19d832719e
call machinery. The change replaces CallNamed, CallKeyed, CallConstantFunction and CallKnownGlobal hydrogen instructions with two new instructions with a more lower level semantics: 1. CallJSFunction for direct calls of JSFunction objects (no argument adaptation) 2. CallWithDescriptor for calls of a given Code object according to the supplied calling convention. Details: CallJSFunction should be straightforward, the main difference from the existing InvokeFunction instruction is the absence of argument adaptor handling. (As a next step, we will replace InvokeFunction with an equivalent hydrogen code.) For CallWithDescriptor, the calling conventions are represented by a tweaked version of CallStubInterfaceDescriptor. In addition to the parameter-register mapping, we also define parameter-representation mapping there. The CallWithDescriptor instruction has variable number of parameters now - this required some simple tweaks in Lithium, which assumed fixed number of arguments in some places. The calling conventions used in the calls are initialized in the CallDescriptors class (code-stubs.h, <arch>/code-stubs-<arch>.cc), and they live in a new table in the Isolate class. I should say I am not quite sure about Representation::Integer32() representation for some of the params of ArgumentAdaptorCall - it is not clear to me wether the params could not end up on the stack and thus confuse the GC. The change also includes an earlier small change to argument adaptor (https://codereview.chromium.org/98463007) that avoids passing a naked pointer to the code entry as a parameter. I am sorry for packaging that with an already biggish change. Performance implications: Locally, I see a small regression (.2% or so). It is hard to say where exactly it comes from, but I do see inefficient call sequences to the adaptor trampoline. For example: ;;; <@78,#24> constant-t bf85aa515a mov edi,0x5a51aa85 ;; debug: position 29 ;;; <@72,#53> load-named-field 8b7717 mov esi,[edi+0x17] ;; debug: position 195 ;;; <@80,#51> constant-s b902000000 mov ecx,0x2 ;; debug: position 195 ;;; <@81,#51> gap 894df0 mov [ebp+0xf0],ecx ;;; <@82,#103> constant-i bb01000000 mov ebx,0x1 ;;; <@84,#102> constant-i b902000000 mov ecx,0x2 ;;; <@85,#102> gap 89d8 mov eax,ebx 89cb mov ebx,ecx 8b4df0 mov ecx,[ebp+0xf0] ;;; <@86,#58> call-with-descriptor e8ef57fcff call ArgumentsAdaptorTrampoline (0x2d80e6e0) ;; code: BUILTIN Note the silly handling of ecx; the hydrogen for this code is: 0 4 s27 Constant 1 range:1_1 <|@ 0 3 t30 Constant 0x5bc1aa85 <JS Function xyz (SharedFunctionInfo 0x5bc1a919)> type:object <|@ 0 1 t36 LoadNamedField t30.[in-object]@24 <|@ 0 1 t38 Constant 0x2300e6a1 <Code> <|@ 0 1 i102 Constant 2 range:2_2 <|@ 0 1 i103 Constant 1 range:1_1 <|@ 0 2 t41 CallWithDescriptor t38 t30 t36 s27 i103 i102 #2 changes[*] <|@ BUG= R=verwaest@chromium.org, danno@chromium.org Review URL: https://codereview.chromium.org/104663004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18626 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
1375 lines
47 KiB
C++
1375 lines
47 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#if V8_TARGET_ARCH_IA32
|
|
|
|
#include "codegen.h"
|
|
#include "deoptimizer.h"
|
|
#include "full-codegen.h"
|
|
#include "stub-cache.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
#define __ ACCESS_MASM(masm)
|
|
|
|
|
|
void Builtins::Generate_Adaptor(MacroAssembler* masm,
|
|
CFunctionId id,
|
|
BuiltinExtraArguments extra_args) {
|
|
// ----------- S t a t e -------------
|
|
// -- eax : number of arguments excluding receiver
|
|
// -- edi : called function (only guaranteed when
|
|
// extra_args requires it)
|
|
// -- esi : context
|
|
// -- esp[0] : return address
|
|
// -- esp[4] : last argument
|
|
// -- ...
|
|
// -- esp[4 * argc] : first argument (argc == eax)
|
|
// -- esp[4 * (argc +1)] : receiver
|
|
// -----------------------------------
|
|
|
|
// Insert extra arguments.
|
|
int num_extra_args = 0;
|
|
if (extra_args == NEEDS_CALLED_FUNCTION) {
|
|
num_extra_args = 1;
|
|
Register scratch = ebx;
|
|
__ pop(scratch); // Save return address.
|
|
__ push(edi);
|
|
__ push(scratch); // Restore return address.
|
|
} else {
|
|
ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
|
|
}
|
|
|
|
// JumpToExternalReference expects eax to contain the number of arguments
|
|
// including the receiver and the extra arguments.
|
|
__ add(eax, Immediate(num_extra_args + 1));
|
|
__ JumpToExternalReference(ExternalReference(id, masm->isolate()));
|
|
}
|
|
|
|
|
|
static void CallRuntimePassFunction(
|
|
MacroAssembler* masm, Runtime::FunctionId function_id) {
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
// Push a copy of the function.
|
|
__ push(edi);
|
|
// Function is also the parameter to the runtime call.
|
|
__ push(edi);
|
|
|
|
__ CallRuntime(function_id, 1);
|
|
// Restore receiver.
|
|
__ pop(edi);
|
|
}
|
|
|
|
|
|
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
|
|
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
|
|
__ mov(eax, FieldOperand(eax, SharedFunctionInfo::kCodeOffset));
|
|
__ lea(eax, FieldOperand(eax, Code::kHeaderSize));
|
|
__ jmp(eax);
|
|
}
|
|
|
|
|
|
static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
|
|
__ lea(eax, FieldOperand(eax, Code::kHeaderSize));
|
|
__ jmp(eax);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
|
|
// Checking whether the queued function is ready for install is optional,
|
|
// since we come across interrupts and stack checks elsewhere. However,
|
|
// not checking may delay installing ready functions, and always checking
|
|
// would be quite expensive. A good compromise is to first check against
|
|
// stack limit as a cue for an interrupt signal.
|
|
Label ok;
|
|
ExternalReference stack_limit =
|
|
ExternalReference::address_of_stack_limit(masm->isolate());
|
|
__ cmp(esp, Operand::StaticVariable(stack_limit));
|
|
__ j(above_equal, &ok, Label::kNear);
|
|
|
|
CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
|
|
GenerateTailCallToReturnedCode(masm);
|
|
|
|
__ bind(&ok);
|
|
GenerateTailCallToSharedCode(masm);
|
|
}
|
|
|
|
|
|
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
|
|
bool is_api_function,
|
|
bool count_constructions) {
|
|
// ----------- S t a t e -------------
|
|
// -- eax: number of arguments
|
|
// -- edi: constructor function
|
|
// -----------------------------------
|
|
|
|
// Should never count constructions for api objects.
|
|
ASSERT(!is_api_function || !count_constructions);
|
|
|
|
// Enter a construct frame.
|
|
{
|
|
FrameScope scope(masm, StackFrame::CONSTRUCT);
|
|
|
|
// Store a smi-tagged arguments count on the stack.
|
|
__ SmiTag(eax);
|
|
__ push(eax);
|
|
|
|
// Push the function to invoke on the stack.
|
|
__ push(edi);
|
|
|
|
// Try to allocate the object without transitioning into C code. If any of
|
|
// the preconditions is not met, the code bails out to the runtime call.
|
|
Label rt_call, allocated;
|
|
if (FLAG_inline_new) {
|
|
Label undo_allocation;
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
ExternalReference debug_step_in_fp =
|
|
ExternalReference::debug_step_in_fp_address(masm->isolate());
|
|
__ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0));
|
|
__ j(not_equal, &rt_call);
|
|
#endif
|
|
|
|
// Verified that the constructor is a JSFunction.
|
|
// Load the initial map and verify that it is in fact a map.
|
|
// edi: constructor
|
|
__ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
|
|
// Will both indicate a NULL and a Smi
|
|
__ JumpIfSmi(eax, &rt_call);
|
|
// edi: constructor
|
|
// eax: initial map (if proven valid below)
|
|
__ CmpObjectType(eax, MAP_TYPE, ebx);
|
|
__ j(not_equal, &rt_call);
|
|
|
|
// Check that the constructor is not constructing a JSFunction (see
|
|
// comments in Runtime_NewObject in runtime.cc). In which case the
|
|
// initial map's instance type would be JS_FUNCTION_TYPE.
|
|
// edi: constructor
|
|
// eax: initial map
|
|
__ CmpInstanceType(eax, JS_FUNCTION_TYPE);
|
|
__ j(equal, &rt_call);
|
|
|
|
if (count_constructions) {
|
|
Label allocate;
|
|
// Decrease generous allocation count.
|
|
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
|
|
__ dec_b(FieldOperand(ecx,
|
|
SharedFunctionInfo::kConstructionCountOffset));
|
|
__ j(not_zero, &allocate);
|
|
|
|
__ push(eax);
|
|
__ push(edi);
|
|
|
|
__ push(edi); // constructor
|
|
// The call will replace the stub, so the countdown is only done once.
|
|
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
|
|
|
|
__ pop(edi);
|
|
__ pop(eax);
|
|
|
|
__ bind(&allocate);
|
|
}
|
|
|
|
// Now allocate the JSObject on the heap.
|
|
// edi: constructor
|
|
// eax: initial map
|
|
__ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset));
|
|
__ shl(edi, kPointerSizeLog2);
|
|
__ Allocate(edi, ebx, edi, no_reg, &rt_call, NO_ALLOCATION_FLAGS);
|
|
// Allocated the JSObject, now initialize the fields.
|
|
// eax: initial map
|
|
// ebx: JSObject
|
|
// edi: start of next object
|
|
__ mov(Operand(ebx, JSObject::kMapOffset), eax);
|
|
Factory* factory = masm->isolate()->factory();
|
|
__ mov(ecx, factory->empty_fixed_array());
|
|
__ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx);
|
|
__ mov(Operand(ebx, JSObject::kElementsOffset), ecx);
|
|
// Set extra fields in the newly allocated object.
|
|
// eax: initial map
|
|
// ebx: JSObject
|
|
// edi: start of next object
|
|
__ lea(ecx, Operand(ebx, JSObject::kHeaderSize));
|
|
__ mov(edx, factory->undefined_value());
|
|
if (count_constructions) {
|
|
__ movzx_b(esi,
|
|
FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset));
|
|
__ lea(esi,
|
|
Operand(ebx, esi, times_pointer_size, JSObject::kHeaderSize));
|
|
// esi: offset of first field after pre-allocated fields
|
|
if (FLAG_debug_code) {
|
|
__ cmp(esi, edi);
|
|
__ Assert(less_equal,
|
|
kUnexpectedNumberOfPreAllocatedPropertyFields);
|
|
}
|
|
__ InitializeFieldsWithFiller(ecx, esi, edx);
|
|
__ mov(edx, factory->one_pointer_filler_map());
|
|
}
|
|
__ InitializeFieldsWithFiller(ecx, edi, edx);
|
|
|
|
// Add the object tag to make the JSObject real, so that we can continue
|
|
// and jump into the continuation code at any time from now on. Any
|
|
// failures need to undo the allocation, so that the heap is in a
|
|
// consistent state and verifiable.
|
|
// eax: initial map
|
|
// ebx: JSObject
|
|
// edi: start of next object
|
|
__ or_(ebx, Immediate(kHeapObjectTag));
|
|
|
|
// Check if a non-empty properties array is needed.
|
|
// Allocate and initialize a FixedArray if it is.
|
|
// eax: initial map
|
|
// ebx: JSObject
|
|
// edi: start of next object
|
|
// Calculate the total number of properties described by the map.
|
|
__ movzx_b(edx, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset));
|
|
__ movzx_b(ecx,
|
|
FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset));
|
|
__ add(edx, ecx);
|
|
// Calculate unused properties past the end of the in-object properties.
|
|
__ movzx_b(ecx, FieldOperand(eax, Map::kInObjectPropertiesOffset));
|
|
__ sub(edx, ecx);
|
|
// Done if no extra properties are to be allocated.
|
|
__ j(zero, &allocated);
|
|
__ Assert(positive, kPropertyAllocationCountFailed);
|
|
|
|
// Scale the number of elements by pointer size and add the header for
|
|
// FixedArrays to the start of the next object calculation from above.
|
|
// ebx: JSObject
|
|
// edi: start of next object (will be start of FixedArray)
|
|
// edx: number of elements in properties array
|
|
__ Allocate(FixedArray::kHeaderSize,
|
|
times_pointer_size,
|
|
edx,
|
|
REGISTER_VALUE_IS_INT32,
|
|
edi,
|
|
ecx,
|
|
no_reg,
|
|
&undo_allocation,
|
|
RESULT_CONTAINS_TOP);
|
|
|
|
// Initialize the FixedArray.
|
|
// ebx: JSObject
|
|
// edi: FixedArray
|
|
// edx: number of elements
|
|
// ecx: start of next object
|
|
__ mov(eax, factory->fixed_array_map());
|
|
__ mov(Operand(edi, FixedArray::kMapOffset), eax); // setup the map
|
|
__ SmiTag(edx);
|
|
__ mov(Operand(edi, FixedArray::kLengthOffset), edx); // and length
|
|
|
|
// Initialize the fields to undefined.
|
|
// ebx: JSObject
|
|
// edi: FixedArray
|
|
// ecx: start of next object
|
|
{ Label loop, entry;
|
|
__ mov(edx, factory->undefined_value());
|
|
__ lea(eax, Operand(edi, FixedArray::kHeaderSize));
|
|
__ jmp(&entry);
|
|
__ bind(&loop);
|
|
__ mov(Operand(eax, 0), edx);
|
|
__ add(eax, Immediate(kPointerSize));
|
|
__ bind(&entry);
|
|
__ cmp(eax, ecx);
|
|
__ j(below, &loop);
|
|
}
|
|
|
|
// Store the initialized FixedArray into the properties field of
|
|
// the JSObject
|
|
// ebx: JSObject
|
|
// edi: FixedArray
|
|
__ or_(edi, Immediate(kHeapObjectTag)); // add the heap tag
|
|
__ mov(FieldOperand(ebx, JSObject::kPropertiesOffset), edi);
|
|
|
|
|
|
// Continue with JSObject being successfully allocated
|
|
// ebx: JSObject
|
|
__ jmp(&allocated);
|
|
|
|
// Undo the setting of the new top so that the heap is verifiable. For
|
|
// example, the map's unused properties potentially do not match the
|
|
// allocated objects unused properties.
|
|
// ebx: JSObject (previous new top)
|
|
__ bind(&undo_allocation);
|
|
__ UndoAllocationInNewSpace(ebx);
|
|
}
|
|
|
|
// Allocate the new receiver object using the runtime call.
|
|
__ bind(&rt_call);
|
|
// Must restore edi (constructor) before calling runtime.
|
|
__ mov(edi, Operand(esp, 0));
|
|
// edi: function (constructor)
|
|
__ push(edi);
|
|
__ CallRuntime(Runtime::kNewObject, 1);
|
|
__ mov(ebx, eax); // store result in ebx
|
|
|
|
// New object allocated.
|
|
// ebx: newly allocated object
|
|
__ bind(&allocated);
|
|
// Retrieve the function from the stack.
|
|
__ pop(edi);
|
|
|
|
// Retrieve smi-tagged arguments count from the stack.
|
|
__ mov(eax, Operand(esp, 0));
|
|
__ SmiUntag(eax);
|
|
|
|
// Push the allocated receiver to the stack. We need two copies
|
|
// because we may have to return the original one and the calling
|
|
// conventions dictate that the called function pops the receiver.
|
|
__ push(ebx);
|
|
__ push(ebx);
|
|
|
|
// Set up pointer to last argument.
|
|
__ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
|
|
|
|
// Copy arguments and receiver to the expression stack.
|
|
Label loop, entry;
|
|
__ mov(ecx, eax);
|
|
__ jmp(&entry);
|
|
__ bind(&loop);
|
|
__ push(Operand(ebx, ecx, times_4, 0));
|
|
__ bind(&entry);
|
|
__ dec(ecx);
|
|
__ j(greater_equal, &loop);
|
|
|
|
// Call the function.
|
|
if (is_api_function) {
|
|
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
|
|
Handle<Code> code =
|
|
masm->isolate()->builtins()->HandleApiCallConstruct();
|
|
__ call(code, RelocInfo::CODE_TARGET);
|
|
} else {
|
|
ParameterCount actual(eax);
|
|
__ InvokeFunction(edi, actual, CALL_FUNCTION,
|
|
NullCallWrapper());
|
|
}
|
|
|
|
// Store offset of return address for deoptimizer.
|
|
if (!is_api_function && !count_constructions) {
|
|
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
|
|
}
|
|
|
|
// Restore context from the frame.
|
|
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
|
|
|
|
// If the result is an object (in the ECMA sense), we should get rid
|
|
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
|
|
// on page 74.
|
|
Label use_receiver, exit;
|
|
|
|
// If the result is a smi, it is *not* an object in the ECMA sense.
|
|
__ JumpIfSmi(eax, &use_receiver);
|
|
|
|
// If the type of the result (stored in its map) is less than
|
|
// FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
|
|
__ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
|
|
__ j(above_equal, &exit);
|
|
|
|
// Throw away the result of the constructor invocation and use the
|
|
// on-stack receiver as the result.
|
|
__ bind(&use_receiver);
|
|
__ mov(eax, Operand(esp, 0));
|
|
|
|
// Restore the arguments count and leave the construct frame.
|
|
__ bind(&exit);
|
|
__ mov(ebx, Operand(esp, kPointerSize)); // Get arguments count.
|
|
|
|
// Leave construct frame.
|
|
}
|
|
|
|
// Remove caller arguments from the stack and return.
|
|
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
|
|
__ pop(ecx);
|
|
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
|
|
__ push(ecx);
|
|
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
|
|
Generate_JSConstructStubHelper(masm, false, true);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
|
|
Generate_JSConstructStubHelper(masm, false, false);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
|
|
Generate_JSConstructStubHelper(masm, true, false);
|
|
}
|
|
|
|
|
|
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
|
|
bool is_construct) {
|
|
ProfileEntryHookStub::MaybeCallEntryHook(masm);
|
|
|
|
// Clear the context before we push it when entering the internal frame.
|
|
__ Set(esi, Immediate(0));
|
|
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
|
|
// Load the previous frame pointer (ebx) to access C arguments
|
|
__ mov(ebx, Operand(ebp, 0));
|
|
|
|
// Get the function from the frame and setup the context.
|
|
__ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
|
|
__ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset));
|
|
|
|
// Push the function and the receiver onto the stack.
|
|
__ push(ecx);
|
|
__ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));
|
|
|
|
// Load the number of arguments and setup pointer to the arguments.
|
|
__ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
|
|
__ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));
|
|
|
|
// Copy arguments to the stack in a loop.
|
|
Label loop, entry;
|
|
__ Set(ecx, Immediate(0));
|
|
__ jmp(&entry);
|
|
__ bind(&loop);
|
|
__ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv
|
|
__ push(Operand(edx, 0)); // dereference handle
|
|
__ inc(ecx);
|
|
__ bind(&entry);
|
|
__ cmp(ecx, eax);
|
|
__ j(not_equal, &loop);
|
|
|
|
// Get the function from the stack and call it.
|
|
// kPointerSize for the receiver.
|
|
__ mov(edi, Operand(esp, eax, times_4, kPointerSize));
|
|
|
|
// Invoke the code.
|
|
if (is_construct) {
|
|
// No type feedback cell is available
|
|
Handle<Object> undefined_sentinel(
|
|
masm->isolate()->heap()->undefined_value(), masm->isolate());
|
|
__ mov(ebx, Immediate(undefined_sentinel));
|
|
CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
|
|
__ CallStub(&stub);
|
|
} else {
|
|
ParameterCount actual(eax);
|
|
__ InvokeFunction(edi, actual, CALL_FUNCTION,
|
|
NullCallWrapper());
|
|
}
|
|
|
|
// Exit the internal frame. Notice that this also removes the empty.
|
|
// context and the function left on the stack by the code
|
|
// invocation.
|
|
}
|
|
__ ret(kPointerSize); // Remove receiver.
|
|
}
|
|
|
|
|
|
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
|
|
Generate_JSEntryTrampolineHelper(masm, false);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
|
|
Generate_JSEntryTrampolineHelper(masm, true);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_CompileUnoptimized(MacroAssembler* masm) {
|
|
CallRuntimePassFunction(masm, Runtime::kCompileUnoptimized);
|
|
GenerateTailCallToReturnedCode(masm);
|
|
}
|
|
|
|
|
|
|
|
static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) {
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
// Push a copy of the function.
|
|
__ push(edi);
|
|
// Function is also the parameter to the runtime call.
|
|
__ push(edi);
|
|
// Whether to compile in a background thread.
|
|
__ Push(masm->isolate()->factory()->ToBoolean(concurrent));
|
|
|
|
__ CallRuntime(Runtime::kCompileOptimized, 2);
|
|
// Restore receiver.
|
|
__ pop(edi);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
|
|
CallCompileOptimized(masm, false);
|
|
GenerateTailCallToReturnedCode(masm);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
|
|
CallCompileOptimized(masm, true);
|
|
GenerateTailCallToReturnedCode(masm);
|
|
}
|
|
|
|
|
|
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
|
|
// For now, we are relying on the fact that make_code_young doesn't do any
|
|
// garbage collection which allows us to save/restore the registers without
|
|
// worrying about which of them contain pointers. We also don't build an
|
|
// internal frame to make the code faster, since we shouldn't have to do stack
|
|
// crawls in MakeCodeYoung. This seems a bit fragile.
|
|
|
|
// Re-execute the code that was patched back to the young age when
|
|
// the stub returns.
|
|
__ sub(Operand(esp, 0), Immediate(5));
|
|
__ pushad();
|
|
__ mov(eax, Operand(esp, 8 * kPointerSize));
|
|
{
|
|
FrameScope scope(masm, StackFrame::MANUAL);
|
|
__ PrepareCallCFunction(2, ebx);
|
|
__ mov(Operand(esp, 1 * kPointerSize),
|
|
Immediate(ExternalReference::isolate_address(masm->isolate())));
|
|
__ mov(Operand(esp, 0), eax);
|
|
__ CallCFunction(
|
|
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
|
|
}
|
|
__ popad();
|
|
__ ret(0);
|
|
}
|
|
|
|
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
|
|
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
|
|
MacroAssembler* masm) { \
|
|
GenerateMakeCodeYoungAgainCommon(masm); \
|
|
} \
|
|
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
|
|
MacroAssembler* masm) { \
|
|
GenerateMakeCodeYoungAgainCommon(masm); \
|
|
}
|
|
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
|
|
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
|
|
|
|
|
|
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
|
|
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
|
|
// that make_code_young doesn't do any garbage collection which allows us to
|
|
// save/restore the registers without worrying about which of them contain
|
|
// pointers.
|
|
__ pushad();
|
|
__ mov(eax, Operand(esp, 8 * kPointerSize));
|
|
__ sub(eax, Immediate(Assembler::kCallInstructionLength));
|
|
{ // NOLINT
|
|
FrameScope scope(masm, StackFrame::MANUAL);
|
|
__ PrepareCallCFunction(2, ebx);
|
|
__ mov(Operand(esp, 1 * kPointerSize),
|
|
Immediate(ExternalReference::isolate_address(masm->isolate())));
|
|
__ mov(Operand(esp, 0), eax);
|
|
__ CallCFunction(
|
|
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
|
|
2);
|
|
}
|
|
__ popad();
|
|
|
|
// Perform prologue operations usually performed by the young code stub.
|
|
__ pop(eax); // Pop return address into scratch register.
|
|
__ push(ebp); // Caller's frame pointer.
|
|
__ mov(ebp, esp);
|
|
__ push(esi); // Callee's context.
|
|
__ push(edi); // Callee's JS Function.
|
|
__ push(eax); // Push return address after frame prologue.
|
|
|
|
// Jump to point after the code-age stub.
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
|
|
GenerateMakeCodeYoungAgainCommon(masm);
|
|
}
|
|
|
|
|
|
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
|
|
SaveFPRegsMode save_doubles) {
|
|
// Enter an internal frame.
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
|
|
// Preserve registers across notification, this is important for compiled
|
|
// stubs that tail call the runtime on deopts passing their parameters in
|
|
// registers.
|
|
__ pushad();
|
|
__ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
|
|
__ popad();
|
|
// Tear down internal frame.
|
|
}
|
|
|
|
__ pop(MemOperand(esp, 0)); // Ignore state offset
|
|
__ ret(0); // Return to IC Miss stub, continuation still on stack.
|
|
}
|
|
|
|
|
|
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
|
|
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
|
|
if (Serializer::enabled()) {
|
|
PlatformFeatureScope sse2(SSE2);
|
|
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
|
|
} else {
|
|
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
|
|
}
|
|
}
|
|
|
|
|
|
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
|
|
Deoptimizer::BailoutType type) {
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
|
|
// Pass deoptimization type to the runtime system.
|
|
__ push(Immediate(Smi::FromInt(static_cast<int>(type))));
|
|
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
|
|
|
|
// Tear down internal frame.
|
|
}
|
|
|
|
// Get the full codegen state from the stack and untag it.
|
|
__ mov(ecx, Operand(esp, 1 * kPointerSize));
|
|
__ SmiUntag(ecx);
|
|
|
|
// Switch on the state.
|
|
Label not_no_registers, not_tos_eax;
|
|
__ cmp(ecx, FullCodeGenerator::NO_REGISTERS);
|
|
__ j(not_equal, ¬_no_registers, Label::kNear);
|
|
__ ret(1 * kPointerSize); // Remove state.
|
|
|
|
__ bind(¬_no_registers);
|
|
__ mov(eax, Operand(esp, 2 * kPointerSize));
|
|
__ cmp(ecx, FullCodeGenerator::TOS_REG);
|
|
__ j(not_equal, ¬_tos_eax, Label::kNear);
|
|
__ ret(2 * kPointerSize); // Remove state, eax.
|
|
|
|
__ bind(¬_tos_eax);
|
|
__ Abort(kNoCasesLeft);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
|
|
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
|
|
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
|
|
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
|
|
Factory* factory = masm->isolate()->factory();
|
|
|
|
// 1. Make sure we have at least one argument.
|
|
{ Label done;
|
|
__ test(eax, eax);
|
|
__ j(not_zero, &done);
|
|
__ pop(ebx);
|
|
__ push(Immediate(factory->undefined_value()));
|
|
__ push(ebx);
|
|
__ inc(eax);
|
|
__ bind(&done);
|
|
}
|
|
|
|
// 2. Get the function to call (passed as receiver) from the stack, check
|
|
// if it is a function.
|
|
Label slow, non_function;
|
|
// 1 ~ return address.
|
|
__ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
|
|
__ JumpIfSmi(edi, &non_function);
|
|
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
|
|
__ j(not_equal, &slow);
|
|
|
|
|
|
// 3a. Patch the first argument if necessary when calling a function.
|
|
Label shift_arguments;
|
|
__ Set(edx, Immediate(0)); // indicate regular JS_FUNCTION
|
|
{ Label convert_to_object, use_global_receiver, patch_receiver;
|
|
// Change context eagerly in case we need the global receiver.
|
|
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
|
|
|
|
// Do not transform the receiver for strict mode functions.
|
|
__ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
|
|
__ test_b(FieldOperand(ebx, SharedFunctionInfo::kStrictModeByteOffset),
|
|
1 << SharedFunctionInfo::kStrictModeBitWithinByte);
|
|
__ j(not_equal, &shift_arguments);
|
|
|
|
// Do not transform the receiver for natives (shared already in ebx).
|
|
__ test_b(FieldOperand(ebx, SharedFunctionInfo::kNativeByteOffset),
|
|
1 << SharedFunctionInfo::kNativeBitWithinByte);
|
|
__ j(not_equal, &shift_arguments);
|
|
|
|
// Compute the receiver in non-strict mode.
|
|
__ mov(ebx, Operand(esp, eax, times_4, 0)); // First argument.
|
|
|
|
// Call ToObject on the receiver if it is not an object, or use the
|
|
// global object if it is null or undefined.
|
|
__ JumpIfSmi(ebx, &convert_to_object);
|
|
__ cmp(ebx, factory->null_value());
|
|
__ j(equal, &use_global_receiver);
|
|
__ cmp(ebx, factory->undefined_value());
|
|
__ j(equal, &use_global_receiver);
|
|
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
|
|
__ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx);
|
|
__ j(above_equal, &shift_arguments);
|
|
|
|
__ bind(&convert_to_object);
|
|
|
|
{ // In order to preserve argument count.
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
__ SmiTag(eax);
|
|
__ push(eax);
|
|
|
|
__ push(ebx);
|
|
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
|
|
__ mov(ebx, eax);
|
|
__ Set(edx, Immediate(0)); // restore
|
|
|
|
__ pop(eax);
|
|
__ SmiUntag(eax);
|
|
}
|
|
|
|
// Restore the function to edi.
|
|
__ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
|
|
__ jmp(&patch_receiver);
|
|
|
|
__ bind(&use_global_receiver);
|
|
__ mov(ebx,
|
|
Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
|
|
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
|
|
|
|
__ bind(&patch_receiver);
|
|
__ mov(Operand(esp, eax, times_4, 0), ebx);
|
|
|
|
__ jmp(&shift_arguments);
|
|
}
|
|
|
|
// 3b. Check for function proxy.
|
|
__ bind(&slow);
|
|
__ Set(edx, Immediate(1)); // indicate function proxy
|
|
__ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
|
|
__ j(equal, &shift_arguments);
|
|
__ bind(&non_function);
|
|
__ Set(edx, Immediate(2)); // indicate non-function
|
|
|
|
// 3c. Patch the first argument when calling a non-function. The
|
|
// CALL_NON_FUNCTION builtin expects the non-function callee as
|
|
// receiver, so overwrite the first argument which will ultimately
|
|
// become the receiver.
|
|
__ mov(Operand(esp, eax, times_4, 0), edi);
|
|
|
|
// 4. Shift arguments and return address one slot down on the stack
|
|
// (overwriting the original receiver). Adjust argument count to make
|
|
// the original first argument the new receiver.
|
|
__ bind(&shift_arguments);
|
|
{ Label loop;
|
|
__ mov(ecx, eax);
|
|
__ bind(&loop);
|
|
__ mov(ebx, Operand(esp, ecx, times_4, 0));
|
|
__ mov(Operand(esp, ecx, times_4, kPointerSize), ebx);
|
|
__ dec(ecx);
|
|
__ j(not_sign, &loop); // While non-negative (to copy return address).
|
|
__ pop(ebx); // Discard copy of return address.
|
|
__ dec(eax); // One fewer argument (first argument is new receiver).
|
|
}
|
|
|
|
// 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
|
|
// or a function proxy via CALL_FUNCTION_PROXY.
|
|
{ Label function, non_proxy;
|
|
__ test(edx, edx);
|
|
__ j(zero, &function);
|
|
__ Set(ebx, Immediate(0));
|
|
__ cmp(edx, Immediate(1));
|
|
__ j(not_equal, &non_proxy);
|
|
|
|
__ pop(edx); // return address
|
|
__ push(edi); // re-add proxy object as additional argument
|
|
__ push(edx);
|
|
__ inc(eax);
|
|
__ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
|
|
__ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
|
|
RelocInfo::CODE_TARGET);
|
|
|
|
__ bind(&non_proxy);
|
|
__ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
|
|
__ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
|
|
RelocInfo::CODE_TARGET);
|
|
__ bind(&function);
|
|
}
|
|
|
|
// 5b. Get the code to call from the function and check that the number of
|
|
// expected arguments matches what we're providing. If so, jump
|
|
// (tail-call) to the code in register edx without checking arguments.
|
|
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
|
|
__ mov(ebx,
|
|
FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
|
|
__ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
|
|
__ SmiUntag(ebx);
|
|
__ cmp(eax, ebx);
|
|
__ j(not_equal,
|
|
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline());
|
|
|
|
ParameterCount expected(0);
|
|
__ InvokeCode(edx, expected, expected, JUMP_FUNCTION, NullCallWrapper());
|
|
}
|
|
|
|
|
|
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
|
|
static const int kArgumentsOffset = 2 * kPointerSize;
|
|
static const int kReceiverOffset = 3 * kPointerSize;
|
|
static const int kFunctionOffset = 4 * kPointerSize;
|
|
{
|
|
FrameScope frame_scope(masm, StackFrame::INTERNAL);
|
|
|
|
__ push(Operand(ebp, kFunctionOffset)); // push this
|
|
__ push(Operand(ebp, kArgumentsOffset)); // push arguments
|
|
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
|
|
|
|
// Check the stack for overflow. We are not trying to catch
|
|
// interruptions (e.g. debug break and preemption) here, so the "real stack
|
|
// limit" is checked.
|
|
Label okay;
|
|
ExternalReference real_stack_limit =
|
|
ExternalReference::address_of_real_stack_limit(masm->isolate());
|
|
__ mov(edi, Operand::StaticVariable(real_stack_limit));
|
|
// Make ecx the space we have left. The stack might already be overflowed
|
|
// here which will cause ecx to become negative.
|
|
__ mov(ecx, esp);
|
|
__ sub(ecx, edi);
|
|
// Make edx the space we need for the array when it is unrolled onto the
|
|
// stack.
|
|
__ mov(edx, eax);
|
|
__ shl(edx, kPointerSizeLog2 - kSmiTagSize);
|
|
// Check if the arguments will overflow the stack.
|
|
__ cmp(ecx, edx);
|
|
__ j(greater, &okay); // Signed comparison.
|
|
|
|
// Out of stack space.
|
|
__ push(Operand(ebp, 4 * kPointerSize)); // push this
|
|
__ push(eax);
|
|
__ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
|
|
__ bind(&okay);
|
|
// End of stack check.
|
|
|
|
// Push current index and limit.
|
|
const int kLimitOffset =
|
|
StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
|
|
const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
|
|
__ push(eax); // limit
|
|
__ push(Immediate(0)); // index
|
|
|
|
// Get the receiver.
|
|
__ mov(ebx, Operand(ebp, kReceiverOffset));
|
|
|
|
// Check that the function is a JS function (otherwise it must be a proxy).
|
|
Label push_receiver, use_global_receiver;
|
|
__ mov(edi, Operand(ebp, kFunctionOffset));
|
|
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
|
|
__ j(not_equal, &push_receiver);
|
|
|
|
// Change context eagerly to get the right global object if necessary.
|
|
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
|
|
|
|
// Compute the receiver.
|
|
// Do not transform the receiver for strict mode functions.
|
|
Label call_to_object;
|
|
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
|
|
__ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
|
|
1 << SharedFunctionInfo::kStrictModeBitWithinByte);
|
|
__ j(not_equal, &push_receiver);
|
|
|
|
Factory* factory = masm->isolate()->factory();
|
|
|
|
// Do not transform the receiver for natives (shared already in ecx).
|
|
__ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
|
|
1 << SharedFunctionInfo::kNativeBitWithinByte);
|
|
__ j(not_equal, &push_receiver);
|
|
|
|
// Compute the receiver in non-strict mode.
|
|
// Call ToObject on the receiver if it is not an object, or use the
|
|
// global object if it is null or undefined.
|
|
__ JumpIfSmi(ebx, &call_to_object);
|
|
__ cmp(ebx, factory->null_value());
|
|
__ j(equal, &use_global_receiver);
|
|
__ cmp(ebx, factory->undefined_value());
|
|
__ j(equal, &use_global_receiver);
|
|
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
|
|
__ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx);
|
|
__ j(above_equal, &push_receiver);
|
|
|
|
__ bind(&call_to_object);
|
|
__ push(ebx);
|
|
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
|
|
__ mov(ebx, eax);
|
|
__ jmp(&push_receiver);
|
|
|
|
__ bind(&use_global_receiver);
|
|
__ mov(ebx,
|
|
Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
|
|
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
|
|
|
|
// Push the receiver.
|
|
__ bind(&push_receiver);
|
|
__ push(ebx);
|
|
|
|
// Copy all arguments from the array to the stack.
|
|
Label entry, loop;
|
|
__ mov(ecx, Operand(ebp, kIndexOffset));
|
|
__ jmp(&entry);
|
|
__ bind(&loop);
|
|
__ mov(edx, Operand(ebp, kArgumentsOffset)); // load arguments
|
|
|
|
// Use inline caching to speed up access to arguments.
|
|
Handle<Code> ic = masm->isolate()->builtins()->KeyedLoadIC_Initialize();
|
|
__ call(ic, RelocInfo::CODE_TARGET);
|
|
// It is important that we do not have a test instruction after the
|
|
// call. A test instruction after the call is used to indicate that
|
|
// we have generated an inline version of the keyed load. In this
|
|
// case, we know that we are not generating a test instruction next.
|
|
|
|
// Push the nth argument.
|
|
__ push(eax);
|
|
|
|
// Update the index on the stack and in register eax.
|
|
__ mov(ecx, Operand(ebp, kIndexOffset));
|
|
__ add(ecx, Immediate(1 << kSmiTagSize));
|
|
__ mov(Operand(ebp, kIndexOffset), ecx);
|
|
|
|
__ bind(&entry);
|
|
__ cmp(ecx, Operand(ebp, kLimitOffset));
|
|
__ j(not_equal, &loop);
|
|
|
|
// Call the function.
|
|
Label call_proxy;
|
|
__ mov(eax, ecx);
|
|
ParameterCount actual(eax);
|
|
__ SmiUntag(eax);
|
|
__ mov(edi, Operand(ebp, kFunctionOffset));
|
|
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
|
|
__ j(not_equal, &call_proxy);
|
|
__ InvokeFunction(edi, actual, CALL_FUNCTION, NullCallWrapper());
|
|
|
|
frame_scope.GenerateLeaveFrame();
|
|
__ ret(3 * kPointerSize); // remove this, receiver, and arguments
|
|
|
|
// Call the function proxy.
|
|
__ bind(&call_proxy);
|
|
__ push(edi); // add function proxy as last argument
|
|
__ inc(eax);
|
|
__ Set(ebx, Immediate(0));
|
|
__ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
|
|
__ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
|
|
RelocInfo::CODE_TARGET);
|
|
|
|
// Leave internal frame.
|
|
}
|
|
__ ret(3 * kPointerSize); // remove this, receiver, and arguments
|
|
}
|
|
|
|
|
|
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- eax : argc
|
|
// -- esp[0] : return address
|
|
// -- esp[4] : last argument
|
|
// -----------------------------------
|
|
Label generic_array_code;
|
|
|
|
// Get the InternalArray function.
|
|
__ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, edi);
|
|
|
|
if (FLAG_debug_code) {
|
|
// Initial map for the builtin InternalArray function should be a map.
|
|
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
|
|
// Will both indicate a NULL and a Smi.
|
|
__ test(ebx, Immediate(kSmiTagMask));
|
|
__ Assert(not_zero, kUnexpectedInitialMapForInternalArrayFunction);
|
|
__ CmpObjectType(ebx, MAP_TYPE, ecx);
|
|
__ Assert(equal, kUnexpectedInitialMapForInternalArrayFunction);
|
|
}
|
|
|
|
// Run the native code for the InternalArray function called as a normal
|
|
// function.
|
|
// tail call a stub
|
|
InternalArrayConstructorStub stub(masm->isolate());
|
|
__ TailCallStub(&stub);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- eax : argc
|
|
// -- esp[0] : return address
|
|
// -- esp[4] : last argument
|
|
// -----------------------------------
|
|
Label generic_array_code;
|
|
|
|
// Get the Array function.
|
|
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi);
|
|
|
|
if (FLAG_debug_code) {
|
|
// Initial map for the builtin Array function should be a map.
|
|
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
|
|
// Will both indicate a NULL and a Smi.
|
|
__ test(ebx, Immediate(kSmiTagMask));
|
|
__ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
|
|
__ CmpObjectType(ebx, MAP_TYPE, ecx);
|
|
__ Assert(equal, kUnexpectedInitialMapForArrayFunction);
|
|
}
|
|
|
|
// Run the native code for the Array function called as a normal function.
|
|
// tail call a stub
|
|
Handle<Object> undefined_sentinel(
|
|
masm->isolate()->heap()->undefined_value(),
|
|
masm->isolate());
|
|
__ mov(ebx, Immediate(undefined_sentinel));
|
|
ArrayConstructorStub stub(masm->isolate());
|
|
__ TailCallStub(&stub);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- eax : number of arguments
|
|
// -- edi : constructor function
|
|
// -- esp[0] : return address
|
|
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
|
|
// -- esp[(argc + 1) * 4] : receiver
|
|
// -----------------------------------
|
|
Counters* counters = masm->isolate()->counters();
|
|
__ IncrementCounter(counters->string_ctor_calls(), 1);
|
|
|
|
if (FLAG_debug_code) {
|
|
__ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, ecx);
|
|
__ cmp(edi, ecx);
|
|
__ Assert(equal, kUnexpectedStringFunction);
|
|
}
|
|
|
|
// Load the first argument into eax and get rid of the rest
|
|
// (including the receiver).
|
|
Label no_arguments;
|
|
__ test(eax, eax);
|
|
__ j(zero, &no_arguments);
|
|
__ mov(ebx, Operand(esp, eax, times_pointer_size, 0));
|
|
__ pop(ecx);
|
|
__ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
|
|
__ push(ecx);
|
|
__ mov(eax, ebx);
|
|
|
|
// Lookup the argument in the number to string cache.
|
|
Label not_cached, argument_is_string;
|
|
__ LookupNumberStringCache(eax, // Input.
|
|
ebx, // Result.
|
|
ecx, // Scratch 1.
|
|
edx, // Scratch 2.
|
|
¬_cached);
|
|
__ IncrementCounter(counters->string_ctor_cached_number(), 1);
|
|
__ bind(&argument_is_string);
|
|
// ----------- S t a t e -------------
|
|
// -- ebx : argument converted to string
|
|
// -- edi : constructor function
|
|
// -- esp[0] : return address
|
|
// -----------------------------------
|
|
|
|
// Allocate a JSValue and put the tagged pointer into eax.
|
|
Label gc_required;
|
|
__ Allocate(JSValue::kSize,
|
|
eax, // Result.
|
|
ecx, // New allocation top (we ignore it).
|
|
no_reg,
|
|
&gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map.
|
|
__ LoadGlobalFunctionInitialMap(edi, ecx);
|
|
if (FLAG_debug_code) {
|
|
__ cmpb(FieldOperand(ecx, Map::kInstanceSizeOffset),
|
|
JSValue::kSize >> kPointerSizeLog2);
|
|
__ Assert(equal, kUnexpectedStringWrapperInstanceSize);
|
|
__ cmpb(FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset), 0);
|
|
__ Assert(equal, kUnexpectedUnusedPropertiesOfStringWrapper);
|
|
}
|
|
__ mov(FieldOperand(eax, HeapObject::kMapOffset), ecx);
|
|
|
|
// Set properties and elements.
|
|
Factory* factory = masm->isolate()->factory();
|
|
__ Set(ecx, Immediate(factory->empty_fixed_array()));
|
|
__ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx);
|
|
__ mov(FieldOperand(eax, JSObject::kElementsOffset), ecx);
|
|
|
|
// Set the value.
|
|
__ mov(FieldOperand(eax, JSValue::kValueOffset), ebx);
|
|
|
|
// Ensure the object is fully initialized.
|
|
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
|
|
|
|
// We're done. Return.
|
|
__ ret(0);
|
|
|
|
// The argument was not found in the number to string cache. Check
|
|
// if it's a string already before calling the conversion builtin.
|
|
Label convert_argument;
|
|
__ bind(¬_cached);
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
__ JumpIfSmi(eax, &convert_argument);
|
|
Condition is_string = masm->IsObjectStringType(eax, ebx, ecx);
|
|
__ j(NegateCondition(is_string), &convert_argument);
|
|
__ mov(ebx, eax);
|
|
__ IncrementCounter(counters->string_ctor_string_value(), 1);
|
|
__ jmp(&argument_is_string);
|
|
|
|
// Invoke the conversion builtin and put the result into ebx.
|
|
__ bind(&convert_argument);
|
|
__ IncrementCounter(counters->string_ctor_conversions(), 1);
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
__ push(edi); // Preserve the function.
|
|
__ push(eax);
|
|
__ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
|
|
__ pop(edi);
|
|
}
|
|
__ mov(ebx, eax);
|
|
__ jmp(&argument_is_string);
|
|
|
|
// Load the empty string into ebx, remove the receiver from the
|
|
// stack, and jump back to the case where the argument is a string.
|
|
__ bind(&no_arguments);
|
|
__ Set(ebx, Immediate(factory->empty_string()));
|
|
__ pop(ecx);
|
|
__ lea(esp, Operand(esp, kPointerSize));
|
|
__ push(ecx);
|
|
__ jmp(&argument_is_string);
|
|
|
|
// At this point the argument is already a string. Call runtime to
|
|
// create a string wrapper.
|
|
__ bind(&gc_required);
|
|
__ IncrementCounter(counters->string_ctor_gc_required(), 1);
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
__ push(ebx);
|
|
__ CallRuntime(Runtime::kNewStringWrapper, 1);
|
|
}
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
|
|
__ push(ebp);
|
|
__ mov(ebp, esp);
|
|
|
|
// Store the arguments adaptor context sentinel.
|
|
__ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
|
|
|
// Push the function on the stack.
|
|
__ push(edi);
|
|
|
|
// Preserve the number of arguments on the stack. Must preserve eax,
|
|
// ebx and ecx because these registers are used when copying the
|
|
// arguments and the receiver.
|
|
STATIC_ASSERT(kSmiTagSize == 1);
|
|
__ lea(edi, Operand(eax, eax, times_1, kSmiTag));
|
|
__ push(edi);
|
|
}
|
|
|
|
|
|
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
|
|
// Retrieve the number of arguments from the stack.
|
|
__ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
|
|
// Leave the frame.
|
|
__ leave();
|
|
|
|
// Remove caller arguments from the stack.
|
|
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
|
|
__ pop(ecx);
|
|
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
|
|
__ push(ecx);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- eax : actual number of arguments
|
|
// -- ebx : expected number of arguments
|
|
// -- edi : function (passed through to callee)
|
|
// -----------------------------------
|
|
|
|
Label invoke, dont_adapt_arguments;
|
|
__ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1);
|
|
|
|
Label enough, too_few;
|
|
__ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
|
|
__ cmp(eax, ebx);
|
|
__ j(less, &too_few);
|
|
__ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
|
|
__ j(equal, &dont_adapt_arguments);
|
|
|
|
{ // Enough parameters: Actual >= expected.
|
|
__ bind(&enough);
|
|
EnterArgumentsAdaptorFrame(masm);
|
|
|
|
// Copy receiver and all expected arguments.
|
|
const int offset = StandardFrameConstants::kCallerSPOffset;
|
|
__ lea(eax, Operand(ebp, eax, times_4, offset));
|
|
__ mov(edi, -1); // account for receiver
|
|
|
|
Label copy;
|
|
__ bind(©);
|
|
__ inc(edi);
|
|
__ push(Operand(eax, 0));
|
|
__ sub(eax, Immediate(kPointerSize));
|
|
__ cmp(edi, ebx);
|
|
__ j(less, ©);
|
|
__ jmp(&invoke);
|
|
}
|
|
|
|
{ // Too few parameters: Actual < expected.
|
|
__ bind(&too_few);
|
|
EnterArgumentsAdaptorFrame(masm);
|
|
|
|
// Copy receiver and all actual arguments.
|
|
const int offset = StandardFrameConstants::kCallerSPOffset;
|
|
__ lea(edi, Operand(ebp, eax, times_4, offset));
|
|
// ebx = expected - actual.
|
|
__ sub(ebx, eax);
|
|
// eax = -actual - 1
|
|
__ neg(eax);
|
|
__ sub(eax, Immediate(1));
|
|
|
|
Label copy;
|
|
__ bind(©);
|
|
__ inc(eax);
|
|
__ push(Operand(edi, 0));
|
|
__ sub(edi, Immediate(kPointerSize));
|
|
__ test(eax, eax);
|
|
__ j(not_zero, ©);
|
|
|
|
// Fill remaining expected arguments with undefined values.
|
|
Label fill;
|
|
__ bind(&fill);
|
|
__ inc(eax);
|
|
__ push(Immediate(masm->isolate()->factory()->undefined_value()));
|
|
__ cmp(eax, ebx);
|
|
__ j(less, &fill);
|
|
}
|
|
|
|
// Call the entry point.
|
|
__ bind(&invoke);
|
|
// Restore function pointer.
|
|
__ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
|
|
__ call(edx);
|
|
|
|
// Store offset of return address for deoptimizer.
|
|
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
|
|
|
|
// Leave frame and return.
|
|
LeaveArgumentsAdaptorFrame(masm);
|
|
__ ret(0);
|
|
|
|
// -------------------------------------------
|
|
// Dont adapt arguments.
|
|
// -------------------------------------------
|
|
__ bind(&dont_adapt_arguments);
|
|
__ jmp(edx);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
|
|
// Lookup the function in the JavaScript frame.
|
|
__ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
// Pass function as argument.
|
|
__ push(eax);
|
|
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
|
|
}
|
|
|
|
Label skip;
|
|
// If the code object is null, just return to the unoptimized code.
|
|
__ cmp(eax, Immediate(0));
|
|
__ j(not_equal, &skip, Label::kNear);
|
|
__ ret(0);
|
|
|
|
__ bind(&skip);
|
|
|
|
// Load deoptimization data from the code object.
|
|
__ mov(ebx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
|
|
|
|
// Load the OSR entrypoint offset from the deoptimization data.
|
|
__ mov(ebx, Operand(ebx, FixedArray::OffsetOfElementAt(
|
|
DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
|
|
__ SmiUntag(ebx);
|
|
|
|
// Compute the target address = code_obj + header_size + osr_offset
|
|
__ lea(eax, Operand(eax, ebx, times_1, Code::kHeaderSize - kHeapObjectTag));
|
|
|
|
// Overwrite the return address on the stack.
|
|
__ mov(Operand(esp, 0), eax);
|
|
|
|
// And "return" to the OSR entry point of the function.
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
|
|
// We check the stack limit as indicator that recompilation might be done.
|
|
Label ok;
|
|
ExternalReference stack_limit =
|
|
ExternalReference::address_of_stack_limit(masm->isolate());
|
|
__ cmp(esp, Operand::StaticVariable(stack_limit));
|
|
__ j(above_equal, &ok, Label::kNear);
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
__ CallRuntime(Runtime::kStackGuard, 0);
|
|
}
|
|
__ jmp(masm->isolate()->builtins()->OnStackReplacement(),
|
|
RelocInfo::CODE_TARGET);
|
|
|
|
__ bind(&ok);
|
|
__ ret(0);
|
|
}
|
|
|
|
#undef __
|
|
}
|
|
} // namespace v8::internal
|
|
|
|
#endif // V8_TARGET_ARCH_IA32
|