Invoke: Link this frame into the handler chain.
|
|
__ bind(&invoke);
|
|
// Must preserve r0-r4, r5-r7 are available.
|
|
__ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
|
|
// If an exception not caught by another handler occurs, this handler returns
|
|
// control to the code after the bl(&invoke) above, which restores all
|
|
// kCalleeSaved registers (including cp, pp and fp) to their saved values
|
|
// before returning a failure to C.
|
|
|
|
// Clear any pending exceptions.
|
|
__ mov(ip, Operand(ExternalReference::the_hole_value_location()));
|
|
__ ldr(r5, MemOperand(ip));
|
|
__ mov(ip, Operand(Top::pending_exception_address()));
|
|
__ str(r5, MemOperand(ip));
|
|
|
|
// Invoke the function by calling through JS entry trampoline builtin.
|
|
// Notice that we cannot store a reference to the trampoline code directly in
|
|
// this stub, because runtime stubs are not traversed when doing GC.
|
|
|
|
// Expected registers by Builtins::JSEntryTrampoline
|
|
// r0: code entry
|
|
// r1: function
|
|
// r2: receiver
|
|
// r3: argc
|
|
// r4: argv
|
|
if (is_construct) {
|
|
ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
|
|
__ mov(ip, Operand(construct_entry));
|
|
} else {
|
|
ExternalReference entry(Builtins::JSEntryTrampoline);
|
|
__ mov(ip, Operand(entry));
|
|
}
|
|
__ ldr(ip, MemOperand(ip)); // deref address
|
|
|
|
// Branch and link to JSEntryTrampoline
|
|
__ mov(lr, Operand(pc));
|
|
__ add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
|
|
|
|
// Unlink this frame from the handler chain. When reading the
|
|
// address of the next handler, there is no need to use the address
|
|
// displacement since the current stack pointer (sp) points directly
|
|
// to the stack handler.
|
|
__ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset));
|
|
__ mov(ip, Operand(ExternalReference(Top::k_handler_address)));
|
|
__ str(r3, MemOperand(ip));
|
|
// No need to restore registers
|
|
__ add(sp, sp, Operand(StackHandlerConstants::kSize));
|
|
|
|
__ bind(&exit); // r0 holds result
|
|
// Restore the top frame descriptors from the stack.
|
|
__ pop(r3);
|
|
__ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
|
|
__ str(r3, MemOperand(ip));
|
|
|
|
// Reset the stack to the callee saved registers.
|
|
__ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
|
|
|
|
// Restore callee-saved registers and return.
|
|
#ifdef DEBUG
|
|
if (FLAG_debug_code) __ mov(lr, Operand(pc));
|
|
#endif
|
|
__ ldm(ia_w, sp, kCalleeSaved | pc.bit());
|
|
}
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) {
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
Label adaptor;
|
|
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
|
|
__ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL));
|
|
__ b(eq, &adaptor);
|
|
|
|
// Nothing to do: The formal number of parameters has already been
|
|
// passed in register r0 by calling function. Just return it.
|
|
__ mov(pc, lr);
|
|
|
|
// Arguments adaptor case: Read the arguments length from the
|
|
// adaptor frame and return it.
|
|
__ bind(&adaptor);
|
|
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
__ mov(pc, lr);
|
|
}
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
|
|
// The displacement is the offset of the last parameter (if any)
|
|
// relative to the frame pointer.
|
|
static const int kDisplacement =
|
|
StandardFrameConstants::kCallerSPOffset - kPointerSize;
|
|
|
|
// Check that the key is a smi.
|
|
Label slow;
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
__ b(ne, &slow);
|
|
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
Label adaptor;
|
|
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
|
|
__ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL));
|
|
__ b(eq, &adaptor);
|
|
|
|
// Check index against formal parameters count limit passed in
|
|
// through register eax. Use unsigned comparison to get negative
|
|
// check for free.
|
|
__ cmp(r1, r0);
|
|
__ b(cs, &slow);
|
|
|
|
// Read the argument from the stack and return it.
|
|
__ sub(r3, r0, r1);
|
|
__ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
|
|
__ ldr(r0, MemOperand(r3, kDisplacement));
|
|
__ mov(pc, lr);
|
|
|
|
// Arguments adaptor case: Check index against actual arguments
|
|
// limit found in the arguments adaptor frame. Use unsigned
|
|
// comparison to get negative check for free.
|
|
__ bind(&adaptor);
|
|
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
__ cmp(r1, r0);
|
|
__ b(cs, &slow);
|
|
|
|
// Read the argument from the adaptor frame and return it.
|
|
__ sub(r3, r0, r1);
|
|
__ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
|
|
__ ldr(r0, MemOperand(r3, kDisplacement));
|
|
__ mov(pc, lr);
|
|
|
|
// Slow-case: Handle non-smi or out-of-bounds access to arguments
|
|
// by calling the runtime system.
|
|
__ bind(&slow);
|
|
__ push(r1);
|
|
__ TailCallRuntime(ExternalReference(Runtime::kGetArgumentsProperty), 1);
|
|
}
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
Label runtime;
|
|
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
|
|
__ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL));
|
|
__ b(ne, &runtime);
|
|
|
|
// Patch the arguments.length and the parameters pointer.
|
|
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
__ str(r0, MemOperand(sp, 0 * kPointerSize));
|
|
__ add(r3, r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
|
|
__ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
|
|
__ str(r3, MemOperand(sp, 1 * kPointerSize));
|
|
|
|
// Do the runtime call to allocate the arguments object.
|
|
__ bind(&runtime);
|
|
__ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3);
|
|
}
|
|
|
|
|
|
void CallFunctionStub::Generate(MacroAssembler* masm) {
|
|
Label slow;
|
|
// Get the function to call from the stack.
|
|
// function, receiver [, arguments]
|
|
__ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize));
|
|
|
|
// Check that the function is really a JavaScript function.
|
|
// r1: pushed function (to be verified)
|
|
__ tst(r1, Operand(kSmiTagMask));
|
|
__ b(eq, &slow);
|
|
// Get the map of the function object.
|
|
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
|
|
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
|
|
__ cmp(r2, Operand(JS_FUNCTION_TYPE));
|
|
__ b(ne, &slow);
|
|
|
|
// Fast-case: Invoke the function now.
|
|
// r1: pushed function
|
|
ParameterCount actual(argc_);
|
|
__ InvokeFunction(r1, actual, JUMP_FUNCTION);
|
|
|
|
// Slow-case: Non-function called.
|
|
__ bind(&slow);
|
|
__ mov(r0, Operand(argc_)); // Setup the number of arguments.
|
|
__ InvokeBuiltin(Builtins::CALL_NON_FUNCTION, JUMP_JS);
|
|
}
|
|
|
|
|
|
#undef __
|
|
|
|
} } // namespace v8::internal
|