v8/src/codegen-arm.cc

4170 lines
129 KiB
C++
Raw Normal View History

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "bootstrapper.h"
#include "codegen-inl.h"
#include "debug.h"
#include "scopes.h"
#include "runtime.h"
namespace v8 { namespace internal {
// -------------------------------------------------------------------------
// CodeGenState implementation.
CodeGenState::CodeGenState(CodeGenerator* owner)
: owner_(owner),
typeof_state_(NOT_INSIDE_TYPEOF),
true_target_(NULL),
false_target_(NULL),
previous_(NULL) {
owner_->set_state(this);
}
CodeGenState::CodeGenState(CodeGenerator* owner,
TypeofState typeof_state,
Label* true_target,
Label* false_target)
: owner_(owner),
typeof_state_(typeof_state),
true_target_(true_target),
false_target_(false_target),
previous_(owner->state()) {
owner_->set_state(this);
}
CodeGenState::~CodeGenState() {
ASSERT(owner_->state() == this);
owner_->set_state(previous_);
}
// -----------------------------------------------------------------------------
// CodeGenerator implementation
#define __ masm_->
CodeGenerator::CodeGenerator(int buffer_size, Handle<Script> script,
bool is_eval)
: is_eval_(is_eval),
script_(script),
deferred_(8),
masm_(new MacroAssembler(NULL, buffer_size)),
scope_(NULL),
cc_reg_(al),
state_(NULL),
break_stack_height_(0) {
}
// Calling conventions:
// r0: the number of arguments
// fp: frame pointer
// sp: stack pointer
// pp: caller's parameter pointer
// cp: callee's context
void CodeGenerator::GenCode(FunctionLiteral* fun) {
Scope* scope = fun->scope();
ZoneList<Statement*>* body = fun->body();
// Initialize state.
{ CodeGenState state(this);
scope_ = scope;
cc_reg_ = al;
// Entry
// stack: function, receiver, arguments, return address
// r0: number of arguments
// sp: stack pointer
// fp: frame pointer
// pp: caller's parameter pointer
// cp: callee's context
{ Comment cmnt(masm_, "[ enter JS frame");
EnterJSFrame();
}
// tos: code slot
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
fun->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
__ stop("stop-at");
}
#endif
// Allocate space for locals and initialize them.
if (scope->num_stack_slots() > 0) {
Comment cmnt(masm_, "[ allocate space for locals");
// Initialize stack slots with 'undefined' value.
__ mov(ip, Operand(Factory::undefined_value()));
for (int i = 0; i < scope->num_stack_slots(); i++) {
__ push(ip);
}
}
if (scope->num_heap_slots() > 0) {
// Allocate local context.
// Get outer context and create a new context based on it.
__ ldr(r0, FunctionOperand());
__ push(r0);
__ CallRuntime(Runtime::kNewContext, 1); // r0 holds the result
if (kDebug) {
Label verified_true;
__ cmp(r0, Operand(cp));
__ b(eq, &verified_true);
__ stop("NewContext: r0 is expected to be the same as cp");
__ bind(&verified_true);
}
// Update context local.
__ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
// TODO(1241774): Improve this code!!!
// 1) only needed if we have a context
// 2) no need to recompute context ptr every single time
// 3) don't copy parameter operand code from SlotOperand!
{
Comment cmnt2(masm_, "[ copy context parameters into .context");
// Note that iteration order is relevant here! If we have the same
// parameter twice (e.g., function (x, y, x)), and that parameter
// needs to be copied into the context, it must be the last argument
// passed to the parameter that needs to be copied. This is a rare
// case so we don't check for it, instead we rely on the copying
// order: such a parameter is copied repeatedly into the same
// context location and thus the last value is what is seen inside
// the function.
for (int i = 0; i < scope->num_parameters(); i++) {
Variable* par = scope->parameter(i);
Slot* slot = par->slot();
if (slot != NULL && slot->type() == Slot::CONTEXT) {
ASSERT(!scope->is_global_scope()); // no parameters in global scope
__ ldr(r1, ParameterOperand(i));
// Loads r2 with context; used below in RecordWrite.
__ str(r1, SlotOperand(slot, r2));
// Load the offset into r3.
int slot_offset =
FixedArray::kHeaderSize + slot->index() * kPointerSize;
__ mov(r3, Operand(slot_offset));
__ RecordWrite(r2, r3, r1);
}
}
}
// Store the arguments object.
// This must happen after context initialization because
// the arguments array may be stored in the context!
if (scope->arguments() != NULL) {
ASSERT(scope->arguments_shadow() != NULL);
Comment cmnt(masm_, "[ allocate arguments object");
{ Reference shadow_ref(this, scope->arguments_shadow());
{ Reference arguments_ref(this, scope->arguments());
ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
__ ldr(r2, FunctionOperand());
// The receiver is below the arguments, the return address,
// and the frame pointer on the stack.
const int kReceiverDisplacement = 2 + scope->num_parameters();
__ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize));
__ mov(r0, Operand(Smi::FromInt(scope->num_parameters())));
__ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit());
__ CallStub(&stub);
__ push(r0);
arguments_ref.SetValue(NOT_CONST_INIT);
}
shadow_ref.SetValue(NOT_CONST_INIT);
}
__ pop(r0); // Value is no longer needed.
}
// Generate code to 'execute' declarations and initialize
// functions (source elements). In case of an illegal
// redeclaration we need to handle that instead of processing the
// declarations.
if (scope->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ illegal redeclarations");
scope->VisitIllegalRedeclaration(this);
} else {
Comment cmnt(masm_, "[ declarations");
// ProcessDeclarations calls DeclareGlobals indirectly
ProcessDeclarations(scope->declarations());
// Bail out if a stack-overflow exception occurred when
// processing declarations.
if (HasStackOverflow()) return;
}
if (FLAG_trace) {
// Push a valid value as the parameter. The runtime call only uses
// it as the return value to indicate non-failure.
__ mov(r0, Operand(Smi::FromInt(0)));
__ push(r0);
__ CallRuntime(Runtime::kTraceEnter, 1);
}
CheckStack();
// Compile the body of the function in a vanilla state. Don't
// bother compiling all the code if the scope has an illegal
// redeclaration.
if (!scope->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ function body");
#ifdef DEBUG
bool is_builtin = Bootstrapper::IsActive();
bool should_trace =
is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
if (should_trace) {
// Push a valid value as the parameter. The runtime call only uses
// it as the return value to indicate non-failure.
__ mov(r0, Operand(Smi::FromInt(0)));
__ push(r0);
__ CallRuntime(Runtime::kDebugTrace, 1);
}
#endif
VisitStatements(body);
}
}
// exit
// r0: result
// sp: stack pointer
// fp: frame pointer
// pp: parameter pointer
// cp: callee's context
__ mov(r0, Operand(Factory::undefined_value()));
__ bind(&function_return_);
if (FLAG_trace) {
// Push the return value on the stack as the parameter.
// Runtime::TraceExit returns the parameter as it is.
__ push(r0);
__ CallRuntime(Runtime::kTraceExit, 1);
}
// Tear down the frame which will restore the caller's frame pointer and the
// link register.
ExitJSFrame();
__ add(sp, sp, Operand((scope_->num_parameters() + 1) * kPointerSize));
__ mov(pc, lr);
// Code generation state must be reset.
scope_ = NULL;
ASSERT(!has_cc());
ASSERT(state_ == NULL);
}
MemOperand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
// Currently, this assertion will fail if we try to assign to
// a constant variable that is constant because it is read-only
// (such as the variable referring to a named function expression).
// We need to implement assignments to read-only variables.
// Ideally, we should do this during AST generation (by converting
// such assignments into expression statements); however, in general
// we may not be able to make the decision until past AST generation,
// that is when the entire program is known.
ASSERT(slot != NULL);
int index = slot->index();
switch (slot->type()) {
case Slot::PARAMETER:
return ParameterOperand(index);
case Slot::LOCAL: {
ASSERT(0 <= index && index < scope()->num_stack_slots());
const int kLocalOffset = JavaScriptFrameConstants::kLocal0Offset;
return MemOperand(fp, kLocalOffset - index * kPointerSize);
}
case Slot::CONTEXT: {
// Follow the context chain if necessary.
ASSERT(!tmp.is(cp)); // do not overwrite context register
Register context = cp;
int chain_length = scope()->ContextChainLength(slot->var()->scope());
for (int i = chain_length; i-- > 0;) {
// Load the closure.
// (All contexts, even 'with' contexts, have a closure,
// and it is the same for all contexts inside a function.
// There is no need to go to the function context first.)
__ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
// Load the function context (which is the incoming, outer context).
__ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
context = tmp;
}
// We may have a 'with' context now. Get the function context.
// (In fact this mov may never be the needed, since the scope analysis
// may not permit a direct context access in this case and thus we are
// always at a function context. However it is safe to dereference be-
// cause the function context of a function context is itself. Before
// deleting this mov we should try to create a counter-example first,
// though...)
__ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
return ContextOperand(tmp, index);
}
default:
UNREACHABLE();
return MemOperand(r0, 0);
}
}
// Loads a value on the stack. If it is a boolean value, the result may have
// been (partially) translated into branches, or it may have set the condition
// code register. If force_cc is set, the value is forced to set the condition
// code register and no value is pushed. If the condition code register was set,
// has_cc() is true and cc_reg_ contains the condition to test for 'true'.
void CodeGenerator::LoadCondition(Expression* x,
TypeofState typeof_state,
Label* true_target,
Label* false_target,
bool force_cc) {
ASSERT(!has_cc());
{ CodeGenState new_state(this, typeof_state, true_target, false_target);
Visit(x);
}
if (force_cc && !has_cc()) {
// Convert the TOS value to a boolean in the condition code register.
ToBoolean(true_target, false_target);
}
ASSERT(has_cc() || !force_cc);
}
void CodeGenerator::Load(Expression* x, TypeofState typeof_state) {
Label true_target;
Label false_target;
LoadCondition(x, typeof_state, &true_target, &false_target, false);
if (has_cc()) {
// convert cc_reg_ into a bool
Label loaded, materialize_true;
__ b(cc_reg_, &materialize_true);
__ mov(r0, Operand(Factory::false_value()));
__ push(r0);
__ b(&loaded);
__ bind(&materialize_true);
__ mov(r0, Operand(Factory::true_value()));
__ push(r0);
__ bind(&loaded);
cc_reg_ = al;
}
if (true_target.is_linked() || false_target.is_linked()) {
// we have at least one condition value
// that has been "translated" into a branch,
// thus it needs to be loaded explicitly again
Label loaded;
__ b(&loaded); // don't lose current TOS
bool both = true_target.is_linked() && false_target.is_linked();
// reincarnate "true", if necessary
if (true_target.is_linked()) {
__ bind(&true_target);
__ mov(r0, Operand(Factory::true_value()));
__ push(r0);
}
// if both "true" and "false" need to be reincarnated,
// jump across code for "false"
if (both)
__ b(&loaded);
// reincarnate "false", if necessary
if (false_target.is_linked()) {
__ bind(&false_target);
__ mov(r0, Operand(Factory::false_value()));
__ push(r0);
}
// everything is loaded at this point
__ bind(&loaded);
}
ASSERT(!has_cc());
}
void CodeGenerator::LoadGlobal() {
__ ldr(r0, GlobalObject());
__ push(r0);
}
// TODO(1241834): Get rid of this function in favor of just using Load, now
// that we have the INSIDE_TYPEOF typeof state. => Need to handle global
// variables w/o reference errors elsewhere.
void CodeGenerator::LoadTypeofExpression(Expression* x) {
Variable* variable = x->AsVariableProxy()->AsVariable();
if (variable != NULL && !variable->is_this() && variable->is_global()) {
// NOTE: This is somewhat nasty. We force the compiler to load
// the variable as if through '<global>.<variable>' to make sure we
// do not get reference errors.
Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
Literal key(variable->name());
// TODO(1241834): Fetch the position from the variable instead of using
// no position.
Property property(&global, &key, RelocInfo::kNoPosition);
Load(&property);
} else {
Load(x, INSIDE_TYPEOF);
}
}
Reference::Reference(CodeGenerator* cgen, Expression* expression)
: cgen_(cgen), expression_(expression), type_(ILLEGAL) {
cgen->LoadReference(this);
}
Reference::~Reference() {
cgen_->UnloadReference(this);
}
void CodeGenerator::LoadReference(Reference* ref) {
Comment cmnt(masm_, "[ LoadReference");
Expression* e = ref->expression();
Property* property = e->AsProperty();
Variable* var = e->AsVariableProxy()->AsVariable();
if (property != NULL) {
// The expression is either a property or a variable proxy that rewrites
// to a property.
Load(property->obj());
// We use a named reference if the key is a literal symbol, unless it is
// a string that can be legally parsed as an integer. This is because
// otherwise we will not get into the slow case code that handles [] on
// String objects.
Literal* literal = property->key()->AsLiteral();
uint32_t dummy;
if (literal != NULL &&
literal->handle()->IsSymbol() &&
!String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) {
ref->set_type(Reference::NAMED);
} else {
Load(property->key());
ref->set_type(Reference::KEYED);
}
} else if (var != NULL) {
// The expression is a variable proxy that does not rewrite to a
// property. Global variables are treated as named property references.
if (var->is_global()) {
LoadGlobal();
ref->set_type(Reference::NAMED);
} else {
ASSERT(var->slot() != NULL);
ref->set_type(Reference::SLOT);
}
} else {
// Anything else is a runtime error.
Load(e);
__ CallRuntime(Runtime::kThrowReferenceError, 1);
}
}
void CodeGenerator::UnloadReference(Reference* ref) {
Comment cmnt(masm_, "[ UnloadReference");
int size = ref->size();
if (size <= 0) {
// Do nothing. No popping is necessary.
} else {
__ pop(r0);
__ add(sp, sp, Operand(size * kPointerSize));
__ push(r0);
}
}
// ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given
// register to a boolean in the condition code register. The code
// may jump to 'false_target' in case the register converts to 'false'.
void CodeGenerator::ToBoolean(Label* true_target,
Label* false_target) {
// Note: The generated code snippet does not change stack variables.
// Only the condition code should be set.
__ pop(r0);
// Fast case checks
// Check if the value is 'false'.
__ cmp(r0, Operand(Factory::false_value()));
__ b(eq, false_target);
// Check if the value is 'true'.
__ cmp(r0, Operand(Factory::true_value()));
__ b(eq, true_target);
// Check if the value is 'undefined'.
__ cmp(r0, Operand(Factory::undefined_value()));
__ b(eq, false_target);
// Check if the value is a smi.
__ cmp(r0, Operand(Smi::FromInt(0)));
__ b(eq, false_target);
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, true_target);
// Slow case: call the runtime.
__ push(r0);
__ CallRuntime(Runtime::kToBool, 1);
// Convert result (r0) to condition code
__ cmp(r0, Operand(Factory::false_value()));
cc_reg_ = ne;
}
class GetPropertyStub : public CodeStub {
public:
GetPropertyStub() { }
private:
Major MajorKey() { return GetProperty; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
class SetPropertyStub : public CodeStub {
public:
SetPropertyStub() { }
private:
Major MajorKey() { return SetProperty; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
class GenericBinaryOpStub : public CodeStub {
public:
explicit GenericBinaryOpStub(Token::Value op) : op_(op) { }
private:
Token::Value op_;
Major MajorKey() { return GenericBinaryOp; }
int MinorKey() { return static_cast<int>(op_); }
void Generate(MacroAssembler* masm);
const char* GetName() {
switch (op_) {
case Token::ADD: return "GenericBinaryOpStub_ADD";
case Token::SUB: return "GenericBinaryOpStub_SUB";
case Token::MUL: return "GenericBinaryOpStub_MUL";
case Token::DIV: return "GenericBinaryOpStub_DIV";
case Token::BIT_OR: return "GenericBinaryOpStub_BIT_OR";
case Token::BIT_AND: return "GenericBinaryOpStub_BIT_AND";
case Token::BIT_XOR: return "GenericBinaryOpStub_BIT_XOR";
case Token::SAR: return "GenericBinaryOpStub_SAR";
case Token::SHL: return "GenericBinaryOpStub_SHL";
case Token::SHR: return "GenericBinaryOpStub_SHR";
default: return "GenericBinaryOpStub";
}
}
#ifdef DEBUG
void Print() { PrintF("GenericBinaryOpStub (%s)\n", Token::String(op_)); }
#endif
};
class InvokeBuiltinStub : public CodeStub {
public:
enum Kind { Inc, Dec, ToNumber };
InvokeBuiltinStub(Kind kind, int argc) : kind_(kind), argc_(argc) { }
private:
Kind kind_;
int argc_;
Major MajorKey() { return InvokeBuiltin; }
int MinorKey() { return (argc_ << 3) | static_cast<int>(kind_); }
void Generate(MacroAssembler* masm);
#ifdef DEBUG
void Print() {
PrintF("InvokeBuiltinStub (kind %d, argc, %d)\n",
static_cast<int>(kind_),
argc_);
}
#endif
};
void CodeGenerator::GenericBinaryOperation(Token::Value op) {
// sp[0] : y
// sp[1] : x
// result : r0
// Stub is entered with a call: 'return address' is in lr.
switch (op) {
case Token::ADD: // fall through.
case Token::SUB: // fall through.
case Token::MUL:
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SHL:
case Token::SHR:
case Token::SAR: {
__ pop(r0); // r0 : y
__ pop(r1); // r1 : x
GenericBinaryOpStub stub(op);
__ CallStub(&stub);
break;
}
case Token::DIV: {
__ mov(r0, Operand(1));
__ InvokeBuiltin(Builtins::DIV, CALL_JS);
break;
}
case Token::MOD: {
__ mov(r0, Operand(1));
__ InvokeBuiltin(Builtins::MOD, CALL_JS);
break;
}
case Token::COMMA:
__ pop(r0);
// simply discard left value
__ pop();
break;
default:
// Other cases should have been handled before this point.
UNREACHABLE();
break;
}
}
class DeferredInlinedSmiOperation: public DeferredCode {
public:
DeferredInlinedSmiOperation(CodeGenerator* generator, Token::Value op,
int value, bool reversed) :
DeferredCode(generator), op_(op), value_(value), reversed_(reversed) {
set_comment("[ DeferredInlinedSmiOperation");
}
virtual void Generate() {
switch (op_) {
case Token::ADD: {
if (reversed_) {
// revert optimistic add
__ sub(r0, r0, Operand(Smi::FromInt(value_)));
__ mov(r1, Operand(Smi::FromInt(value_))); // x
} else {
// revert optimistic add
__ sub(r1, r0, Operand(Smi::FromInt(value_)));
__ mov(r0, Operand(Smi::FromInt(value_)));
}
break;
}
case Token::SUB: {
if (reversed_) {
// revert optimistic sub
__ rsb(r0, r0, Operand(Smi::FromInt(value_)));
__ mov(r1, Operand(Smi::FromInt(value_)));
} else {
__ add(r1, r0, Operand(Smi::FromInt(value_)));
__ mov(r0, Operand(Smi::FromInt(value_)));
}
break;
}
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND: {
if (reversed_) {
__ mov(r1, Operand(Smi::FromInt(value_)));
} else {
__ mov(r1, Operand(r0));
__ mov(r0, Operand(Smi::FromInt(value_)));
}
break;
}
case Token::SHL:
case Token::SHR:
case Token::SAR: {
if (!reversed_) {
__ mov(r1, Operand(r0));
__ mov(r0, Operand(Smi::FromInt(value_)));
} else {
UNREACHABLE(); // should have been handled in SmiOperation
}
break;
}
default:
// other cases should have been handled before this point.
UNREACHABLE();
break;
}
GenericBinaryOpStub igostub(op_);
__ CallStub(&igostub);
}
private:
Token::Value op_;
int value_;
bool reversed_;
};
void CodeGenerator::SmiOperation(Token::Value op,
Handle<Object> value,
bool reversed) {
// NOTE: This is an attempt to inline (a bit) more of the code for
// some possible smi operations (like + and -) when (at least) one
// of the operands is a literal smi. With this optimization, the
// performance of the system is increased by ~15%, and the generated
// code size is increased by ~1% (measured on a combination of
// different benchmarks).
// sp[0] : operand
int int_value = Smi::cast(*value)->value();
Label exit;
__ pop(r0);
switch (op) {
case Token::ADD: {
DeferredCode* deferred =
new DeferredInlinedSmiOperation(this, op, int_value, reversed);
__ add(r0, r0, Operand(value), SetCC);
__ b(vs, deferred->enter());
__ tst(r0, Operand(kSmiTagMask));
__ b(ne, deferred->enter());
__ bind(deferred->exit());
break;
}
case Token::SUB: {
DeferredCode* deferred =
new DeferredInlinedSmiOperation(this, op, int_value, reversed);
if (!reversed) {
__ sub(r0, r0, Operand(value), SetCC);
} else {
__ rsb(r0, r0, Operand(value), SetCC);
}
__ b(vs, deferred->enter());
__ tst(r0, Operand(kSmiTagMask));
__ b(ne, deferred->enter());
__ bind(deferred->exit());
break;
}
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND: {
DeferredCode* deferred =
new DeferredInlinedSmiOperation(this, op, int_value, reversed);
__ tst(r0, Operand(kSmiTagMask));
__ b(ne, deferred->enter());
switch (op) {
case Token::BIT_OR: __ orr(r0, r0, Operand(value)); break;
case Token::BIT_XOR: __ eor(r0, r0, Operand(value)); break;
case Token::BIT_AND: __ and_(r0, r0, Operand(value)); break;
default: UNREACHABLE();
}
__ bind(deferred->exit());
break;
}
case Token::SHL:
case Token::SHR:
case Token::SAR: {
if (reversed) {
__ mov(ip, Operand(value));
__ push(ip);
__ push(r0);
GenericBinaryOperation(op);
} else {
int shift_value = int_value & 0x1f; // least significant 5 bits
DeferredCode* deferred =
new DeferredInlinedSmiOperation(this, op, shift_value, false);
__ tst(r0, Operand(kSmiTagMask));
__ b(ne, deferred->enter());
__ mov(r2, Operand(r0, ASR, kSmiTagSize)); // remove tags
switch (op) {
case Token::SHL: {
__ mov(r2, Operand(r2, LSL, shift_value));
// check that the *unsigned* result fits in a smi
__ add(r3, r2, Operand(0x40000000), SetCC);
__ b(mi, deferred->enter());
break;
}
case Token::SHR: {
// LSR by immediate 0 means shifting 32 bits.
if (shift_value != 0) {
__ mov(r2, Operand(r2, LSR, shift_value));
}
// check that the *unsigned* result fits in a smi
// neither of the two high-order bits can be set:
// - 0x80000000: high bit would be lost when smi tagging
// - 0x40000000: this number would convert to negative when
// smi tagging these two cases can only happen with shifts
// by 0 or 1 when handed a valid smi
__ and_(r3, r2, Operand(0xc0000000), SetCC);
__ b(ne, deferred->enter());
break;
}
case Token::SAR: {
if (shift_value != 0) {
// ASR by immediate 0 means shifting 32 bits.
__ mov(r2, Operand(r2, ASR, shift_value));
}
break;
}
default: UNREACHABLE();
}
__ mov(r0, Operand(r2, LSL, kSmiTagSize));
__ bind(deferred->exit());
}
break;
}
default:
if (!reversed) {
__ push(r0);
__ mov(r0, Operand(value));
__ push(r0);
} else {
__ mov(ip, Operand(value));
__ push(ip);
__ push(r0);
}
GenericBinaryOperation(op);
break;
}
__ bind(&exit);
}
void CodeGenerator::Comparison(Condition cc, bool strict) {
// sp[0] : y
// sp[1] : x
// result : cc register
// Strict only makes sense for equality comparisons.
ASSERT(!strict || cc == eq);
Label exit, smi;
// Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
if (cc == gt || cc == le) {
cc = ReverseCondition(cc);
__ pop(r1);
__ pop(r0);
} else {
__ pop(r0);
__ pop(r1);
}
__ orr(r2, r0, Operand(r1));
__ tst(r2, Operand(kSmiTagMask));
__ b(eq, &smi);
// Perform non-smi comparison by runtime call.
__ push(r1);
// Figure out which native to call and setup the arguments.
Builtins::JavaScript native;
int argc;
if (cc == eq) {
native = strict ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
argc = 1;
} else {
native = Builtins::COMPARE;
int ncr; // NaN compare result
if (cc == lt || cc == le) {
ncr = GREATER;
} else {
ASSERT(cc == gt || cc == ge); // remaining cases
ncr = LESS;
}
__ push(r0);
__ mov(r0, Operand(Smi::FromInt(ncr)));
argc = 2;
}
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ push(r0);
__ mov(r0, Operand(argc));
__ InvokeBuiltin(native, CALL_JS);
__ cmp(r0, Operand(0));
__ b(&exit);
// test smi equality by pointer comparison.
__ bind(&smi);
__ cmp(r1, Operand(r0));
__ bind(&exit);
cc_reg_ = cc;
}
class CallFunctionStub: public CodeStub {
public:
explicit CallFunctionStub(int argc) : argc_(argc) {}
void Generate(MacroAssembler* masm);
private:
int argc_;
#if defined(DEBUG)
void Print() { PrintF("CallFunctionStub (argc %d)\n", argc_); }
#endif // defined(DEBUG)
Major MajorKey() { return CallFunction; }
int MinorKey() { return argc_; }
};
// Call the function on the stack with the given arguments.
void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
int position) {
// Push the arguments ("left-to-right") on the stack.
for (int i = 0; i < args->length(); i++) {
Load(args->at(i));
}
// Record the position for debugging purposes.
__ RecordPosition(position);
// Use the shared code stub to call the function.
CallFunctionStub call_function(args->length());
__ CallStub(&call_function);
// Restore context and pop function from the stack.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ pop(); // discard the TOS
}
void CodeGenerator::Branch(bool if_true, Label* L) {
ASSERT(has_cc());
Condition cc = if_true ? cc_reg_ : NegateCondition(cc_reg_);
__ b(cc, L);
cc_reg_ = al;
}
void CodeGenerator::CheckStack() {
if (FLAG_check_stack) {
Comment cmnt(masm_, "[ check stack");
StackCheckStub stub;
__ CallStub(&stub);
}
}
void CodeGenerator::VisitBlock(Block* node) {
Comment cmnt(masm_, "[ Block");
if (FLAG_debug_info) RecordStatementPosition(node);
node->set_break_stack_height(break_stack_height_);
VisitStatements(node->statements());
__ bind(node->break_target());
}
void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
__ mov(r0, Operand(pairs));
__ push(r0);
__ push(cp);
__ mov(r0, Operand(Smi::FromInt(is_eval() ? 1 : 0)));
__ push(r0);
__ CallRuntime(Runtime::kDeclareGlobals, 3);
// The result is discarded.
}
void CodeGenerator::VisitDeclaration(Declaration* node) {
Comment cmnt(masm_, "[ Declaration");
Variable* var = node->proxy()->var();
ASSERT(var != NULL); // must have been resolved
Slot* slot = var->slot();
// If it was not possible to allocate the variable at compile time,
// we need to "declare" it at runtime to make sure it actually
// exists in the local context.
if (slot != NULL && slot->type() == Slot::LOOKUP) {
// Variables with a "LOOKUP" slot were introduced as non-locals
// during variable resolution and must have mode DYNAMIC.
ASSERT(var->mode() == Variable::DYNAMIC);
// For now, just do a runtime call.
__ push(cp);
__ mov(r0, Operand(var->name()));
__ push(r0);
// Declaration nodes are always declared in only two modes.
ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
__ mov(r0, Operand(Smi::FromInt(attr)));
__ push(r0);
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (node->mode() == Variable::CONST) {
__ mov(r0, Operand(Factory::the_hole_value()));
__ push(r0);
} else if (node->fun() != NULL) {
Load(node->fun());
} else {
__ mov(r0, Operand(0)); // no initial value!
__ push(r0);
}
__ CallRuntime(Runtime::kDeclareContextSlot, 4);
// Ignore the return value (declarations are statements).
return;
}
ASSERT(!var->is_global());
// If we have a function or a constant, we need to initialize the variable.
Expression* val = NULL;
if (node->mode() == Variable::CONST) {
val = new Literal(Factory::the_hole_value());
} else {
val = node->fun(); // NULL if we don't have a function
}
if (val != NULL) {
// Set initial value.
Reference target(this, node->proxy());
ASSERT(target.is_slot());
Load(val);
target.SetValue(NOT_CONST_INIT);
// Get rid of the assigned value (declarations are statements). It's
// safe to pop the value lying on top of the reference before unloading
// the reference itself (which preserves the top of stack) because we
// know it is a zero-sized reference.
__ pop();
}
}
void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
Comment cmnt(masm_, "[ ExpressionStatement");
if (FLAG_debug_info) RecordStatementPosition(node);
Expression* expression = node->expression();
expression->MarkAsStatement();
Load(expression);
__ pop();
}
void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
Comment cmnt(masm_, "// EmptyStatement");
// nothing to do
}
void CodeGenerator::VisitIfStatement(IfStatement* node) {
Comment cmnt(masm_, "[ IfStatement");
// Generate different code depending on which
// parts of the if statement are present or not.
bool has_then_stm = node->HasThenStatement();
bool has_else_stm = node->HasElseStatement();
if (FLAG_debug_info) RecordStatementPosition(node);
Label exit;
if (has_then_stm && has_else_stm) {
Comment cmnt(masm_, "[ IfThenElse");
Label then;
Label else_;
// if (cond)
LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &then, &else_, true);
Branch(false, &else_);
// then
__ bind(&then);
Visit(node->then_statement());
__ b(&exit);
// else
__ bind(&else_);
Visit(node->else_statement());
} else if (has_then_stm) {
Comment cmnt(masm_, "[ IfThen");
ASSERT(!has_else_stm);
Label then;
// if (cond)
LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &then, &exit, true);
Branch(false, &exit);
// then
__ bind(&then);
Visit(node->then_statement());
} else if (has_else_stm) {
Comment cmnt(masm_, "[ IfElse");
ASSERT(!has_then_stm);
Label else_;
// if (!cond)
LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &exit, &else_, true);
Branch(true, &exit);
// else
__ bind(&else_);
Visit(node->else_statement());
} else {
Comment cmnt(masm_, "[ If");
ASSERT(!has_then_stm && !has_else_stm);
// if (cond)
LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &exit, &exit, false);
if (has_cc()) {
cc_reg_ = al;
} else {
__ pop(r0); // __ Pop(no_reg)
}
}
// end
__ bind(&exit);
}
void CodeGenerator::CleanStack(int num_bytes) {
ASSERT(num_bytes >= 0);
if (num_bytes > 0) {
__ add(sp, sp, Operand(num_bytes));
}
}
void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
Comment cmnt(masm_, "[ ContinueStatement");
if (FLAG_debug_info) RecordStatementPosition(node);
CleanStack(break_stack_height_ - node->target()->break_stack_height());
__ b(node->target()->continue_target());
}
void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
Comment cmnt(masm_, "[ BreakStatement");
if (FLAG_debug_info) RecordStatementPosition(node);
CleanStack(break_stack_height_ - node->target()->break_stack_height());
__ b(node->target()->break_target());
}
void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
Comment cmnt(masm_, "[ ReturnStatement");
if (FLAG_debug_info) RecordStatementPosition(node);
Load(node->expression());
// Move the function result into r0.
__ pop(r0);
__ b(&function_return_);
}
void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
Comment cmnt(masm_, "[ WithEnterStatement");
if (FLAG_debug_info) RecordStatementPosition(node);
Load(node->expression());
__ CallRuntime(Runtime::kPushContext, 1);
if (kDebug) {
Label verified_true;
__ cmp(r0, Operand(cp));
__ b(eq, &verified_true);
__ stop("PushContext: r0 is expected to be the same as cp");
__ bind(&verified_true);
}
// Update context local.
__ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
Comment cmnt(masm_, "[ WithExitStatement");
// Pop context.
__ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX));
// Update context local.
__ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
int CodeGenerator::FastCaseSwitchMaxOverheadFactor() {
return kFastSwitchMaxOverheadFactor;
}
int CodeGenerator::FastCaseSwitchMinCaseCount() {
return kFastSwitchMinCaseCount;
}
void CodeGenerator::GenerateFastCaseSwitchJumpTable(
SwitchStatement* node, int min_index, int range, Label *fail_label,
SmartPointer<Label*> &case_targets, SmartPointer<Label> &case_labels) {
ASSERT(kSmiTag == 0 && kSmiTagSize <= 2);
__ pop(r0);
if (min_index != 0) {
// small positive numbers can be immediate operands.
if (min_index < 0) {
__ add(r0, r0, Operand(Smi::FromInt(-min_index)));
} else {
__ sub(r0, r0, Operand(Smi::FromInt(min_index)));
}
}
__ tst(r0, Operand(0x80000000 | kSmiTagMask));
__ b(ne, fail_label);
__ cmp(r0, Operand(Smi::FromInt(range)));
__ b(ge, fail_label);
__ add(pc, pc, Operand(r0, LSL, 2 - kSmiTagSize));
// One extra instruction offsets the table, so the table's start address is
// the pc-register at the above add.
__ stop("Unreachable: Switch table alignment");
// table containing branch operations.
for (int i = 0; i < range; i++) {
__ b(case_targets[i]);
}
GenerateFastCaseSwitchCases(node, case_labels);
}
void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
Comment cmnt(masm_, "[ SwitchStatement");
if (FLAG_debug_info) RecordStatementPosition(node);
node->set_break_stack_height(break_stack_height_);
Load(node->tag());
if (TryGenerateFastCaseSwitchStatement(node)) {
return;
}
Label next, fall_through, default_case;
ZoneList<CaseClause*>* cases = node->cases();
int length = cases->length();
for (int i = 0; i < length; i++) {
CaseClause* clause = cases->at(i);
Comment cmnt(masm_, "[ case clause");
if (clause->is_default()) {
// Continue matching cases. The program will execute the default case's
// statements if it does not match any of the cases.
__ b(&next);
// Bind the default case label, so we can branch to it when we
// have compared against all other cases.
ASSERT(default_case.is_unused()); // at most one default clause
__ bind(&default_case);
} else {
__ bind(&next);
next.Unuse();
__ ldr(r0, MemOperand(sp, 0));
__ push(r0); // duplicate TOS
Load(clause->label());
Comparison(eq, true);
Branch(false, &next);
}
// Entering the case statement for the first time. Remove the switch value
// from the stack.
__ pop(r0);
// Generate code for the body.
// This is also the target for the fall through from the previous case's
// statements which has to skip over the matching code and the popping of
// the switch value.
__ bind(&fall_through);
fall_through.Unuse();
VisitStatements(clause->statements());
__ b(&fall_through);
}
__ bind(&next);
// Reached the end of the case statements without matching any of the cases.
if (default_case.is_bound()) {
// A default case exists -> execute its statements.
__ b(&default_case);
} else {
// Remove the switch value from the stack.
__ pop(r0);
}
__ bind(&fall_through);
__ bind(node->break_target());
}
void CodeGenerator::VisitLoopStatement(LoopStatement* node) {
Comment cmnt(masm_, "[ LoopStatement");
if (FLAG_debug_info) RecordStatementPosition(node);
node->set_break_stack_height(break_stack_height_);
// simple condition analysis
enum { ALWAYS_TRUE, ALWAYS_FALSE, DONT_KNOW } info = DONT_KNOW;
if (node->cond() == NULL) {
ASSERT(node->type() == LoopStatement::FOR_LOOP);
info = ALWAYS_TRUE;
} else {
Literal* lit = node->cond()->AsLiteral();
if (lit != NULL) {
if (lit->IsTrue()) {
info = ALWAYS_TRUE;
} else if (lit->IsFalse()) {
info = ALWAYS_FALSE;
}
}
}
Label loop, entry;
// init
if (node->init() != NULL) {
ASSERT(node->type() == LoopStatement::FOR_LOOP);
Visit(node->init());
}
if (node->type() != LoopStatement::DO_LOOP && info != ALWAYS_TRUE) {
__ b(&entry);
}
// body
__ bind(&loop);
Visit(node->body());
// next
__ bind(node->continue_target());
if (node->next() != NULL) {
// Record source position of the statement as this code which is after the
// code for the body actually belongs to the loop statement and not the
// body.
if (FLAG_debug_info) __ RecordPosition(node->statement_pos());
ASSERT(node->type() == LoopStatement::FOR_LOOP);
Visit(node->next());
}
// cond
__ bind(&entry);
switch (info) {
case ALWAYS_TRUE:
CheckStack(); // TODO(1222600): ignore if body contains calls.
__ b(&loop);
break;
case ALWAYS_FALSE:
break;
case DONT_KNOW:
CheckStack(); // TODO(1222600): ignore if body contains calls.
LoadCondition(node->cond(),
NOT_INSIDE_TYPEOF,
&loop,
node->break_target(),
true);
Branch(true, &loop);
break;
}
// exit
__ bind(node->break_target());
}
void CodeGenerator::VisitForInStatement(ForInStatement* node) {
Comment cmnt(masm_, "[ ForInStatement");
if (FLAG_debug_info) RecordStatementPosition(node);
// We keep stuff on the stack while the body is executing.
// Record it, so that a break/continue crossing this statement
// can restore the stack.
const int kForInStackSize = 5 * kPointerSize;
break_stack_height_ += kForInStackSize;
node->set_break_stack_height(break_stack_height_);
Label loop, next, entry, cleanup, exit, primitive, jsobject;
Label filter_key, end_del_check, fixed_array, non_string;
// Get the object to enumerate over (converted to JSObject).
Load(node->enumerable());
__ pop(r0);
// Both SpiderMonkey and kjs ignore null and undefined in contrast
// to the specification. 12.6.4 mandates a call to ToObject.
__ cmp(r0, Operand(Factory::undefined_value()));
__ b(eq, &exit);
__ cmp(r0, Operand(Factory::null_value()));
__ b(eq, &exit);
// Stack layout in body:
// [iteration counter (Smi)]
// [length of array]
// [FixedArray]
// [Map or 0]
// [Object]
// Check if enumerable is already a JSObject
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &primitive);
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
__ cmp(r1, Operand(FIRST_JS_OBJECT_TYPE));
__ b(hs, &jsobject);
__ bind(&primitive);
__ push(r0);
__ mov(r0, Operand(0));
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
__ bind(&jsobject);
// Get the set of properties (as a FixedArray or Map).
__ push(r0); // duplicate the object being enumerated
__ push(r0);
__ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
// If we got a Map, we can do a fast modification check.
// Otherwise, we got a FixedArray, and we have to do a slow check.
__ mov(r2, Operand(r0));
__ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
__ cmp(r1, Operand(Factory::meta_map()));
__ b(ne, &fixed_array);
// Get enum cache
__ mov(r1, Operand(r0));
__ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset));
__ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset));
__ ldr(r2,
FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset));
__ push(r0); // map
__ push(r2); // enum cache bridge cache
__ ldr(r0, FieldMemOperand(r2, FixedArray::kLengthOffset));
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
__ push(r0);
__ mov(r0, Operand(Smi::FromInt(0)));
__ push(r0);
__ b(&entry);
__ bind(&fixed_array);
__ mov(r1, Operand(Smi::FromInt(0)));
__ push(r1); // insert 0 in place of Map
__ push(r0);
// Push the length of the array and the initial index onto the stack.
__ ldr(r0, FieldMemOperand(r0, FixedArray::kLengthOffset));
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
__ push(r0);
__ mov(r0, Operand(Smi::FromInt(0))); // init index
__ push(r0);
__ b(&entry);
// Body.
__ bind(&loop);
Visit(node->body());
// Next.
__ bind(node->continue_target());
__ bind(&next);
__ pop(r0);
__ add(r0, r0, Operand(Smi::FromInt(1)));
__ push(r0);
// Condition.
__ bind(&entry);
// sp[0] : index
// sp[1] : array/enum cache length
// sp[2] : array or enum cache
// sp[3] : 0 or map
// sp[4] : enumerable
__ ldr(r0, MemOperand(sp, 0 * kPointerSize)); // load the current count
__ ldr(r1, MemOperand(sp, 1 * kPointerSize)); // load the length
__ cmp(r0, Operand(r1)); // compare to the array length
__ b(hs, &cleanup);
__ ldr(r0, MemOperand(sp, 0 * kPointerSize));
// Get the i'th entry of the array.
__ ldr(r2, MemOperand(sp, 2 * kPointerSize));
__ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
// Get Map or 0.
__ ldr(r2, MemOperand(sp, 3 * kPointerSize));
// Check if this (still) matches the map of the enumerable.
// If not, we have to filter the key.
__ ldr(r1, MemOperand(sp, 4 * kPointerSize));
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r1, Operand(r2));
__ b(eq, &end_del_check);
// Convert the entry to a string (or null if it isn't a property anymore).
__ ldr(r0, MemOperand(sp, 4 * kPointerSize)); // push enumerable
__ push(r0);
__ push(r3); // push entry
__ mov(r0, Operand(1));
__ InvokeBuiltin(Builtins::FILTER_KEY, CALL_JS);
__ mov(r3, Operand(r0));
// If the property has been removed while iterating, we just skip it.
__ cmp(r3, Operand(Factory::null_value()));
__ b(eq, &next);
__ bind(&end_del_check);
// Store the entry in the 'each' expression and take another spin in the loop.
// r3: i'th entry of the enum cache (or string there of)
__ push(r3); // push entry
{ Reference each(this, node->each());
if (!each.is_illegal()) {
if (each.size() > 0) {
__ ldr(r0, MemOperand(sp, kPointerSize * each.size()));
__ push(r0);
}
// If the reference was to a slot we rely on the convenient property
// that it doesn't matter whether a value (eg, r3 pushed above) is
// right on top of or right underneath a zero-sized reference.
each.SetValue(NOT_CONST_INIT);
if (each.size() > 0) {
// It's safe to pop the value lying on top of the reference before
// unloading the reference itself (which preserves the top of stack,
// ie, now the topmost value of the non-zero sized reference), since
// we will discard the top of stack after unloading the reference
// anyway.
__ pop(r0);
}
}
}
// Discard the i'th entry pushed above or else the remainder of the
// reference, whichever is currently on top of the stack.
__ pop();
CheckStack(); // TODO(1222600): ignore if body contains calls.
__ jmp(&loop);
// Cleanup.
__ bind(&cleanup);
__ bind(node->break_target());
__ add(sp, sp, Operand(5 * kPointerSize));
// Exit.
__ bind(&exit);
break_stack_height_ -= kForInStackSize;
}
void CodeGenerator::VisitTryCatch(TryCatch* node) {
Comment cmnt(masm_, "[ TryCatch");
Label try_block, exit;
__ bl(&try_block);
// --- Catch block ---
// Store the caught exception in the catch variable.
__ push(r0);
{ Reference ref(this, node->catch_var());
ASSERT(ref.is_slot());
// Here we make use of the convenient property that it doesn't matter
// whether a value is immediately on top of or underneath a zero-sized
// reference.
ref.SetValue(NOT_CONST_INIT);
}
// Remove the exception from the stack.
__ pop();
VisitStatements(node->catch_block()->statements());
__ b(&exit);
// --- Try block ---
__ bind(&try_block);
__ PushTryHandler(IN_JAVASCRIPT, TRY_CATCH_HANDLER);
// Introduce shadow labels for all escapes from the try block,
// including returns. We should probably try to unify the escaping
// labels and the return label.
int nof_escapes = node->escaping_labels()->length();
List<LabelShadow*> shadows(1 + nof_escapes);
shadows.Add(new LabelShadow(&function_return_));
for (int i = 0; i < nof_escapes; i++) {
shadows.Add(new LabelShadow(node->escaping_labels()->at(i)));
}
// Generate code for the statements in the try block.
VisitStatements(node->try_block()->statements());
__ pop(r0); // Discard the result.
// Stop the introduced shadowing and count the number of required unlinks.
int nof_unlinks = 0;
for (int i = 0; i <= nof_escapes; i++) {
shadows[i]->StopShadowing();
if (shadows[i]->is_linked()) nof_unlinks++;
}
// Unlink from try chain.
// TOS contains code slot
const int kNextOffset = StackHandlerConstants::kNextOffset +
StackHandlerConstants::kAddressDisplacement;
__ ldr(r1, MemOperand(sp, kNextOffset)); // read next_sp
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
__ str(r1, MemOperand(r3));
ASSERT(StackHandlerConstants::kCodeOffset == 0); // first field is code
__ add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
// Code slot popped.
if (nof_unlinks > 0) __ b(&exit);
// Generate unlink code for all used shadow labels.
for (int i = 0; i <= nof_escapes; i++) {
if (shadows[i]->is_linked()) {
// Unlink from try chain;
__ bind(shadows[i]);
// Reload sp from the top handler, because some statements that we
// break from (eg, for...in) may have left stuff on the stack.
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
__ ldr(sp, MemOperand(r3));
__ ldr(r1, MemOperand(sp, kNextOffset));
__ str(r1, MemOperand(r3));
ASSERT(StackHandlerConstants::kCodeOffset == 0); // first field is code
__ add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
// Code slot popped.
__ b(shadows[i]->shadowed());
}
}
__ bind(&exit);
}
void CodeGenerator::VisitTryFinally(TryFinally* node) {
Comment cmnt(masm_, "[ TryFinally");
// State: Used to keep track of reason for entering the finally
// block. Should probably be extended to hold information for
// break/continue from within the try block.
enum { FALLING, THROWING, JUMPING };
Label exit, unlink, try_block, finally_block;
__ bl(&try_block);
__ push(r0); // save exception object on the stack
// In case of thrown exceptions, this is where we continue.
__ mov(r2, Operand(Smi::FromInt(THROWING)));
__ b(&finally_block);
// --- Try block ---
__ bind(&try_block);
__ PushTryHandler(IN_JAVASCRIPT, TRY_FINALLY_HANDLER);
// Introduce shadow labels for all escapes from the try block,
// including returns. We should probably try to unify the escaping
// labels and the return label.
int nof_escapes = node->escaping_labels()->length();
List<LabelShadow*> shadows(1 + nof_escapes);
shadows.Add(new LabelShadow(&function_return_));
for (int i = 0; i < nof_escapes; i++) {
shadows.Add(new LabelShadow(node->escaping_labels()->at(i)));
}
// Generate code for the statements in the try block.
VisitStatements(node->try_block()->statements());
// Stop the introduced shadowing and count the number of required
// unlinks.
int nof_unlinks = 0;
for (int i = 0; i <= nof_escapes; i++) {
shadows[i]->StopShadowing();
if (shadows[i]->is_linked()) nof_unlinks++;
}
// Set the state on the stack to FALLING.
__ mov(r0, Operand(Factory::undefined_value())); // fake TOS
__ push(r0);
__ mov(r2, Operand(Smi::FromInt(FALLING)));
if (nof_unlinks > 0) __ b(&unlink);
// Generate code that sets the state for all used shadow labels.
for (int i = 0; i <= nof_escapes; i++) {
if (shadows[i]->is_linked()) {
__ bind(shadows[i]);
if (shadows[i]->shadowed() == &function_return_) {
__ push(r0); // Materialize the return value on the stack
} else {
// Fake TOS for break and continue (not return).
__ mov(r0, Operand(Factory::undefined_value()));
__ push(r0);
}
__ mov(r2, Operand(Smi::FromInt(JUMPING + i)));
__ b(&unlink);
}
}
// Unlink from try chain;
__ bind(&unlink);
__ pop(r0); // Store TOS in r0 across stack manipulation
// Reload sp from the top handler, because some statements that we
// break from (eg, for...in) may have left stuff on the stack.
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
__ ldr(sp, MemOperand(r3));
const int kNextOffset = StackHandlerConstants::kNextOffset +
StackHandlerConstants::kAddressDisplacement;
__ ldr(r1, MemOperand(sp, kNextOffset));
__ str(r1, MemOperand(r3));
ASSERT(StackHandlerConstants::kCodeOffset == 0); // first field is code
__ add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
// Code slot popped.
__ push(r0);
// --- Finally block ---
__ bind(&finally_block);
// Push the state on the stack.
__ push(r2);
// We keep two elements on the stack - the (possibly faked) result
// and the state - while evaluating the finally block. Record it, so
// that a break/continue crossing this statement can restore the
// stack.
const int kFinallyStackSize = 2 * kPointerSize;
break_stack_height_ += kFinallyStackSize;
// Generate code for the statements in the finally block.
VisitStatements(node->finally_block()->statements());
// Restore state and return value or faked TOS.
__ pop(r2);
__ pop(r0);
break_stack_height_ -= kFinallyStackSize;
// Generate code that jumps to the right destination for all used
// shadow labels.
for (int i = 0; i <= nof_escapes; i++) {
if (shadows[i]->is_bound()) {
__ cmp(r2, Operand(Smi::FromInt(JUMPING + i)));
if (shadows[i]->shadowed() != &function_return_) {
Label next;
__ b(ne, &next);
__ b(shadows[i]->shadowed());
__ bind(&next);
} else {
__ b(eq, shadows[i]->shadowed());
}
}
}
// Check if we need to rethrow the exception.
__ cmp(r2, Operand(Smi::FromInt(THROWING)));
__ b(ne, &exit);
// Rethrow exception.
__ push(r0);
__ CallRuntime(Runtime::kReThrow, 1);
// Done.
__ bind(&exit);
}
void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
Comment cmnt(masm_, "[ DebuggerStatament");
if (FLAG_debug_info) RecordStatementPosition(node);
__ CallRuntime(Runtime::kDebugBreak, 1);
__ push(r0);
}
void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) {
ASSERT(boilerplate->IsBoilerplate());
// Push the boilerplate on the stack.
__ mov(r0, Operand(boilerplate));
__ push(r0);
// Create a new closure.
__ push(cp);
__ CallRuntime(Runtime::kNewClosure, 2);
__ push(r0);
}
void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
Comment cmnt(masm_, "[ FunctionLiteral");
// Build the function boilerplate and instantiate it.
Handle<JSFunction> boilerplate = BuildBoilerplate(node);
// Check for stack-overflow exception.
if (HasStackOverflow()) return;
InstantiateBoilerplate(boilerplate);
}
void CodeGenerator::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* node) {
Comment cmnt(masm_, "[ FunctionBoilerplateLiteral");
InstantiateBoilerplate(node->boilerplate());
}
void CodeGenerator::VisitConditional(Conditional* node) {
Comment cmnt(masm_, "[ Conditional");
Label then, else_, exit;
LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &then, &else_, true);
Branch(false, &else_);
__ bind(&then);
Load(node->then_expression(), typeof_state());
__ b(&exit);
__ bind(&else_);
Load(node->else_expression(), typeof_state());
__ bind(&exit);
}
void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
if (slot->type() == Slot::LOOKUP) {
ASSERT(slot->var()->mode() == Variable::DYNAMIC);
// For now, just do a runtime call.
__ push(cp);
__ mov(r0, Operand(slot->var()->name()));
__ push(r0);
if (typeof_state == INSIDE_TYPEOF) {
__ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
} else {
__ CallRuntime(Runtime::kLoadContextSlot, 2);
}
__ push(r0);
} else {
// Note: We would like to keep the assert below, but it fires because of
// some nasty code in LoadTypeofExpression() which should be removed...
// ASSERT(slot->var()->mode() != Variable::DYNAMIC);
// Special handling for locals allocated in registers.
__ ldr(r0, SlotOperand(slot, r2));
__ push(r0);
if (slot->var()->mode() == Variable::CONST) {
// Const slots may contain 'the hole' value (the constant hasn't been
// initialized yet) which needs to be converted into the 'undefined'
// value.
Comment cmnt(masm_, "[ Unhole const");
__ pop(r0);
__ cmp(r0, Operand(Factory::the_hole_value()));
__ mov(r0, Operand(Factory::undefined_value()), LeaveCC, eq);
__ push(r0);
}
}
}
void CodeGenerator::VisitSlot(Slot* node) {
Comment cmnt(masm_, "[ Slot");
LoadFromSlot(node, typeof_state());
}
void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
Comment cmnt(masm_, "[ VariableProxy");
Variable* var = node->var();
Expression* expr = var->rewrite();
if (expr != NULL) {
Visit(expr);
} else {
ASSERT(var->is_global());
Reference ref(this, node);
ref.GetValue(typeof_state());
}
}
void CodeGenerator::VisitLiteral(Literal* node) {
Comment cmnt(masm_, "[ Literal");
__ mov(r0, Operand(node->handle()));
__ push(r0);
}
void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
Comment cmnt(masm_, "[ RexExp Literal");
// Retrieve the literal array and check the allocated entry.
// Load the function of this activation.
__ ldr(r1, FunctionOperand());
// Load the literals array of the function.
__ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
// Load the literal at the ast saved index.
int literal_offset =
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
__ ldr(r2, FieldMemOperand(r1, literal_offset));
Label done;
__ cmp(r2, Operand(Factory::undefined_value()));
__ b(ne, &done);
// If the entry is undefined we call the runtime system to computed
// the literal.
__ push(r1); // literal array (0)
__ mov(r0, Operand(Smi::FromInt(node->literal_index())));
__ push(r0); // literal index (1)
__ mov(r0, Operand(node->pattern())); // RegExp pattern (2)
__ push(r0);
__ mov(r0, Operand(node->flags())); // RegExp flags (3)
__ push(r0);
__ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
__ mov(r2, Operand(r0));
__ bind(&done);
// Push the literal.
__ push(r2);
}
// This deferred code stub will be used for creating the boilerplate
// by calling Runtime_CreateObjectLiteral.
// Each created boilerplate is stored in the JSFunction and they are
// therefore context dependent.
class ObjectLiteralDeferred: public DeferredCode {
public:
ObjectLiteralDeferred(CodeGenerator* generator, ObjectLiteral* node)
: DeferredCode(generator), node_(node) {
set_comment("[ ObjectLiteralDeferred");
}
virtual void Generate();
private:
ObjectLiteral* node_;
};
void ObjectLiteralDeferred::Generate() {
// If the entry is undefined we call the runtime system to computed
// the literal.
// Literal array (0).
__ push(r1);
// Literal index (1).
__ mov(r0, Operand(Smi::FromInt(node_->literal_index())));
__ push(r0);
// Constant properties (2).
__ mov(r0, Operand(node_->constant_properties()));
__ push(r0);
__ CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3);
__ mov(r2, Operand(r0));
}
void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
Comment cmnt(masm_, "[ ObjectLiteral");
ObjectLiteralDeferred* deferred = new ObjectLiteralDeferred(this, node);
// Retrieve the literal array and check the allocated entry.
// Load the function of this activation.
__ ldr(r1, FunctionOperand());
// Load the literals array of the function.
__ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
// Load the literal at the ast saved index.
int literal_offset =
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
__ ldr(r2, FieldMemOperand(r1, literal_offset));
// Check whether we need to materialize the object literal boilerplate.
// If so, jump to the deferred code.
__ cmp(r2, Operand(Factory::undefined_value()));
__ b(eq, deferred->enter());
__ bind(deferred->exit());
// Push the object literal boilerplate.
__ push(r2);
// Clone the boilerplate object.
__ CallRuntime(Runtime::kCloneObjectLiteralBoilerplate, 1);
__ push(r0); // save the result
// r0: cloned object literal
for (int i = 0; i < node->properties()->length(); i++) {
ObjectLiteral::Property* property = node->properties()->at(i);
Literal* key = property->key();
Expression* value = property->value();
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT: break;
case ObjectLiteral::Property::COMPUTED: // fall through
case ObjectLiteral::Property::PROTOTYPE: {
__ push(r0); // dup the result
Load(key);
Load(value);
__ CallRuntime(Runtime::kSetProperty, 3);
// restore r0
__ ldr(r0, MemOperand(sp, 0));
break;
}
case ObjectLiteral::Property::SETTER: {
__ push(r0);
Load(key);
__ mov(r0, Operand(Smi::FromInt(1)));
__ push(r0);
Load(value);
__ CallRuntime(Runtime::kDefineAccessor, 4);
__ ldr(r0, MemOperand(sp, 0));
break;
}
case ObjectLiteral::Property::GETTER: {
__ push(r0);
Load(key);
__ mov(r0, Operand(Smi::FromInt(0)));
__ push(r0);
Load(value);
__ CallRuntime(Runtime::kDefineAccessor, 4);
__ ldr(r0, MemOperand(sp, 0));
break;
}
}
}
}
void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
Comment cmnt(masm_, "[ ArrayLiteral");
// Call runtime to create the array literal.
__ mov(r0, Operand(node->literals()));
__ push(r0);
// Load the function of this frame.
__ ldr(r0, FunctionOperand());
__ ldr(r0, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
__ push(r0);
__ CallRuntime(Runtime::kCreateArrayLiteral, 2);
// Push the resulting array literal on the stack.
__ push(r0);
// Generate code to set the elements in the array that are not
// literals.
for (int i = 0; i < node->values()->length(); i++) {
Expression* value = node->values()->at(i);
// If value is literal the property value is already
// set in the boilerplate object.
if (value->AsLiteral() == NULL) {
// The property must be set by generated code.
Load(value);
__ pop(r0);
// Fetch the object literal
__ ldr(r1, MemOperand(sp, 0));
// Get the elements array.
__ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset));
// Write to the indexed properties array.
int offset = i * kPointerSize + Array::kHeaderSize;
__ str(r0, FieldMemOperand(r1, offset));
// Update the write barrier for the array address.
__ mov(r3, Operand(offset));
__ RecordWrite(r1, r3, r2);
}
}
}
void CodeGenerator::VisitAssignment(Assignment* node) {
Comment cmnt(masm_, "[ Assignment");
if (FLAG_debug_info) RecordStatementPosition(node);
Reference target(this, node->target());
if (target.is_illegal()) return;
if (node->op() == Token::ASSIGN ||
node->op() == Token::INIT_VAR ||
node->op() == Token::INIT_CONST) {
Load(node->value());
} else {
target.GetValue(NOT_INSIDE_TYPEOF);
Literal* literal = node->value()->AsLiteral();
if (literal != NULL && literal->handle()->IsSmi()) {
SmiOperation(node->binary_op(), literal->handle(), false);
__ push(r0);
} else {
Load(node->value());
GenericBinaryOperation(node->binary_op());
__ push(r0);
}
}
Variable* var = node->target()->AsVariableProxy()->AsVariable();
if (var != NULL &&
(var->mode() == Variable::CONST) &&
node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
// Assignment ignored - leave the value on the stack.
} else {
__ RecordPosition(node->position());
if (node->op() == Token::INIT_CONST) {
// Dynamic constant initializations must use the function context
// and initialize the actual constant declared. Dynamic variable
// initializations are simply assignments and use SetValue.
target.SetValue(CONST_INIT);
} else {
target.SetValue(NOT_CONST_INIT);
}
}
}
void CodeGenerator::VisitThrow(Throw* node) {
Comment cmnt(masm_, "[ Throw");
Load(node->exception());
__ RecordPosition(node->position());
__ CallRuntime(Runtime::kThrow, 1);
__ push(r0);
}
void CodeGenerator::VisitProperty(Property* node) {
Comment cmnt(masm_, "[ Property");
Reference property(this, node);
property.GetValue(typeof_state());
}
void CodeGenerator::VisitCall(Call* node) {
Comment cmnt(masm_, "[ Call");
ZoneList<Expression*>* args = node->arguments();
if (FLAG_debug_info) RecordStatementPosition(node);
// Standard function call.
// Check if the function is a variable or a property.
Expression* function = node->expression();
Variable* var = function->AsVariableProxy()->AsVariable();
Property* property = function->AsProperty();
// ------------------------------------------------------------------------
// Fast-case: Use inline caching.
// ---
// According to ECMA-262, section 11.2.3, page 44, the function to call
// must be resolved after the arguments have been evaluated. The IC code
// automatically handles this by loading the arguments before the function
// is resolved in cache misses (this also holds for megamorphic calls).
// ------------------------------------------------------------------------
if (var != NULL && !var->is_this() && var->is_global()) {
// ----------------------------------
// JavaScript example: 'foo(1, 2, 3)' // foo is global
// ----------------------------------
// Push the name of the function and the receiver onto the stack.
__ mov(r0, Operand(var->name()));
__ push(r0);
LoadGlobal();
// Load the arguments.
for (int i = 0; i < args->length(); i++) Load(args->at(i));
// Setup the receiver register and call the IC initialization code.
Handle<Code> stub = ComputeCallInitialize(args->length());
__ RecordPosition(node->position());
__ Call(stub, RelocInfo::CODE_TARGET_CONTEXT);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Remove the function from the stack.
__ pop();
__ push(r0);
} else if (var != NULL && var->slot() != NULL &&
var->slot()->type() == Slot::LOOKUP) {
// ----------------------------------
// JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj
// ----------------------------------
// Load the function
__ push(cp);
__ mov(r0, Operand(var->name()));
__ push(r0);
__ CallRuntime(Runtime::kLoadContextSlot, 2);
// r0: slot value; r1: receiver
// Load the receiver.
__ push(r0); // function
__ push(r1); // receiver
// Call the function.
CallWithArguments(args, node->position());
__ push(r0);
} else if (property != NULL) {
// Check if the key is a literal string.
Literal* literal = property->key()->AsLiteral();
if (literal != NULL && literal->handle()->IsSymbol()) {
// ------------------------------------------------------------------
// JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
// ------------------------------------------------------------------
// Push the name of the function and the receiver onto the stack.
__ mov(r0, Operand(literal->handle()));
__ push(r0);
Load(property->obj());
// Load the arguments.
for (int i = 0; i < args->length(); i++) Load(args->at(i));
// Set the receiver register and call the IC initialization code.
Handle<Code> stub = ComputeCallInitialize(args->length());
__ RecordPosition(node->position());
__ Call(stub, RelocInfo::CODE_TARGET);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Remove the function from the stack.
__ pop();
__ push(r0); // push after get rid of function from the stack
} else {
// -------------------------------------------
// JavaScript example: 'array[index](1, 2, 3)'
// -------------------------------------------
// Load the function to call from the property through a reference.
Reference ref(this, property);
ref.GetValue(NOT_INSIDE_TYPEOF); // receiver
// Pass receiver to called function.
__ ldr(r0, MemOperand(sp, ref.size() * kPointerSize));
__ push(r0);
// Call the function.
CallWithArguments(args, node->position());
__ push(r0);
}
} else {
// ----------------------------------
// JavaScript example: 'foo(1, 2, 3)' // foo is not global
// ----------------------------------
// Load the function.
Load(function);
// Pass the global object as the receiver.
LoadGlobal();
// Call the function.
CallWithArguments(args, node->position());
__ push(r0);
}
}
void CodeGenerator::VisitCallNew(CallNew* node) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments. This is different from ordinary calls, where the
// actual function to call is resolved after the arguments have been
// evaluated.
// Compute function to call and use the global object as the
// receiver.
Load(node->expression());
LoadGlobal();
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = node->arguments();
for (int i = 0; i < args->length(); i++) Load(args->at(i));
// r0: the number of arguments.
__ mov(r0, Operand(args->length()));
// Load the function into r1 as per calling convention.
__ ldr(r1, MemOperand(sp, (args->length() + 1) * kPointerSize));
// Call the construct call builtin that handles allocation and
// constructor invocation.
__ RecordPosition(RelocInfo::POSITION);
__ Call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)),
RelocInfo::CONSTRUCT_CALL);
// Discard old TOS value and push r0 on the stack (same as Pop(), push(r0)).
__ str(r0, MemOperand(sp, 0 * kPointerSize));
}
void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Label leave;
Load(args->at(0));
__ pop(r0); // r0 contains object.
// if (object->IsSmi()) return the object.
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &leave);
// It is a heap object - get map.
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
// if (!object->IsJSValue()) return the object.
__ cmp(r1, Operand(JS_VALUE_TYPE));
__ b(ne, &leave);
// Load the value.
__ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset));
__ bind(&leave);
__ push(r0);
}
void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
Label leave;
Load(args->at(0)); // Load the object.
Load(args->at(1)); // Load the value.
__ pop(r0); // r0 contains value
__ pop(r1); // r1 contains object
// if (object->IsSmi()) return object.
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &leave);
// It is a heap object - get map.
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
// if (!object->IsJSValue()) return object.
__ cmp(r2, Operand(JS_VALUE_TYPE));
__ b(ne, &leave);
// Store the value.
__ str(r0, FieldMemOperand(r1, JSValue::kValueOffset));
// Update the write barrier.
__ mov(r2, Operand(JSValue::kValueOffset - kHeapObjectTag));
__ RecordWrite(r1, r2, r3);
// Leave.
__ bind(&leave);
__ push(r0);
}
void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
__ pop(r0);
__ tst(r0, Operand(kSmiTagMask));
cc_reg_ = eq;
}
void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
__ pop(r0);
__ tst(r0, Operand(kSmiTagMask | 0x80000000));
cc_reg_ = eq;
}
// This should generate code that performs a charCodeAt() call or returns
// undefined in order to trigger the slow case, Runtime_StringCharCodeAt.
// It is not yet implemented on ARM, so it always goes to the slow case.
void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
__ mov(r0, Operand(Factory::undefined_value()));
__ push(r0);
}
void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Label answer;
// We need the CC bits to come out as not_equal in the case where the
// object is a smi. This can't be done with the usual test opcode so
// we use XOR to get the right CC bits.
__ pop(r0);
__ and_(r1, r0, Operand(kSmiTagMask));
__ eor(r1, r1, Operand(kSmiTagMask), SetCC);
__ b(ne, &answer);
// It is a heap object - get the map.
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
// Check if the object is a JS array or not.
__ cmp(r1, Operand(JS_ARRAY_TYPE));
__ bind(&answer);
cc_reg_ = eq;
}
void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
// Seed the result with the formal parameters count, which will be used
// in case no arguments adaptor frame is found below the current frame.
__ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
// Call the shared stub to get to the arguments.length.
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH);
__ CallStub(&stub);
__ push(r0);
}
void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
// Satisfy contract with ArgumentsAccessStub:
// Load the key into r1 and the formal parameters count into r0.
Load(args->at(0));
__ pop(r1);
__ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
// Call the shared stub to get to arguments[key].
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
__ CallStub(&stub);
__ push(r0);
}
void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
// Load the two objects into registers and perform the comparison.
Load(args->at(0));
Load(args->at(1));
__ pop(r0);
__ pop(r1);
__ cmp(r0, Operand(r1));
cc_reg_ = eq;
}
void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
if (CheckForInlineRuntimeCall(node)) return;
ZoneList<Expression*>* args = node->arguments();
Comment cmnt(masm_, "[ CallRuntime");
Runtime::Function* function = node->function();
if (function != NULL) {
// Push the arguments ("left-to-right").
for (int i = 0; i < args->length(); i++) Load(args->at(i));
// Call the C runtime function.
__ CallRuntime(function, args->length());
__ push(r0);
} else {
// Prepare stack for calling JS runtime function.
__ mov(r0, Operand(node->name()));
__ push(r0);
// Push the builtins object found in the current global object.
__ ldr(r1, GlobalObject());
__ ldr(r0, FieldMemOperand(r1, GlobalObject::kBuiltinsOffset));
__ push(r0);
for (int i = 0; i < args->length(); i++) Load(args->at(i));
// Call the JS runtime function.
Handle<Code> stub = ComputeCallInitialize(args->length());
__ Call(stub, RelocInfo::CODE_TARGET);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ pop();
__ push(r0);
}
}
void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
Comment cmnt(masm_, "[ UnaryOperation");
Token::Value op = node->op();
if (op == Token::NOT) {
LoadCondition(node->expression(),
NOT_INSIDE_TYPEOF,
false_target(),
true_target(),
true);
cc_reg_ = NegateCondition(cc_reg_);
} else if (op == Token::DELETE) {
Property* property = node->expression()->AsProperty();
Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
if (property != NULL) {
Load(property->obj());
Load(property->key());
__ mov(r0, Operand(1)); // not counting receiver
__ InvokeBuiltin(Builtins::DELETE, CALL_JS);
} else if (variable != NULL) {
Slot* slot = variable->slot();
if (variable->is_global()) {
LoadGlobal();
__ mov(r0, Operand(variable->name()));
__ push(r0);
__ mov(r0, Operand(1)); // not counting receiver
__ InvokeBuiltin(Builtins::DELETE, CALL_JS);
} else if (slot != NULL && slot->type() == Slot::LOOKUP) {
// lookup the context holding the named variable
__ push(cp);
__ mov(r0, Operand(variable->name()));
__ push(r0);
__ CallRuntime(Runtime::kLookupContext, 2);
// r0: context
__ push(r0);
__ mov(r0, Operand(variable->name()));
__ push(r0);
__ mov(r0, Operand(1)); // not counting receiver
__ InvokeBuiltin(Builtins::DELETE, CALL_JS);
} else {
// Default: Result of deleting non-global, not dynamically
// introduced variables is false.
__ mov(r0, Operand(Factory::false_value()));
}
} else {
// Default: Result of deleting expressions is true.
Load(node->expression()); // may have side-effects
__ pop();
__ mov(r0, Operand(Factory::true_value()));
}
__ push(r0);
} else if (op == Token::TYPEOF) {
// Special case for loading the typeof expression; see comment on
// LoadTypeofExpression().
LoadTypeofExpression(node->expression());
__ CallRuntime(Runtime::kTypeof, 1);
__ push(r0); // r0 has result
} else {
Load(node->expression());
__ pop(r0);
switch (op) {
case Token::NOT:
case Token::DELETE:
case Token::TYPEOF:
UNREACHABLE(); // handled above
break;
case Token::SUB: {
UnarySubStub stub;
__ CallStub(&stub);
break;
}
case Token::BIT_NOT: {
// smi check
Label smi_label;
Label continue_label;
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &smi_label);
__ push(r0);
__ mov(r0, Operand(0)); // not counting receiver
__ InvokeBuiltin(Builtins::BIT_NOT, CALL_JS);
__ b(&continue_label);
__ bind(&smi_label);
__ mvn(r0, Operand(r0));
__ bic(r0, r0, Operand(kSmiTagMask)); // bit-clear inverted smi-tag
__ bind(&continue_label);
break;
}
case Token::VOID:
// since the stack top is cached in r0, popping and then
// pushing a value can be done by just writing to r0.
__ mov(r0, Operand(Factory::undefined_value()));
break;
case Token::ADD: {
// Smi check.
Label continue_label;
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &continue_label);
__ push(r0);
__ mov(r0, Operand(0)); // not counting receiver
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS);
__ bind(&continue_label);
break;
}
default:
UNREACHABLE();
}
__ push(r0); // r0 has result
}
}
void CodeGenerator::VisitCountOperation(CountOperation* node) {
Comment cmnt(masm_, "[ CountOperation");
bool is_postfix = node->is_postfix();
bool is_increment = node->op() == Token::INC;
Variable* var = node->expression()->AsVariableProxy()->AsVariable();
bool is_const = (var != NULL && var->mode() == Variable::CONST);
// Postfix: Make room for the result.
if (is_postfix) {
__ mov(r0, Operand(0));
__ push(r0);
}
{ Reference target(this, node->expression());
if (target.is_illegal()) return;
target.GetValue(NOT_INSIDE_TYPEOF);
__ pop(r0);
Label slow, exit;
// Load the value (1) into register r1.
__ mov(r1, Operand(Smi::FromInt(1)));
// Check for smi operand.
__ tst(r0, Operand(kSmiTagMask));
__ b(ne, &slow);
// Postfix: Store the old value as the result.
if (is_postfix) __ str(r0, MemOperand(sp, target.size() * kPointerSize));
// Perform optimistic increment/decrement.
if (is_increment) {
__ add(r0, r0, Operand(r1), SetCC);
} else {
__ sub(r0, r0, Operand(r1), SetCC);
}
// If the increment/decrement didn't overflow, we're done.
__ b(vc, &exit);
// Revert optimistic increment/decrement.
if (is_increment) {
__ sub(r0, r0, Operand(r1));
} else {
__ add(r0, r0, Operand(r1));
}
// Slow case: Convert to number.
__ bind(&slow);
// Postfix: Convert the operand to a number and store it as the result.
if (is_postfix) {
InvokeBuiltinStub stub(InvokeBuiltinStub::ToNumber, 2);
__ CallStub(&stub);
// Store to result (on the stack).
__ str(r0, MemOperand(sp, target.size() * kPointerSize));
}
// Compute the new value by calling the right JavaScript native.
if (is_increment) {
InvokeBuiltinStub stub(InvokeBuiltinStub::Inc, 1);
__ CallStub(&stub);
} else {
InvokeBuiltinStub stub(InvokeBuiltinStub::Dec, 1);
__ CallStub(&stub);
}
// Store the new value in the target if not const.
__ bind(&exit);
__ push(r0);
if (!is_const) target.SetValue(NOT_CONST_INIT);
}
// Postfix: Discard the new value and use the old.
if (is_postfix) __ pop(r0);
}
void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
Comment cmnt(masm_, "[ BinaryOperation");
Token::Value op = node->op();
// According to ECMA-262 section 11.11, page 58, the binary logical
// operators must yield the result of one of the two expressions
// before any ToBoolean() conversions. This means that the value
// produced by a && or || operator is not necessarily a boolean.
// NOTE: If the left hand side produces a materialized value (not in
// the CC register), we force the right hand side to do the
// same. This is necessary because we may have to branch to the exit
// after evaluating the left hand side (due to the shortcut
// semantics), but the compiler must (statically) know if the result
// of compiling the binary operation is materialized or not.
if (op == Token::AND) {
Label is_true;
LoadCondition(node->left(),
NOT_INSIDE_TYPEOF,
&is_true,
false_target(),
false);
if (has_cc()) {
Branch(false, false_target());
// Evaluate right side expression.
__ bind(&is_true);
LoadCondition(node->right(),
NOT_INSIDE_TYPEOF,
true_target(),
false_target(),
false);
} else {
Label pop_and_continue, exit;
__ ldr(r0, MemOperand(sp, 0)); // dup the stack top
__ push(r0);
// Avoid popping the result if it converts to 'false' using the
// standard ToBoolean() conversion as described in ECMA-262,
// section 9.2, page 30.
ToBoolean(&pop_and_continue, &exit);
Branch(false, &exit);
// Pop the result of evaluating the first part.
__ bind(&pop_and_continue);
__ pop(r0);
// Evaluate right side expression.
__ bind(&is_true);
Load(node->right());
// Exit (always with a materialized value).
__ bind(&exit);
}
} else if (op == Token::OR) {
Label is_false;
LoadCondition(node->left(),
NOT_INSIDE_TYPEOF,
true_target(),
&is_false,
false);
if (has_cc()) {
Branch(true, true_target());
// Evaluate right side expression.
__ bind(&is_false);
LoadCondition(node->right(),
NOT_INSIDE_TYPEOF,
true_target(),
false_target(),
false);
} else {
Label pop_and_continue, exit;
__ ldr(r0, MemOperand(sp, 0));
__ push(r0);
// Avoid popping the result if it converts to 'true' using the
// standard ToBoolean() conversion as described in ECMA-262,
// section 9.2, page 30.
ToBoolean(&exit, &pop_and_continue);
Branch(true, &exit);
// Pop the result of evaluating the first part.
__ bind(&pop_and_continue);
__ pop(r0);
// Evaluate right side expression.
__ bind(&is_false);
Load(node->right());
// Exit (always with a materialized value).
__ bind(&exit);
}
} else {
// Optimize for the case where (at least) one of the expressions
// is a literal small integer.
Literal* lliteral = node->left()->AsLiteral();
Literal* rliteral = node->right()->AsLiteral();
if (rliteral != NULL && rliteral->handle()->IsSmi()) {
Load(node->left());
SmiOperation(node->op(), rliteral->handle(), false);
} else if (lliteral != NULL && lliteral->handle()->IsSmi()) {
Load(node->right());
SmiOperation(node->op(), lliteral->handle(), true);
} else {
Load(node->left());
Load(node->right());
GenericBinaryOperation(node->op());
}
__ push(r0);
}
}
void CodeGenerator::VisitThisFunction(ThisFunction* node) {
__ ldr(r0, FunctionOperand());
__ push(r0);
}
void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
Comment cmnt(masm_, "[ CompareOperation");
// Get the expressions from the node.
Expression* left = node->left();
Expression* right = node->right();
Token::Value op = node->op();
// NOTE: To make null checks efficient, we check if either left or
// right is the literal 'null'. If so, we optimize the code by
// inlining a null check instead of calling the (very) general
// runtime routine for checking equality.
bool left_is_null =
left->AsLiteral() != NULL && left->AsLiteral()->IsNull();
bool right_is_null =
right->AsLiteral() != NULL && right->AsLiteral()->IsNull();
if (op == Token::EQ || op == Token::EQ_STRICT) {
// The 'null' value is only equal to 'null' or 'undefined'.
if (left_is_null || right_is_null) {
Load(left_is_null ? right : left);
Label exit, undetectable;
__ pop(r0);
__ cmp(r0, Operand(Factory::null_value()));
// The 'null' value is only equal to 'undefined' if using
// non-strict comparisons.
if (op != Token::EQ_STRICT) {
__ b(eq, &exit);
__ cmp(r0, Operand(Factory::undefined_value()));
// NOTE: it can be undetectable object.
__ b(eq, &exit);
__ tst(r0, Operand(kSmiTagMask));
__ b(ne, &undetectable);
__ b(false_target());
__ bind(&undetectable);
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
__ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
__ cmp(r2, Operand(1 << Map::kIsUndetectable));
}
__ bind(&exit);
cc_reg_ = eq;
return;
}
}
// NOTE: To make typeof testing for natives implemented in
// JavaScript really efficient, we generate special code for
// expressions of the form: 'typeof <expression> == <string>'.
UnaryOperation* operation = left->AsUnaryOperation();
if ((op == Token::EQ || op == Token::EQ_STRICT) &&
(operation != NULL && operation->op() == Token::TYPEOF) &&
(right->AsLiteral() != NULL &&
right->AsLiteral()->handle()->IsString())) {
Handle<String> check(String::cast(*right->AsLiteral()->handle()));
// Load the operand, move it to register r1.
LoadTypeofExpression(operation->expression());
__ pop(r1);
if (check->Equals(Heap::number_symbol())) {
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, true_target());
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r1, Operand(Factory::heap_number_map()));
cc_reg_ = eq;
} else if (check->Equals(Heap::string_symbol())) {
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, false_target());
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
// NOTE: it might be an undetectable string object
__ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
__ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
__ cmp(r2, Operand(1 << Map::kIsUndetectable));
__ b(eq, false_target());
__ ldrb(r2, FieldMemOperand(r1, Map::kInstanceTypeOffset));
__ cmp(r2, Operand(FIRST_NONSTRING_TYPE));
cc_reg_ = lt;
} else if (check->Equals(Heap::boolean_symbol())) {
__ cmp(r1, Operand(Factory::true_value()));
__ b(eq, true_target());
__ cmp(r1, Operand(Factory::false_value()));
cc_reg_ = eq;
} else if (check->Equals(Heap::undefined_symbol())) {
__ cmp(r1, Operand(Factory::undefined_value()));
__ b(eq, true_target());
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, false_target());
// NOTE: it can be undetectable object.
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
__ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
__ cmp(r2, Operand(1 << Map::kIsUndetectable));
cc_reg_ = eq;
} else if (check->Equals(Heap::function_symbol())) {
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, false_target());
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
__ cmp(r1, Operand(JS_FUNCTION_TYPE));
cc_reg_ = eq;
} else if (check->Equals(Heap::object_symbol())) {
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, false_target());
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r1, Operand(Factory::null_value()));
__ b(eq, true_target());
// NOTE: it might be an undetectable object.
__ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset));
__ and_(r1, r1, Operand(1 << Map::kIsUndetectable));
__ cmp(r1, Operand(1 << Map::kIsUndetectable));
__ b(eq, false_target());
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
__ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE));
__ b(lt, false_target());
__ cmp(r2, Operand(LAST_JS_OBJECT_TYPE));
cc_reg_ = le;
} else {
// Uncommon case: Typeof testing against a string literal that
// is never returned from the typeof operator.
__ b(false_target());
}
return;
}
Load(left);
Load(right);
switch (op) {
case Token::EQ:
Comparison(eq, false);
break;
case Token::LT:
Comparison(lt);
break;
case Token::GT:
Comparison(gt);
break;
case Token::LTE:
Comparison(le);
break;
case Token::GTE:
Comparison(ge);
break;
case Token::EQ_STRICT:
Comparison(eq, true);
break;
case Token::IN:
__ mov(r0, Operand(1)); // not counting receiver
__ InvokeBuiltin(Builtins::IN, CALL_JS);
__ push(r0);
break;
case Token::INSTANCEOF:
__ mov(r0, Operand(1)); // not counting receiver
__ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_JS);
__ tst(r0, Operand(r0));
cc_reg_ = eq;
break;
default:
UNREACHABLE();
}
}
void CodeGenerator::RecordStatementPosition(Node* node) {
if (FLAG_debug_info) {
int statement_pos = node->statement_pos();
if (statement_pos == RelocInfo::kNoPosition) return;
__ RecordStatementPosition(statement_pos);
}
}
void CodeGenerator::EnterJSFrame() {
#if defined(DEBUG)
{ Label done, fail;
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &fail);
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
__ cmp(r2, Operand(JS_FUNCTION_TYPE));
__ b(eq, &done);
__ bind(&fail);
__ stop("CodeGenerator::EnterJSFrame - r1 not a function");
__ bind(&done);
}
#endif // DEBUG
__ stm(db_w, sp, r1.bit() | cp.bit() | fp.bit() | lr.bit());
__ add(fp, sp, Operand(2 * kPointerSize)); // Adjust FP to point to saved FP.
}
void CodeGenerator::ExitJSFrame() {
// Drop the execution stack down to the frame pointer and restore the caller
// frame pointer and return address.
__ mov(sp, fp);
__ ldm(ia_w, sp, fp.bit() | lr.bit());
}
#undef __
#define __ masm->
Handle<String> Reference::GetName() {
ASSERT(type_ == NAMED);
Property* property = expression_->AsProperty();
if (property == NULL) {
// Global variable reference treated as a named property reference.
VariableProxy* proxy = expression_->AsVariableProxy();
ASSERT(proxy->AsVariable() != NULL);
ASSERT(proxy->AsVariable()->is_global());
return proxy->name();
} else {
Literal* raw_name = property->key()->AsLiteral();
ASSERT(raw_name != NULL);
return Handle<String>(String::cast(*raw_name->handle()));
}
}
void Reference::GetValue(TypeofState typeof_state) {
ASSERT(!is_illegal());
ASSERT(!cgen_->has_cc());
MacroAssembler* masm = cgen_->masm();
Property* property = expression_->AsProperty();
if (property != NULL) {
__ RecordPosition(property->position());
}
switch (type_) {
case SLOT: {
Comment cmnt(masm, "[ Load from Slot");
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
ASSERT(slot != NULL);
cgen_->LoadFromSlot(slot, typeof_state);
break;
}
case NAMED: {
// TODO(1241834): Make sure that this it is safe to ignore the
// distinction between expressions in a typeof and not in a typeof. If
// there is a chance that reference errors can be thrown below, we
// must distinguish between the two kinds of loads (typeof expression
// loads must not throw a reference error).
Comment cmnt(masm, "[ Load from named Property");
// Setup the name register.
Handle<String> name(GetName());
__ mov(r2, Operand(name));
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
Variable* var = expression_->AsVariableProxy()->AsVariable();
if (var != NULL) {
ASSERT(var->is_global());
__ Call(ic, RelocInfo::CODE_TARGET_CONTEXT);
} else {
__ Call(ic, RelocInfo::CODE_TARGET);
}
__ push(r0);
break;
}
case KEYED: {
// TODO(1241834): Make sure that this it is safe to ignore the
// distinction between expressions in a typeof and not in a typeof.
Comment cmnt(masm, "[ Load from keyed Property");
ASSERT(property != NULL);
// TODO(1224671): Implement inline caching for keyed loads as on ia32.
GetPropertyStub stub;
__ CallStub(&stub);
__ push(r0);
break;
}
default:
UNREACHABLE();
}
}
void Reference::SetValue(InitState init_state) {
ASSERT(!is_illegal());
ASSERT(!cgen_->has_cc());
MacroAssembler* masm = cgen_->masm();
Property* property = expression_->AsProperty();
if (property != NULL) {
__ RecordPosition(property->position());
}
switch (type_) {
case SLOT: {
Comment cmnt(masm, "[ Store to Slot");
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
ASSERT(slot != NULL);
if (slot->type() == Slot::LOOKUP) {
ASSERT(slot->var()->mode() == Variable::DYNAMIC);
// For now, just do a runtime call.
__ push(cp);
__ mov(r0, Operand(slot->var()->name()));
__ push(r0);
if (init_state == CONST_INIT) {
// Same as the case for a normal store, but ignores attribute
// (e.g. READ_ONLY) of context slot so that we can initialize
// const properties (introduced via eval("const foo = (some
// expr);")). Also, uses the current function context instead of
// the top context.
//
// Note that we must declare the foo upon entry of eval(), via a
// context slot declaration, but we cannot initialize it at the
// same time, because the const declaration may be at the end of
// the eval code (sigh...) and the const variable may have been
// used before (where its value is 'undefined'). Thus, we can only
// do the initialization when we actually encounter the expression
// and when the expression operands are defined and valid, and
// thus we need the split into 2 operations: declaration of the
// context slot followed by initialization.
__ CallRuntime(Runtime::kInitializeConstContextSlot, 3);
} else {
__ CallRuntime(Runtime::kStoreContextSlot, 3);
}
// Storing a variable must keep the (new) value on the expression
// stack. This is necessary for compiling assignment expressions.
__ push(r0);
} else {
ASSERT(slot->var()->mode() != Variable::DYNAMIC);
Label exit;
if (init_state == CONST_INIT) {
ASSERT(slot->var()->mode() == Variable::CONST);
// Only the first const initialization must be executed (the slot
// still contains 'the hole' value). When the assignment is
// executed, the code is identical to a normal store (see below).
Comment cmnt(masm, "[ Init const");
__ ldr(r2, cgen_->SlotOperand(slot, r2));
__ cmp(r2, Operand(Factory::the_hole_value()));
__ b(ne, &exit);
}
// We must execute the store. Storing a variable must keep the
// (new) value on the stack. This is necessary for compiling
// assignment expressions.
//
// Note: We will reach here even with slot->var()->mode() ==
// Variable::CONST because of const declarations which will
// initialize consts to 'the hole' value and by doing so, end up
// calling this code. r2 may be loaded with context; used below in
// RecordWrite.
__ pop(r0);
__ str(r0, cgen_->SlotOperand(slot, r2));
__ push(r0);
if (slot->type() == Slot::CONTEXT) {
// Skip write barrier if the written value is a smi.
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &exit);
// r2 is loaded with context when calling SlotOperand above.
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
__ mov(r3, Operand(offset));
__ RecordWrite(r2, r3, r1);
}
// If we definitely did not jump over the assignment, we do not need
// to bind the exit label. Doing so can defeat peephole
// optimization.
if (init_state == CONST_INIT || slot->type() == Slot::CONTEXT) {
__ bind(&exit);
}
}
break;
}
case NAMED: {
Comment cmnt(masm, "[ Store to named Property");
// Call the appropriate IC code.
__ pop(r0); // value
// Setup the name register.
Handle<String> name(GetName());
__ mov(r2, Operand(name));
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
__ push(r0);
break;
}
case KEYED: {
Comment cmnt(masm, "[ Store to keyed Property");
Property* property = expression_->AsProperty();
ASSERT(property != NULL);
__ RecordPosition(property->position());
__ pop(r0); // value
SetPropertyStub stub;
__ CallStub(&stub);
__ push(r0);
break;
}
default:
UNREACHABLE();
}
}
void GetPropertyStub::Generate(MacroAssembler* masm) {
// sp[0]: key
// sp[1]: receiver
Label slow, fast;
// Get the key and receiver object from the stack.
__ ldm(ia, sp, r0.bit() | r1.bit());
// Check that the key is a smi.
__ tst(r0, Operand(kSmiTagMask));
__ b(ne, &slow);
__ mov(r0, Operand(r0, ASR, kSmiTagSize));
// Check that the object isn't a smi.
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &slow);
// Check that the object is some kind of JS object EXCEPT JS Value type.
// In the case that the object is a value-wrapper object,
// we enter the runtime system to make sure that indexing into string
// objects work as intended.
ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE);
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
__ cmp(r2, Operand(JS_OBJECT_TYPE));
__ b(lt, &slow);
// Get the elements array of the object.
__ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset));
// Check that the object is in fast mode (not dictionary).
__ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r3, Operand(Factory::hash_table_map()));
__ b(eq, &slow);
// Check that the key (index) is within bounds.
__ ldr(r3, FieldMemOperand(r1, Array::kLengthOffset));
__ cmp(r0, Operand(r3));
__ b(lo, &fast);
// Slow case: Push extra copies of the arguments (2).
__ bind(&slow);
__ ldm(ia, sp, r0.bit() | r1.bit());
__ stm(db_w, sp, r0.bit() | r1.bit());
// Do tail-call to runtime routine.
__ TailCallRuntime(ExternalReference(Runtime::kGetProperty), 2);
// Fast case: Do the load.
__ bind(&fast);
__ add(r3, r1, Operand(Array::kHeaderSize - kHeapObjectTag));
__ ldr(r0, MemOperand(r3, r0, LSL, kPointerSizeLog2));
__ cmp(r0, Operand(Factory::the_hole_value()));
// In case the loaded value is the_hole we have to consult GetProperty
// to ensure the prototype chain is searched.
__ b(eq, &slow);
__ StubReturn(1);
}
void SetPropertyStub::Generate(MacroAssembler* masm) {
// r0 : value
// sp[0] : key
// sp[1] : receiver
Label slow, fast, array, extra, exit;
// Get the key and the object from the stack.
__ ldm(ia, sp, r1.bit() | r3.bit()); // r1 = key, r3 = receiver
// Check that the key is a smi.
__ tst(r1, Operand(kSmiTagMask));
__ b(ne, &slow);
// Check that the object isn't a smi.
__ tst(r3, Operand(kSmiTagMask));
__ b(eq, &slow);
// Get the type of the object from its map.
__ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
// Check if the object is a JS array or not.
__ cmp(r2, Operand(JS_ARRAY_TYPE));
__ b(eq, &array);
// Check that the object is some kind of JS object.
__ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE));
__ b(lt, &slow);
// Object case: Check key against length in the elements array.
__ ldr(r3, FieldMemOperand(r3, JSObject::kElementsOffset));
// Check that the object is in fast mode (not dictionary).
__ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
__ cmp(r2, Operand(Factory::hash_table_map()));
__ b(eq, &slow);
// Untag the key (for checking against untagged length in the fixed array).
__ mov(r1, Operand(r1, ASR, kSmiTagSize));
// Compute address to store into and check array bounds.
__ add(r2, r3, Operand(Array::kHeaderSize - kHeapObjectTag));
__ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2));
__ ldr(ip, FieldMemOperand(r3, Array::kLengthOffset));
__ cmp(r1, Operand(ip));
__ b(lo, &fast);
// Slow case: Push extra copies of the arguments (3).
__ bind(&slow);
__ ldm(ia, sp, r1.bit() | r3.bit()); // r0 == value, r1 == key, r3 == object
__ stm(db_w, sp, r0.bit() | r1.bit() | r3.bit());
// Do tail-call to runtime routine.
__ TailCallRuntime(ExternalReference(Runtime::kSetProperty), 3);
// Extra capacity case: Check if there is extra capacity to
// perform the store and update the length. Used for adding one
// element to the array by writing to array[array.length].
// r0 == value, r1 == key, r2 == elements, r3 == object
__ bind(&extra);
__ b(ne, &slow); // do not leave holes in the array
__ mov(r1, Operand(r1, ASR, kSmiTagSize)); // untag
__ ldr(ip, FieldMemOperand(r2, Array::kLengthOffset));
__ cmp(r1, Operand(ip));
__ b(hs, &slow);
__ mov(r1, Operand(r1, LSL, kSmiTagSize)); // restore tag
__ add(r1, r1, Operand(1 << kSmiTagSize)); // and increment
__ str(r1, FieldMemOperand(r3, JSArray::kLengthOffset));
__ mov(r3, Operand(r2));
// NOTE: Computing the address to store into must take the fact
// that the key has been incremented into account.
int displacement = Array::kHeaderSize - kHeapObjectTag -
((1 << kSmiTagSize) * 2);
__ add(r2, r2, Operand(displacement));
__ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
__ b(&fast);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode; if it is the
// length is always a smi.
// r0 == value, r3 == object
__ bind(&array);
__ ldr(r2, FieldMemOperand(r3, JSObject::kElementsOffset));
__ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
__ cmp(r1, Operand(Factory::hash_table_map()));
__ b(eq, &slow);
// Check the key against the length in the array, compute the
// address to store into and fall through to fast case.
__ ldr(r1, MemOperand(sp));
// r0 == value, r1 == key, r2 == elements, r3 == object.
__ ldr(ip, FieldMemOperand(r3, JSArray::kLengthOffset));
__ cmp(r1, Operand(ip));
__ b(hs, &extra);
__ mov(r3, Operand(r2));
__ add(r2, r2, Operand(Array::kHeaderSize - kHeapObjectTag));
__ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
// Fast case: Do the store.
// r0 == value, r2 == address to store into, r3 == elements
__ bind(&fast);
__ str(r0, MemOperand(r2));
// Skip write barrier if the written value is a smi.
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &exit);
// Update write barrier for the elements array address.
__ sub(r1, r2, Operand(r3));
__ RecordWrite(r3, r1, r2);
__ bind(&exit);
__ StubReturn(1);
}
void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
// r1 : x
// r0 : y
// result : r0
switch (op_) {
case Token::ADD: {
Label slow, exit;
// fast path
__ orr(r2, r1, Operand(r0)); // r2 = x | y;
__ add(r0, r1, Operand(r0), SetCC); // add y optimistically
// go slow-path in case of overflow
__ b(vs, &slow);
// go slow-path in case of non-smi operands
ASSERT(kSmiTag == 0); // adjust code below
__ tst(r2, Operand(kSmiTagMask));
__ b(eq, &exit);
// slow path
__ bind(&slow);
__ sub(r0, r0, Operand(r1)); // revert optimistic add
__ push(r1);
__ push(r0);
__ mov(r0, Operand(1)); // set number of arguments
__ InvokeBuiltin(Builtins::ADD, JUMP_JS);
// done
__ bind(&exit);
break;
}
case Token::SUB: {
Label slow, exit;
// fast path
__ orr(r2, r1, Operand(r0)); // r2 = x | y;
__ sub(r3, r1, Operand(r0), SetCC); // subtract y optimistically
// go slow-path in case of overflow
__ b(vs, &slow);
// go slow-path in case of non-smi operands
ASSERT(kSmiTag == 0); // adjust code below
__ tst(r2, Operand(kSmiTagMask));
__ mov(r0, Operand(r3), LeaveCC, eq); // conditionally set r0 to result
__ b(eq, &exit);
// slow path
__ bind(&slow);
__ push(r1);
__ push(r0);
__ mov(r0, Operand(1)); // set number of arguments
__ InvokeBuiltin(Builtins::SUB, JUMP_JS);
// done
__ bind(&exit);
break;
}
case Token::MUL: {
Label slow, exit;
// tag check
__ orr(r2, r1, Operand(r0)); // r2 = x | y;
ASSERT(kSmiTag == 0); // adjust code below
__ tst(r2, Operand(kSmiTagMask));
__ b(ne, &slow);
// remove tag from one operand (but keep sign), so that result is smi
__ mov(ip, Operand(r0, ASR, kSmiTagSize));
// do multiplication
__ smull(r3, r2, r1, ip); // r3 = lower 32 bits of ip*r1
// go slow on overflows (overflow bit is not set)
__ mov(ip, Operand(r3, ASR, 31));
__ cmp(ip, Operand(r2)); // no overflow if higher 33 bits are identical
__ b(ne, &slow);
// go slow on zero result to handle -0
__ tst(r3, Operand(r3));
__ mov(r0, Operand(r3), LeaveCC, ne);
__ b(ne, &exit);
// slow case
__ bind(&slow);
__ push(r1);
__ push(r0);
__ mov(r0, Operand(1)); // set number of arguments
__ InvokeBuiltin(Builtins::MUL, JUMP_JS);
// done
__ bind(&exit);
break;
}
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR: {
Label slow, exit;
// tag check
__ orr(r2, r1, Operand(r0)); // r2 = x | y;
ASSERT(kSmiTag == 0); // adjust code below
__ tst(r2, Operand(kSmiTagMask));
__ b(ne, &slow);
switch (op_) {
case Token::BIT_OR: __ orr(r0, r0, Operand(r1)); break;
case Token::BIT_AND: __ and_(r0, r0, Operand(r1)); break;
case Token::BIT_XOR: __ eor(r0, r0, Operand(r1)); break;
default: UNREACHABLE();
}
__ b(&exit);
__ bind(&slow);
__ push(r1); // restore stack
__ push(r0);
__ mov(r0, Operand(1)); // 1 argument (not counting receiver).
switch (op_) {
case Token::BIT_OR:
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS);
break;
case Token::BIT_AND:
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS);
break;
case Token::BIT_XOR:
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS);
break;
default:
UNREACHABLE();
}
__ bind(&exit);
break;
}
case Token::SHL:
case Token::SHR:
case Token::SAR: {
Label slow, exit;
// tag check
__ orr(r2, r1, Operand(r0)); // r2 = x | y;
ASSERT(kSmiTag == 0); // adjust code below
__ tst(r2, Operand(kSmiTagMask));
__ b(ne, &slow);
// remove tags from operands (but keep sign)
__ mov(r3, Operand(r1, ASR, kSmiTagSize)); // x
__ mov(r2, Operand(r0, ASR, kSmiTagSize)); // y
// use only the 5 least significant bits of the shift count
__ and_(r2, r2, Operand(0x1f));
// perform operation
switch (op_) {
case Token::SAR:
__ mov(r3, Operand(r3, ASR, r2));
// no checks of result necessary
break;
case Token::SHR:
__ mov(r3, Operand(r3, LSR, r2));
// check that the *unsigned* result fits in a smi
// neither of the two high-order bits can be set:
// - 0x80000000: high bit would be lost when smi tagging
// - 0x40000000: this number would convert to negative when
// smi tagging these two cases can only happen with shifts
// by 0 or 1 when handed a valid smi
__ and_(r2, r3, Operand(0xc0000000), SetCC);
__ b(ne, &slow);
break;
case Token::SHL:
__ mov(r3, Operand(r3, LSL, r2));
// check that the *signed* result fits in a smi
__ add(r2, r3, Operand(0x40000000), SetCC);
__ b(mi, &slow);
break;
default: UNREACHABLE();
}
// tag result and store it in r0
ASSERT(kSmiTag == 0); // adjust code below
__ mov(r0, Operand(r3, LSL, kSmiTagSize));
__ b(&exit);
// slow case
__ bind(&slow);
__ push(r1); // restore stack
__ push(r0);
__ mov(r0, Operand(1)); // 1 argument (not counting receiver).
switch (op_) {
case Token::SAR: __ InvokeBuiltin(Builtins::SAR, JUMP_JS); break;
case Token::SHR: __ InvokeBuiltin(Builtins::SHR, JUMP_JS); break;
case Token::SHL: __ InvokeBuiltin(Builtins::SHL, JUMP_JS); break;
default: UNREACHABLE();
}
__ bind(&exit);
break;
}
default: UNREACHABLE();
}
__ Ret();
}
void StackCheckStub::Generate(MacroAssembler* masm) {
Label within_limit;
__ mov(ip, Operand(ExternalReference::address_of_stack_guard_limit()));
__ ldr(ip, MemOperand(ip));
__ cmp(sp, Operand(ip));
__ b(hs, &within_limit);
// Do tail-call to runtime routine.
__ push(r0);
__ TailCallRuntime(ExternalReference(Runtime::kStackGuard), 1);
__ bind(&within_limit);
__ StubReturn(1);
}
void UnarySubStub::Generate(MacroAssembler* masm) {
Label undo;
Label slow;
Label done;
// Enter runtime system if the value is not a smi.
__ tst(r0, Operand(kSmiTagMask));
__ b(ne, &slow);
// Enter runtime system if the value of the expression is zero
// to make sure that we switch between 0 and -0.
__ cmp(r0, Operand(0));
__ b(eq, &slow);
// The value of the expression is a smi that is not zero. Try
// optimistic subtraction '0 - value'.
__ rsb(r1, r0, Operand(0), SetCC);
__ b(vs, &slow);
// If result is a smi we are done.
__ tst(r1, Operand(kSmiTagMask));
__ mov(r0, Operand(r1), LeaveCC, eq); // conditionally set r0 to result
__ b(eq, &done);
// Enter runtime system.
__ bind(&slow);
__ push(r0);
__ mov(r0, Operand(0)); // set number of arguments
__ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS);
__ bind(&done);
__ StubReturn(1);
}
void InvokeBuiltinStub::Generate(MacroAssembler* masm) {
__ push(r0);
__ mov(r0, Operand(0)); // set number of arguments
switch (kind_) {
case ToNumber: __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_JS); break;
case Inc: __ InvokeBuiltin(Builtins::INC, JUMP_JS); break;
case Dec: __ InvokeBuiltin(Builtins::DEC, JUMP_JS); break;
default: UNREACHABLE();
}
__ StubReturn(argc_);
}
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
// r0 holds exception
ASSERT(StackHandlerConstants::kSize == 6 * kPointerSize); // adjust this code
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
__ ldr(sp, MemOperand(r3));
__ pop(r2); // pop next in chain
__ str(r2, MemOperand(r3));
// restore parameter- and frame-pointer and pop state.
__ ldm(ia_w, sp, r3.bit() | pp.bit() | fp.bit());
// Before returning we restore the context from the frame pointer if not NULL.
// The frame pointer is NULL in the exception handler of a JS entry frame.
__ cmp(fp, Operand(0));
// Set cp to NULL if fp is NULL.
__ mov(cp, Operand(0), LeaveCC, eq);
// Restore cp otherwise.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
if (kDebug && FLAG_debug_code) __ mov(lr, Operand(pc));
__ pop(pc);
}
void CEntryStub::GenerateThrowOutOfMemory(MacroAssembler* masm) {
// Fetch top stack handler.
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
__ ldr(r3, MemOperand(r3));
// Unwind the handlers until the ENTRY handler is found.
Label loop, done;
__ bind(&loop);
// Load the type of the current stack handler.
const int kStateOffset = StackHandlerConstants::kAddressDisplacement +
StackHandlerConstants::kStateOffset;
__ ldr(r2, MemOperand(r3, kStateOffset));
__ cmp(r2, Operand(StackHandler::ENTRY));
__ b(eq, &done);
// Fetch the next handler in the list.
const int kNextOffset = StackHandlerConstants::kAddressDisplacement +
StackHandlerConstants::kNextOffset;
__ ldr(r3, MemOperand(r3, kNextOffset));
__ jmp(&loop);
__ bind(&done);
// Set the top handler address to next handler past the current ENTRY handler.
__ ldr(r0, MemOperand(r3, kNextOffset));
__ mov(r2, Operand(ExternalReference(Top::k_handler_address)));
__ str(r0, MemOperand(r2));
// Set external caught exception to false.
__ mov(r0, Operand(false));
ExternalReference external_caught(Top::k_external_caught_exception_address);
__ mov(r2, Operand(external_caught));
__ str(r0, MemOperand(r2));
// Set pending exception and r0 to out of memory exception.
Failure* out_of_memory = Failure::OutOfMemoryException();
__ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
__ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address)));
__ str(r0, MemOperand(r2));
// Restore the stack to the address of the ENTRY handler
__ mov(sp, Operand(r3));
// restore parameter- and frame-pointer and pop state.
__ ldm(ia_w, sp, r3.bit() | pp.bit() | fp.bit());
// Before returning we restore the context from the frame pointer if not NULL.
// The frame pointer is NULL in the exception handler of a JS entry frame.
__ cmp(fp, Operand(0));
// Set cp to NULL if fp is NULL.
__ mov(cp, Operand(0), LeaveCC, eq);
// Restore cp otherwise.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
if (kDebug && FLAG_debug_code) __ mov(lr, Operand(pc));
__ pop(pc);
}
void CEntryStub::GenerateCore(MacroAssembler* masm,
Label* throw_normal_exception,
Label* throw_out_of_memory_exception,
StackFrame::Type frame_type,
bool do_gc) {
// r0: result parameter for PerformGC, if any
// r4: number of arguments including receiver (C callee-saved)
// r5: pointer to builtin function (C callee-saved)
// r6: pointer to the first argument (C callee-saved)
if (do_gc) {
// Passing r0.
__ Call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY);
}
// Call C built-in.
// r0 = argc, r1 = argv
__ mov(r0, Operand(r4));
__ mov(r1, Operand(r6));
// TODO(1242173): To let the GC traverse the return address of the exit
// frames, we need to know where the return address is. Right now,
// we push it on the stack to be able to find it again, but we never
// restore from it in case of changes, which makes it impossible to
// support moving the C entry code stub. This should be fixed, but currently
// this is OK because the CEntryStub gets generated so early in the V8 boot
// sequence that it is not moving ever.
__ add(lr, pc, Operand(4)); // compute return address: (pc + 8) + 4
__ push(lr);
#if !defined(__arm__)
// Notify the simulator of the transition to C code.
__ swi(assembler::arm::call_rt_r5);
#else /* !defined(__arm__) */
__ mov(pc, Operand(r5));
#endif /* !defined(__arm__) */
// result is in r0 or r0:r1 - do not destroy these registers!
// check for failure result
Label failure_returned;
ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
// Lower 2 bits of r2 are 0 iff r0 has failure tag.
__ add(r2, r0, Operand(1));
__ tst(r2, Operand(kFailureTagMask));
__ b(eq, &failure_returned);
// Exit C frame and return.
// r0:r1: result
// sp: stack pointer
// fp: frame pointer
// pp: caller's parameter pointer pp (restored as C callee-saved)
__ LeaveExitFrame(frame_type);
// check if we should retry or throw exception
Label retry;
__ bind(&failure_returned);
ASSERT(Failure::RETRY_AFTER_GC == 0);
__ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
__ b(eq, &retry);
Label continue_exception;
// If the returned failure is EXCEPTION then promote Top::pending_exception().
__ cmp(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
__ b(ne, &continue_exception);
// Retrieve the pending exception and clear the variable.
__ mov(ip, Operand(Factory::the_hole_value().location()));
__ ldr(r3, MemOperand(ip));
__ mov(ip, Operand(Top::pending_exception_address()));
__ ldr(r0, MemOperand(ip));
__ str(r3, MemOperand(ip));
__ bind(&continue_exception);
// Special handling of out of memory exception.
Failure* out_of_memory = Failure::OutOfMemoryException();
__ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
__ b(eq, throw_out_of_memory_exception);
// Handle normal exception.
__ jmp(throw_normal_exception);
__ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
}
void CEntryStub::GenerateBody(MacroAssembler* masm, bool is_debug_break) {
// Called from JavaScript; parameters are on stack as if calling JS function
// r0: number of arguments including receiver
// r1: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's pp after C call)
// cp: current context (C callee-saved)
// pp: caller's parameter pointer pp (C callee-saved)
// NOTE: Invocations of builtins may return failure objects
// instead of a proper result. The builtin entry handles
// this by performing a garbage collection and retrying the
// builtin once.
StackFrame::Type frame_type = is_debug_break
? StackFrame::EXIT_DEBUG
: StackFrame::EXIT;
// Enter the exit frame that transitions from JavaScript to C++.
__ EnterExitFrame(frame_type);
// r4: number of arguments (C callee-saved)
// r5: pointer to builtin function (C callee-saved)
// r6: pointer to first argument (C callee-saved)
Label throw_out_of_memory_exception;
Label throw_normal_exception;
#ifdef DEBUG
if (FLAG_gc_greedy) {
Failure* failure = Failure::RetryAfterGC(0, NEW_SPACE);
__ mov(r0, Operand(reinterpret_cast<intptr_t>(failure)));
}
GenerateCore(masm,
&throw_normal_exception,
&throw_out_of_memory_exception,
frame_type,
FLAG_gc_greedy);
#else
GenerateCore(masm,
&throw_normal_exception,
&throw_out_of_memory_exception,
frame_type,
false);
#endif
GenerateCore(masm,
&throw_normal_exception,
&throw_out_of_memory_exception,
frame_type,
true);
__ bind(&throw_out_of_memory_exception);
GenerateThrowOutOfMemory(masm);
// control flow for generated will not return.
__ bind(&throw_normal_exception);
GenerateThrowTOS(masm);
}
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// [sp+0]: argv
Label invoke, exit;
// Called from C, so do not pop argc and args on exit (preserve sp)
// No need to save register-passed args
// Save callee-saved registers (incl. cp, pp, and fp), sp, and lr
__ stm(db_w, sp, kCalleeSaved | lr.bit());
// Get address of argv, see stm above.
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
__ add(r4, sp, Operand((kNumCalleeSaved + 1)*kPointerSize));
__ ldr(r4, MemOperand(r4)); // argv
// Push a frame with special values setup to mark it as an entry frame.
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// r4: argv
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
__ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
__ mov(r7, Operand(~ArgumentsAdaptorFrame::SENTINEL));
__ mov(r6, Operand(Smi::FromInt(marker)));
__ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address)));
__ ldr(r5, MemOperand(r5));
__ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | r8.bit());
// Setup frame pointer for the frame to be pushed.
__ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
// Call a faked try-block that does the invoke.
__ bl(&invoke);
// Caught exception: Store result (exception) in the pending
// exception field in the JSEnv and return a failure sentinel.
// Coming in here the fp will be invalid because the PushTryHandler below
// sets it to 0 to signal the existence of the JSEntry frame.
__ mov(ip, Operand(Top::pending_exception_address()));
__ str(r0, MemOperand(ip));
__ mov(r0, Operand(Handle<Failure>(Failure::Exception())));
__ b(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
// Must preserve r0-r4, r5-r7 are available.
__ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
// If an exception not caught by another handler occurs, this handler returns
// control to the code after the bl(&invoke) above, which restores all
// kCalleeSaved registers (including cp, pp and fp) to their saved values
// before returning a failure to C.
// Clear any pending exceptions.
__ mov(ip, Operand(ExternalReference::the_hole_value_location()));
__ ldr(r5, MemOperand(ip));
__ mov(ip, Operand(Top::pending_exception_address()));
__ str(r5, MemOperand(ip));
// Invoke the function by calling through JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Expected registers by Builtins::JSEntryTrampoline
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// r4: argv
if (is_construct) {
ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
__ mov(ip, Operand(construct_entry));
} else {
ExternalReference entry(Builtins::JSEntryTrampoline);
__ mov(ip, Operand(entry));
}
__ ldr(ip, MemOperand(ip)); // deref address
// Branch and link to JSEntryTrampoline
__ mov(lr, Operand(pc));
__ add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
// Unlink this frame from the handler chain. When reading the
// address of the next handler, there is no need to use the address
// displacement since the current stack pointer (sp) points directly
// to the stack handler.
__ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset));
__ mov(ip, Operand(ExternalReference(Top::k_handler_address)));
__ str(r3, MemOperand(ip));
// No need to restore registers
__ add(sp, sp, Operand(StackHandlerConstants::kSize));
__ bind(&exit); // r0 holds result
// Restore the top frame descriptors from the stack.
__ pop(r3);
__ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
__ str(r3, MemOperand(ip));
// Reset the stack to the callee saved registers.
__ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
// Restore callee-saved registers and return.
#ifdef DEBUG
if (FLAG_debug_code) __ mov(lr, Operand(pc));
#endif
__ ldm(ia_w, sp, kCalleeSaved | pc.bit());
}
void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) {
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL));
__ b(eq, &adaptor);
// Nothing to do: The formal number of parameters has already been
// passed in register r0 by calling function. Just return it.
__ mov(pc, lr);
// Arguments adaptor case: Read the arguments length from the
// adaptor frame and return it.
__ bind(&adaptor);
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ mov(pc, lr);
}
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
// The displacement is the offset of the last parameter (if any)
// relative to the frame pointer.
static const int kDisplacement =
StandardFrameConstants::kCallerSPOffset - kPointerSize;
// Check that the key is a smi.
Label slow;
__ tst(r1, Operand(kSmiTagMask));
__ b(ne, &slow);
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL));
__ b(eq, &adaptor);
// Check index against formal parameters count limit passed in
// through register eax. Use unsigned comparison to get negative
// check for free.
__ cmp(r1, r0);
__ b(cs, &slow);
// Read the argument from the stack and return it.
__ sub(r3, r0, r1);
__ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
__ ldr(r0, MemOperand(r3, kDisplacement));
__ mov(pc, lr);
// Arguments adaptor case: Check index against actual arguments
// limit found in the arguments adaptor frame. Use unsigned
// comparison to get negative check for free.
__ bind(&adaptor);
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ cmp(r1, r0);
__ b(cs, &slow);
// Read the argument from the adaptor frame and return it.
__ sub(r3, r0, r1);
__ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
__ ldr(r0, MemOperand(r3, kDisplacement));
__ mov(pc, lr);
// Slow-case: Handle non-smi or out-of-bounds access to arguments
// by calling the runtime system.
__ bind(&slow);
__ push(r1);
__ TailCallRuntime(ExternalReference(Runtime::kGetArgumentsProperty), 1);
}
void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
// Check if the calling frame is an arguments adaptor frame.
Label runtime;
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL));
__ b(ne, &runtime);
// Patch the arguments.length and the parameters pointer.
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ str(r0, MemOperand(sp, 0 * kPointerSize));
__ add(r3, r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
__ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
__ str(r3, MemOperand(sp, 1 * kPointerSize));
// Do the runtime call to allocate the arguments object.
__ bind(&runtime);
__ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3);
}
void CallFunctionStub::Generate(MacroAssembler* masm) {
Label slow;
// Get the function to call from the stack.
// function, receiver [, arguments]
__ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize));
// Check that the function is really a JavaScript function.
// r1: pushed function (to be verified)
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &slow);
// Get the map of the function object.
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
__ cmp(r2, Operand(JS_FUNCTION_TYPE));
__ b(ne, &slow);
// Fast-case: Invoke the function now.
// r1: pushed function
ParameterCount actual(argc_);
__ InvokeFunction(r1, actual, JUMP_FUNCTION);
// Slow-case: Non-function called.
__ bind(&slow);
__ mov(r0, Operand(argc_)); // Setup the number of arguments.
__ InvokeBuiltin(Builtins::CALL_NON_FUNCTION, JUMP_JS);
}
#undef __
} } // namespace v8::internal