204babf5a0
This ensures the deoptimization triggered due to materialization of objects by the {TranslatedState} works in conjunction with OSR. The optimized code used for OSR is not installed on the function, hence needs to be specified explicitly when requesting deoptimization for specific stack frames. R=jarin@chromium.org TEST=mjsunit/regress/regress-crbug-668795 BUG=chromium:668795 Review-Url: https://codereview.chromium.org/2534143002 Cr-Commit-Position: refs/heads/master@{#41348}
4019 lines
146 KiB
C++
4019 lines
146 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/deoptimizer.h"
|
|
|
|
#include <memory>
|
|
|
|
#include "src/accessors.h"
|
|
#include "src/ast/prettyprinter.h"
|
|
#include "src/codegen.h"
|
|
#include "src/disasm.h"
|
|
#include "src/frames-inl.h"
|
|
#include "src/full-codegen/full-codegen.h"
|
|
#include "src/global-handles.h"
|
|
#include "src/interpreter/interpreter.h"
|
|
#include "src/macro-assembler.h"
|
|
#include "src/tracing/trace-event.h"
|
|
#include "src/v8.h"
|
|
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
static MemoryChunk* AllocateCodeChunk(MemoryAllocator* allocator) {
|
|
return allocator->AllocateChunk(Deoptimizer::GetMaxDeoptTableSize(),
|
|
MemoryAllocator::GetCommitPageSize(),
|
|
EXECUTABLE, NULL);
|
|
}
|
|
|
|
|
|
DeoptimizerData::DeoptimizerData(MemoryAllocator* allocator)
|
|
: allocator_(allocator),
|
|
current_(NULL) {
|
|
for (int i = 0; i <= Deoptimizer::kLastBailoutType; ++i) {
|
|
deopt_entry_code_entries_[i] = -1;
|
|
deopt_entry_code_[i] = AllocateCodeChunk(allocator);
|
|
}
|
|
}
|
|
|
|
|
|
DeoptimizerData::~DeoptimizerData() {
|
|
for (int i = 0; i <= Deoptimizer::kLastBailoutType; ++i) {
|
|
allocator_->Free<MemoryAllocator::kFull>(deopt_entry_code_[i]);
|
|
deopt_entry_code_[i] = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
Code* Deoptimizer::FindDeoptimizingCode(Address addr) {
|
|
if (function_->IsHeapObject()) {
|
|
// Search all deoptimizing code in the native context of the function.
|
|
Isolate* isolate = function_->GetIsolate();
|
|
Context* native_context = function_->context()->native_context();
|
|
Object* element = native_context->DeoptimizedCodeListHead();
|
|
while (!element->IsUndefined(isolate)) {
|
|
Code* code = Code::cast(element);
|
|
CHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
|
|
if (code->contains(addr)) return code;
|
|
element = code->next_code_link();
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
// We rely on this function not causing a GC. It is called from generated code
|
|
// without having a real stack frame in place.
|
|
Deoptimizer* Deoptimizer::New(JSFunction* function,
|
|
BailoutType type,
|
|
unsigned bailout_id,
|
|
Address from,
|
|
int fp_to_sp_delta,
|
|
Isolate* isolate) {
|
|
Deoptimizer* deoptimizer = new Deoptimizer(isolate, function, type,
|
|
bailout_id, from, fp_to_sp_delta);
|
|
CHECK(isolate->deoptimizer_data()->current_ == NULL);
|
|
isolate->deoptimizer_data()->current_ = deoptimizer;
|
|
return deoptimizer;
|
|
}
|
|
|
|
|
|
// No larger than 2K on all platforms
|
|
static const int kDeoptTableMaxEpilogueCodeSize = 2 * KB;
|
|
|
|
|
|
size_t Deoptimizer::GetMaxDeoptTableSize() {
|
|
int entries_size =
|
|
Deoptimizer::kMaxNumberOfEntries * Deoptimizer::table_entry_size_;
|
|
int commit_page_size = static_cast<int>(MemoryAllocator::GetCommitPageSize());
|
|
int page_count = ((kDeoptTableMaxEpilogueCodeSize + entries_size - 1) /
|
|
commit_page_size) + 1;
|
|
return static_cast<size_t>(commit_page_size * page_count);
|
|
}
|
|
|
|
|
|
Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
|
|
Deoptimizer* result = isolate->deoptimizer_data()->current_;
|
|
CHECK_NOT_NULL(result);
|
|
result->DeleteFrameDescriptions();
|
|
isolate->deoptimizer_data()->current_ = NULL;
|
|
return result;
|
|
}
|
|
|
|
DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
|
|
JavaScriptFrame* frame,
|
|
int jsframe_index,
|
|
Isolate* isolate) {
|
|
CHECK(frame->is_optimized());
|
|
|
|
TranslatedState translated_values(frame);
|
|
translated_values.Prepare(false, frame->fp());
|
|
|
|
TranslatedState::iterator frame_it = translated_values.end();
|
|
int counter = jsframe_index;
|
|
for (auto it = translated_values.begin(); it != translated_values.end();
|
|
it++) {
|
|
if (it->kind() == TranslatedFrame::kFunction ||
|
|
it->kind() == TranslatedFrame::kInterpretedFunction) {
|
|
if (counter == 0) {
|
|
frame_it = it;
|
|
break;
|
|
}
|
|
counter--;
|
|
}
|
|
}
|
|
CHECK(frame_it != translated_values.end());
|
|
|
|
DeoptimizedFrameInfo* info =
|
|
new DeoptimizedFrameInfo(&translated_values, frame_it, isolate);
|
|
|
|
return info;
|
|
}
|
|
|
|
void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm,
|
|
int count,
|
|
BailoutType type) {
|
|
TableEntryGenerator generator(masm, type, count);
|
|
generator.Generate();
|
|
}
|
|
|
|
void Deoptimizer::VisitAllOptimizedFunctionsForContext(
|
|
Context* context, OptimizedFunctionVisitor* visitor) {
|
|
DisallowHeapAllocation no_allocation;
|
|
|
|
CHECK(context->IsNativeContext());
|
|
|
|
visitor->EnterContext(context);
|
|
|
|
// Visit the list of optimized functions, removing elements that
|
|
// no longer refer to optimized code.
|
|
JSFunction* prev = NULL;
|
|
Object* element = context->OptimizedFunctionsListHead();
|
|
Isolate* isolate = context->GetIsolate();
|
|
while (!element->IsUndefined(isolate)) {
|
|
JSFunction* function = JSFunction::cast(element);
|
|
Object* next = function->next_function_link();
|
|
if (function->code()->kind() != Code::OPTIMIZED_FUNCTION ||
|
|
(visitor->VisitFunction(function),
|
|
function->code()->kind() != Code::OPTIMIZED_FUNCTION)) {
|
|
// The function no longer refers to optimized code, or the visitor
|
|
// changed the code to which it refers to no longer be optimized code.
|
|
// Remove the function from this list.
|
|
if (prev != NULL) {
|
|
prev->set_next_function_link(next, UPDATE_WEAK_WRITE_BARRIER);
|
|
} else {
|
|
context->SetOptimizedFunctionsListHead(next);
|
|
}
|
|
// The visitor should not alter the link directly.
|
|
CHECK_EQ(function->next_function_link(), next);
|
|
// Set the next function link to undefined to indicate it is no longer
|
|
// in the optimized functions list.
|
|
function->set_next_function_link(context->GetHeap()->undefined_value(),
|
|
SKIP_WRITE_BARRIER);
|
|
} else {
|
|
// The visitor should not alter the link directly.
|
|
CHECK_EQ(function->next_function_link(), next);
|
|
// preserve this element.
|
|
prev = function;
|
|
}
|
|
element = next;
|
|
}
|
|
|
|
visitor->LeaveContext(context);
|
|
}
|
|
|
|
|
|
void Deoptimizer::VisitAllOptimizedFunctions(
|
|
Isolate* isolate,
|
|
OptimizedFunctionVisitor* visitor) {
|
|
DisallowHeapAllocation no_allocation;
|
|
|
|
// Run through the list of all native contexts.
|
|
Object* context = isolate->heap()->native_contexts_list();
|
|
while (!context->IsUndefined(isolate)) {
|
|
VisitAllOptimizedFunctionsForContext(Context::cast(context), visitor);
|
|
context = Context::cast(context)->next_context_link();
|
|
}
|
|
}
|
|
|
|
|
|
// Unlink functions referring to code marked for deoptimization, then move
|
|
// marked code from the optimized code list to the deoptimized code list,
|
|
// and patch code for lazy deopt.
|
|
void Deoptimizer::DeoptimizeMarkedCodeForContext(Context* context) {
|
|
DisallowHeapAllocation no_allocation;
|
|
|
|
// A "closure" that unlinks optimized code that is going to be
|
|
// deoptimized from the functions that refer to it.
|
|
class SelectedCodeUnlinker: public OptimizedFunctionVisitor {
|
|
public:
|
|
virtual void EnterContext(Context* context) { } // Don't care.
|
|
virtual void LeaveContext(Context* context) { } // Don't care.
|
|
virtual void VisitFunction(JSFunction* function) {
|
|
Code* code = function->code();
|
|
if (!code->marked_for_deoptimization()) return;
|
|
|
|
// Unlink this function and evict from optimized code map.
|
|
SharedFunctionInfo* shared = function->shared();
|
|
function->set_code(shared->code());
|
|
|
|
if (FLAG_trace_deopt) {
|
|
CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer());
|
|
PrintF(scope.file(), "[deoptimizer unlinked: ");
|
|
function->PrintName(scope.file());
|
|
PrintF(scope.file(),
|
|
" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
|
|
}
|
|
}
|
|
};
|
|
|
|
// Unlink all functions that refer to marked code.
|
|
SelectedCodeUnlinker unlinker;
|
|
VisitAllOptimizedFunctionsForContext(context, &unlinker);
|
|
|
|
Isolate* isolate = context->GetHeap()->isolate();
|
|
#ifdef DEBUG
|
|
Code* topmost_optimized_code = NULL;
|
|
bool safe_to_deopt_topmost_optimized_code = false;
|
|
// Make sure all activations of optimized code can deopt at their current PC.
|
|
// The topmost optimized code has special handling because it cannot be
|
|
// deoptimized due to weak object dependency.
|
|
for (StackFrameIterator it(isolate, isolate->thread_local_top());
|
|
!it.done(); it.Advance()) {
|
|
StackFrame::Type type = it.frame()->type();
|
|
if (type == StackFrame::OPTIMIZED) {
|
|
Code* code = it.frame()->LookupCode();
|
|
JSFunction* function =
|
|
static_cast<OptimizedFrame*>(it.frame())->function();
|
|
if (FLAG_trace_deopt) {
|
|
CodeTracer::Scope scope(isolate->GetCodeTracer());
|
|
PrintF(scope.file(), "[deoptimizer found activation of function: ");
|
|
function->PrintName(scope.file());
|
|
PrintF(scope.file(),
|
|
" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
|
|
}
|
|
SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
|
|
int deopt_index = safepoint.deoptimization_index();
|
|
// Turbofan deopt is checked when we are patching addresses on stack.
|
|
bool turbofanned = code->is_turbofanned() &&
|
|
function->shared()->asm_function() &&
|
|
!FLAG_turbo_asm_deoptimization;
|
|
bool safe_to_deopt =
|
|
deopt_index != Safepoint::kNoDeoptimizationIndex || turbofanned;
|
|
bool builtin = code->kind() == Code::BUILTIN;
|
|
CHECK(topmost_optimized_code == NULL || safe_to_deopt || turbofanned ||
|
|
builtin);
|
|
if (topmost_optimized_code == NULL) {
|
|
topmost_optimized_code = code;
|
|
safe_to_deopt_topmost_optimized_code = safe_to_deopt;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Move marked code from the optimized code list to the deoptimized
|
|
// code list, collecting them into a ZoneList.
|
|
Zone zone(isolate->allocator(), ZONE_NAME);
|
|
ZoneList<Code*> codes(10, &zone);
|
|
|
|
// Walk over all optimized code objects in this native context.
|
|
Code* prev = NULL;
|
|
Object* element = context->OptimizedCodeListHead();
|
|
while (!element->IsUndefined(isolate)) {
|
|
Code* code = Code::cast(element);
|
|
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
|
|
Object* next = code->next_code_link();
|
|
|
|
if (code->marked_for_deoptimization()) {
|
|
// Put the code into the list for later patching.
|
|
codes.Add(code, &zone);
|
|
|
|
if (prev != NULL) {
|
|
// Skip this code in the optimized code list.
|
|
prev->set_next_code_link(next);
|
|
} else {
|
|
// There was no previous node, the next node is the new head.
|
|
context->SetOptimizedCodeListHead(next);
|
|
}
|
|
|
|
// Move the code to the _deoptimized_ code list.
|
|
code->set_next_code_link(context->DeoptimizedCodeListHead());
|
|
context->SetDeoptimizedCodeListHead(code);
|
|
} else {
|
|
// Not marked; preserve this element.
|
|
prev = code;
|
|
}
|
|
element = next;
|
|
}
|
|
|
|
// We need a handle scope only because of the macro assembler,
|
|
// which is used in code patching in EnsureCodeForDeoptimizationEntry.
|
|
HandleScope scope(isolate);
|
|
|
|
// Now patch all the codes for deoptimization.
|
|
for (int i = 0; i < codes.length(); i++) {
|
|
#ifdef DEBUG
|
|
if (codes[i] == topmost_optimized_code) {
|
|
DCHECK(safe_to_deopt_topmost_optimized_code);
|
|
}
|
|
#endif
|
|
// It is finally time to die, code object.
|
|
|
|
// Remove the code from optimized code map.
|
|
DeoptimizationInputData* deopt_data =
|
|
DeoptimizationInputData::cast(codes[i]->deoptimization_data());
|
|
SharedFunctionInfo* shared =
|
|
SharedFunctionInfo::cast(deopt_data->SharedFunctionInfo());
|
|
shared->EvictFromOptimizedCodeMap(codes[i], "deoptimized code");
|
|
|
|
// Do platform-specific patching to force any activations to lazy deopt.
|
|
PatchCodeForDeoptimization(isolate, codes[i]);
|
|
|
|
// We might be in the middle of incremental marking with compaction.
|
|
// Tell collector to treat this code object in a special way and
|
|
// ignore all slots that might have been recorded on it.
|
|
isolate->heap()->mark_compact_collector()->InvalidateCode(codes[i]);
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::DeoptimizeAll(Isolate* isolate) {
|
|
RuntimeCallTimerScope runtimeTimer(isolate,
|
|
&RuntimeCallStats::DeoptimizeCode);
|
|
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
|
|
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
|
|
if (FLAG_trace_deopt) {
|
|
CodeTracer::Scope scope(isolate->GetCodeTracer());
|
|
PrintF(scope.file(), "[deoptimize all code in all contexts]\n");
|
|
}
|
|
DisallowHeapAllocation no_allocation;
|
|
// For all contexts, mark all code, then deoptimize.
|
|
Object* context = isolate->heap()->native_contexts_list();
|
|
while (!context->IsUndefined(isolate)) {
|
|
Context* native_context = Context::cast(context);
|
|
MarkAllCodeForContext(native_context);
|
|
DeoptimizeMarkedCodeForContext(native_context);
|
|
context = native_context->next_context_link();
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) {
|
|
RuntimeCallTimerScope runtimeTimer(isolate,
|
|
&RuntimeCallStats::DeoptimizeCode);
|
|
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
|
|
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
|
|
if (FLAG_trace_deopt) {
|
|
CodeTracer::Scope scope(isolate->GetCodeTracer());
|
|
PrintF(scope.file(), "[deoptimize marked code in all contexts]\n");
|
|
}
|
|
DisallowHeapAllocation no_allocation;
|
|
// For all contexts, deoptimize code already marked.
|
|
Object* context = isolate->heap()->native_contexts_list();
|
|
while (!context->IsUndefined(isolate)) {
|
|
Context* native_context = Context::cast(context);
|
|
DeoptimizeMarkedCodeForContext(native_context);
|
|
context = native_context->next_context_link();
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::MarkAllCodeForContext(Context* context) {
|
|
Object* element = context->OptimizedCodeListHead();
|
|
Isolate* isolate = context->GetIsolate();
|
|
while (!element->IsUndefined(isolate)) {
|
|
Code* code = Code::cast(element);
|
|
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
|
|
code->set_marked_for_deoptimization(true);
|
|
element = code->next_code_link();
|
|
}
|
|
}
|
|
|
|
void Deoptimizer::DeoptimizeFunction(JSFunction* function, Code* code) {
|
|
Isolate* isolate = function->GetIsolate();
|
|
RuntimeCallTimerScope runtimeTimer(isolate,
|
|
&RuntimeCallStats::DeoptimizeCode);
|
|
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
|
|
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
|
|
if (code == nullptr) code = function->code();
|
|
if (code->kind() == Code::OPTIMIZED_FUNCTION) {
|
|
// Mark the code for deoptimization and unlink any functions that also
|
|
// refer to that code. The code cannot be shared across native contexts,
|
|
// so we only need to search one.
|
|
code->set_marked_for_deoptimization(true);
|
|
DeoptimizeMarkedCodeForContext(function->context()->native_context());
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
|
|
deoptimizer->DoComputeOutputFrames();
|
|
}
|
|
|
|
bool Deoptimizer::TraceEnabledFor(StackFrame::Type frame_type) {
|
|
return (frame_type == StackFrame::STUB) ? FLAG_trace_stub_failures
|
|
: FLAG_trace_deopt;
|
|
}
|
|
|
|
|
|
const char* Deoptimizer::MessageFor(BailoutType type) {
|
|
switch (type) {
|
|
case EAGER: return "eager";
|
|
case SOFT: return "soft";
|
|
case LAZY: return "lazy";
|
|
}
|
|
FATAL("Unsupported deopt type");
|
|
return NULL;
|
|
}
|
|
|
|
Deoptimizer::Deoptimizer(Isolate* isolate, JSFunction* function,
|
|
BailoutType type, unsigned bailout_id, Address from,
|
|
int fp_to_sp_delta)
|
|
: isolate_(isolate),
|
|
function_(function),
|
|
bailout_id_(bailout_id),
|
|
bailout_type_(type),
|
|
from_(from),
|
|
fp_to_sp_delta_(fp_to_sp_delta),
|
|
deoptimizing_throw_(false),
|
|
catch_handler_data_(-1),
|
|
catch_handler_pc_offset_(-1),
|
|
input_(nullptr),
|
|
output_count_(0),
|
|
jsframe_count_(0),
|
|
output_(nullptr),
|
|
caller_frame_top_(0),
|
|
caller_fp_(0),
|
|
caller_pc_(0),
|
|
caller_constant_pool_(0),
|
|
input_frame_context_(0),
|
|
stack_fp_(0),
|
|
trace_scope_(nullptr) {
|
|
if (isolate->deoptimizer_lazy_throw()) {
|
|
isolate->set_deoptimizer_lazy_throw(false);
|
|
deoptimizing_throw_ = true;
|
|
}
|
|
|
|
// For COMPILED_STUBs called from builtins, the function pointer is a SMI
|
|
// indicating an internal frame.
|
|
if (function->IsSmi()) {
|
|
function = nullptr;
|
|
}
|
|
DCHECK(from != nullptr);
|
|
if (function != nullptr && function->IsOptimized()) {
|
|
function->shared()->increment_deopt_count();
|
|
if (bailout_type_ == Deoptimizer::SOFT) {
|
|
isolate->counters()->soft_deopts_executed()->Increment();
|
|
// Soft deopts shouldn't count against the overall re-optimization count
|
|
// that can eventually lead to disabling optimization for a function.
|
|
int opt_count = function->shared()->opt_count();
|
|
if (opt_count > 0) opt_count--;
|
|
function->shared()->set_opt_count(opt_count);
|
|
}
|
|
}
|
|
compiled_code_ = FindOptimizedCode(function);
|
|
#if DEBUG
|
|
DCHECK(compiled_code_ != NULL);
|
|
if (type == EAGER || type == SOFT || type == LAZY) {
|
|
DCHECK(compiled_code_->kind() != Code::FUNCTION);
|
|
}
|
|
#endif
|
|
|
|
StackFrame::Type frame_type = function == NULL
|
|
? StackFrame::STUB
|
|
: StackFrame::JAVA_SCRIPT;
|
|
trace_scope_ = TraceEnabledFor(frame_type)
|
|
? new CodeTracer::Scope(isolate->GetCodeTracer())
|
|
: NULL;
|
|
#ifdef DEBUG
|
|
CHECK(AllowHeapAllocation::IsAllowed());
|
|
disallow_heap_allocation_ = new DisallowHeapAllocation();
|
|
#endif // DEBUG
|
|
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
|
|
PROFILE(isolate_, CodeDeoptEvent(compiled_code_, from_, fp_to_sp_delta_));
|
|
}
|
|
unsigned size = ComputeInputFrameSize();
|
|
int parameter_count =
|
|
function == nullptr
|
|
? 0
|
|
: (function->shared()->internal_formal_parameter_count() + 1);
|
|
input_ = new (size) FrameDescription(size, parameter_count);
|
|
input_->SetFrameType(frame_type);
|
|
}
|
|
|
|
Code* Deoptimizer::FindOptimizedCode(JSFunction* function) {
|
|
Code* compiled_code = FindDeoptimizingCode(from_);
|
|
return (compiled_code == NULL)
|
|
? static_cast<Code*>(isolate_->FindCodeObject(from_))
|
|
: compiled_code;
|
|
}
|
|
|
|
|
|
void Deoptimizer::PrintFunctionName() {
|
|
if (function_ != nullptr && function_->IsJSFunction()) {
|
|
function_->ShortPrint(trace_scope_->file());
|
|
} else {
|
|
PrintF(trace_scope_->file(),
|
|
"%s", Code::Kind2String(compiled_code_->kind()));
|
|
}
|
|
}
|
|
|
|
|
|
Deoptimizer::~Deoptimizer() {
|
|
DCHECK(input_ == NULL && output_ == NULL);
|
|
DCHECK(disallow_heap_allocation_ == NULL);
|
|
delete trace_scope_;
|
|
}
|
|
|
|
|
|
void Deoptimizer::DeleteFrameDescriptions() {
|
|
delete input_;
|
|
for (int i = 0; i < output_count_; ++i) {
|
|
if (output_[i] != input_) delete output_[i];
|
|
}
|
|
delete[] output_;
|
|
input_ = NULL;
|
|
output_ = NULL;
|
|
#ifdef DEBUG
|
|
CHECK(!AllowHeapAllocation::IsAllowed());
|
|
CHECK(disallow_heap_allocation_ != NULL);
|
|
delete disallow_heap_allocation_;
|
|
disallow_heap_allocation_ = NULL;
|
|
#endif // DEBUG
|
|
}
|
|
|
|
|
|
Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate,
|
|
int id,
|
|
BailoutType type,
|
|
GetEntryMode mode) {
|
|
CHECK_GE(id, 0);
|
|
if (id >= kMaxNumberOfEntries) return NULL;
|
|
if (mode == ENSURE_ENTRY_CODE) {
|
|
EnsureCodeForDeoptimizationEntry(isolate, type, id);
|
|
} else {
|
|
CHECK_EQ(mode, CALCULATE_ENTRY_ADDRESS);
|
|
}
|
|
DeoptimizerData* data = isolate->deoptimizer_data();
|
|
CHECK_LE(type, kLastBailoutType);
|
|
MemoryChunk* base = data->deopt_entry_code_[type];
|
|
return base->area_start() + (id * table_entry_size_);
|
|
}
|
|
|
|
|
|
int Deoptimizer::GetDeoptimizationId(Isolate* isolate,
|
|
Address addr,
|
|
BailoutType type) {
|
|
DeoptimizerData* data = isolate->deoptimizer_data();
|
|
MemoryChunk* base = data->deopt_entry_code_[type];
|
|
Address start = base->area_start();
|
|
if (addr < start ||
|
|
addr >= start + (kMaxNumberOfEntries * table_entry_size_)) {
|
|
return kNotDeoptimizationEntry;
|
|
}
|
|
DCHECK_EQ(0,
|
|
static_cast<int>(addr - start) % table_entry_size_);
|
|
return static_cast<int>(addr - start) / table_entry_size_;
|
|
}
|
|
|
|
|
|
int Deoptimizer::GetOutputInfo(DeoptimizationOutputData* data,
|
|
BailoutId id,
|
|
SharedFunctionInfo* shared) {
|
|
// TODO(kasperl): For now, we do a simple linear search for the PC
|
|
// offset associated with the given node id. This should probably be
|
|
// changed to a binary search.
|
|
int length = data->DeoptPoints();
|
|
for (int i = 0; i < length; i++) {
|
|
if (data->AstId(i) == id) {
|
|
return data->PcAndState(i)->value();
|
|
}
|
|
}
|
|
OFStream os(stderr);
|
|
os << "[couldn't find pc offset for node=" << id.ToInt() << "]\n"
|
|
<< "[method: " << shared->DebugName()->ToCString().get() << "]\n"
|
|
<< "[source:\n" << SourceCodeOf(shared) << "\n]" << std::endl;
|
|
|
|
shared->GetHeap()->isolate()->PushStackTraceAndDie(0xfefefefe, data, shared,
|
|
0xfefefeff);
|
|
FATAL("unable to find pc offset during deoptimization");
|
|
return -1;
|
|
}
|
|
|
|
|
|
int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
|
|
int length = 0;
|
|
// Count all entries in the deoptimizing code list of every context.
|
|
Object* context = isolate->heap()->native_contexts_list();
|
|
while (!context->IsUndefined(isolate)) {
|
|
Context* native_context = Context::cast(context);
|
|
Object* element = native_context->DeoptimizedCodeListHead();
|
|
while (!element->IsUndefined(isolate)) {
|
|
Code* code = Code::cast(element);
|
|
DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
|
|
length++;
|
|
element = code->next_code_link();
|
|
}
|
|
context = Context::cast(context)->next_context_link();
|
|
}
|
|
return length;
|
|
}
|
|
|
|
namespace {
|
|
|
|
int LookupCatchHandler(TranslatedFrame* translated_frame, int* data_out) {
|
|
switch (translated_frame->kind()) {
|
|
case TranslatedFrame::kFunction: {
|
|
#ifdef DEBUG
|
|
JSFunction* function =
|
|
JSFunction::cast(translated_frame->begin()->GetRawValue());
|
|
Code* non_optimized_code = function->shared()->code();
|
|
HandlerTable* table =
|
|
HandlerTable::cast(non_optimized_code->handler_table());
|
|
DCHECK_EQ(0, table->NumberOfRangeEntries());
|
|
#endif
|
|
break;
|
|
}
|
|
case TranslatedFrame::kInterpretedFunction: {
|
|
int bytecode_offset = translated_frame->node_id().ToInt();
|
|
JSFunction* function =
|
|
JSFunction::cast(translated_frame->begin()->GetRawValue());
|
|
BytecodeArray* bytecode = function->shared()->bytecode_array();
|
|
HandlerTable* table = HandlerTable::cast(bytecode->handler_table());
|
|
return table->LookupRange(bytecode_offset, data_out, nullptr);
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// We rely on this function not causing a GC. It is called from generated code
|
|
// without having a real stack frame in place.
|
|
void Deoptimizer::DoComputeOutputFrames() {
|
|
base::ElapsedTimer timer;
|
|
|
|
// Determine basic deoptimization information. The optimized frame is
|
|
// described by the input data.
|
|
DeoptimizationInputData* input_data =
|
|
DeoptimizationInputData::cast(compiled_code_->deoptimization_data());
|
|
|
|
{
|
|
// Read caller's PC, caller's FP and caller's constant pool values
|
|
// from input frame. Compute caller's frame top address.
|
|
|
|
Register fp_reg = JavaScriptFrame::fp_register();
|
|
stack_fp_ = input_->GetRegister(fp_reg.code());
|
|
|
|
caller_frame_top_ = stack_fp_ + ComputeInputFrameAboveFpFixedSize();
|
|
|
|
Address fp_address = input_->GetFramePointerAddress();
|
|
caller_fp_ = Memory::intptr_at(fp_address);
|
|
caller_pc_ =
|
|
Memory::intptr_at(fp_address + CommonFrameConstants::kCallerPCOffset);
|
|
input_frame_context_ = Memory::intptr_at(
|
|
fp_address + CommonFrameConstants::kContextOrFrameTypeOffset);
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
caller_constant_pool_ = Memory::intptr_at(
|
|
fp_address + CommonFrameConstants::kConstantPoolOffset);
|
|
}
|
|
}
|
|
|
|
if (trace_scope_ != NULL) {
|
|
timer.Start();
|
|
PrintF(trace_scope_->file(), "[deoptimizing (DEOPT %s): begin ",
|
|
MessageFor(bailout_type_));
|
|
PrintFunctionName();
|
|
PrintF(trace_scope_->file(),
|
|
" (opt #%d) @%d, FP to SP delta: %d, caller sp: 0x%08" V8PRIxPTR
|
|
"]\n",
|
|
input_data->OptimizationId()->value(), bailout_id_, fp_to_sp_delta_,
|
|
caller_frame_top_);
|
|
if (bailout_type_ == EAGER || bailout_type_ == SOFT ||
|
|
(compiled_code_->is_hydrogen_stub())) {
|
|
compiled_code_->PrintDeoptLocation(trace_scope_->file(), from_);
|
|
}
|
|
}
|
|
|
|
BailoutId node_id = input_data->AstId(bailout_id_);
|
|
ByteArray* translations = input_data->TranslationByteArray();
|
|
unsigned translation_index =
|
|
input_data->TranslationIndex(bailout_id_)->value();
|
|
|
|
TranslationIterator state_iterator(translations, translation_index);
|
|
translated_state_.Init(
|
|
input_->GetFramePointerAddress(), &state_iterator,
|
|
input_data->LiteralArray(), input_->GetRegisterValues(),
|
|
trace_scope_ == nullptr ? nullptr : trace_scope_->file());
|
|
|
|
// Do the input frame to output frame(s) translation.
|
|
size_t count = translated_state_.frames().size();
|
|
// If we are supposed to go to the catch handler, find the catching frame
|
|
// for the catch and make sure we only deoptimize upto that frame.
|
|
if (deoptimizing_throw_) {
|
|
size_t catch_handler_frame_index = count;
|
|
for (size_t i = count; i-- > 0;) {
|
|
catch_handler_pc_offset_ = LookupCatchHandler(
|
|
&(translated_state_.frames()[i]), &catch_handler_data_);
|
|
if (catch_handler_pc_offset_ >= 0) {
|
|
catch_handler_frame_index = i;
|
|
break;
|
|
}
|
|
}
|
|
CHECK_LT(catch_handler_frame_index, count);
|
|
count = catch_handler_frame_index + 1;
|
|
}
|
|
|
|
DCHECK(output_ == NULL);
|
|
output_ = new FrameDescription*[count];
|
|
for (size_t i = 0; i < count; ++i) {
|
|
output_[i] = NULL;
|
|
}
|
|
output_count_ = static_cast<int>(count);
|
|
|
|
// Translate each output frame.
|
|
int frame_index = 0; // output_frame_index
|
|
for (size_t i = 0; i < count; ++i, ++frame_index) {
|
|
// Read the ast node id, function, and frame height for this output frame.
|
|
TranslatedFrame* translated_frame = &(translated_state_.frames()[i]);
|
|
switch (translated_frame->kind()) {
|
|
case TranslatedFrame::kFunction:
|
|
DoComputeJSFrame(translated_frame, frame_index,
|
|
deoptimizing_throw_ && i == count - 1);
|
|
jsframe_count_++;
|
|
break;
|
|
case TranslatedFrame::kInterpretedFunction:
|
|
DoComputeInterpretedFrame(translated_frame, frame_index,
|
|
deoptimizing_throw_ && i == count - 1);
|
|
jsframe_count_++;
|
|
break;
|
|
case TranslatedFrame::kArgumentsAdaptor:
|
|
DoComputeArgumentsAdaptorFrame(translated_frame, frame_index);
|
|
break;
|
|
case TranslatedFrame::kTailCallerFunction:
|
|
DoComputeTailCallerFrame(translated_frame, frame_index);
|
|
// Tail caller frame translations do not produce output frames.
|
|
frame_index--;
|
|
output_count_--;
|
|
break;
|
|
case TranslatedFrame::kConstructStub:
|
|
DoComputeConstructStubFrame(translated_frame, frame_index);
|
|
break;
|
|
case TranslatedFrame::kGetter:
|
|
DoComputeAccessorStubFrame(translated_frame, frame_index, false);
|
|
break;
|
|
case TranslatedFrame::kSetter:
|
|
DoComputeAccessorStubFrame(translated_frame, frame_index, true);
|
|
break;
|
|
case TranslatedFrame::kCompiledStub:
|
|
DoComputeCompiledStubFrame(translated_frame, frame_index);
|
|
break;
|
|
case TranslatedFrame::kInvalid:
|
|
FATAL("invalid frame");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Print some helpful diagnostic information.
|
|
if (trace_scope_ != NULL) {
|
|
double ms = timer.Elapsed().InMillisecondsF();
|
|
int index = output_count_ - 1; // Index of the topmost frame.
|
|
PrintF(trace_scope_->file(), "[deoptimizing (%s): end ",
|
|
MessageFor(bailout_type_));
|
|
PrintFunctionName();
|
|
PrintF(trace_scope_->file(),
|
|
" @%d => node=%d, pc=0x%08" V8PRIxPTR ", caller sp=0x%08" V8PRIxPTR
|
|
", state=%s, took %0.3f ms]\n",
|
|
bailout_id_, node_id.ToInt(), output_[index]->GetPc(),
|
|
caller_frame_top_, BailoutStateToString(static_cast<BailoutState>(
|
|
output_[index]->GetState()->value())),
|
|
ms);
|
|
}
|
|
}
|
|
|
|
void Deoptimizer::DoComputeJSFrame(TranslatedFrame* translated_frame,
|
|
int frame_index, bool goto_catch_handler) {
|
|
SharedFunctionInfo* shared = translated_frame->raw_shared_info();
|
|
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
bool is_bottommost = (0 == frame_index);
|
|
bool is_topmost = (output_count_ - 1 == frame_index);
|
|
int input_index = 0;
|
|
|
|
BailoutId node_id = translated_frame->node_id();
|
|
unsigned height =
|
|
translated_frame->height() - 1; // Do not count the context.
|
|
unsigned height_in_bytes = height * kPointerSize;
|
|
if (goto_catch_handler) {
|
|
// Take the stack height from the handler table.
|
|
height = catch_handler_data_;
|
|
// We also make space for the exception itself.
|
|
height_in_bytes = (height + 1) * kPointerSize;
|
|
CHECK(is_topmost);
|
|
}
|
|
|
|
JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
|
|
value_iterator++;
|
|
input_index++;
|
|
if (trace_scope_ != NULL) {
|
|
PrintF(trace_scope_->file(), " translating frame ");
|
|
std::unique_ptr<char[]> name = shared->DebugName()->ToCString();
|
|
PrintF(trace_scope_->file(), "%s", name.get());
|
|
PrintF(trace_scope_->file(), " => node=%d, height=%d%s\n", node_id.ToInt(),
|
|
height_in_bytes, goto_catch_handler ? " (throw)" : "");
|
|
}
|
|
|
|
// The 'fixed' part of the frame consists of the incoming parameters and
|
|
// the part described by JavaScriptFrameConstants.
|
|
unsigned fixed_frame_size = ComputeJavascriptFixedSize(shared);
|
|
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
|
|
|
|
// Allocate and store the output frame description.
|
|
int parameter_count = shared->internal_formal_parameter_count() + 1;
|
|
FrameDescription* output_frame = new (output_frame_size)
|
|
FrameDescription(output_frame_size, parameter_count);
|
|
output_frame->SetFrameType(StackFrame::JAVA_SCRIPT);
|
|
|
|
CHECK(frame_index >= 0 && frame_index < output_count_);
|
|
CHECK_NULL(output_[frame_index]);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address of the frame is computed from the previous frame's top and
|
|
// this frame's size.
|
|
intptr_t top_address;
|
|
if (is_bottommost) {
|
|
top_address = caller_frame_top_ - output_frame_size;
|
|
} else {
|
|
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
|
|
}
|
|
output_frame->SetTop(top_address);
|
|
|
|
// Compute the incoming parameter translation.
|
|
unsigned output_offset = output_frame_size;
|
|
for (int i = 0; i < parameter_count; ++i) {
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(), " -------------------------\n");
|
|
}
|
|
|
|
// There are no translation commands for the caller's pc and fp, the
|
|
// context, and the function. Synthesize their values and set them up
|
|
// explicitly.
|
|
//
|
|
// The caller's pc for the bottommost output frame is the same as in the
|
|
// input frame. For all subsequent output frames, it can be read from the
|
|
// previous one. This frame's pc can be computed from the non-optimized
|
|
// function code and AST id of the bailout.
|
|
output_offset -= kPCOnStackSize;
|
|
intptr_t value;
|
|
if (is_bottommost) {
|
|
value = caller_pc_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetPc();
|
|
}
|
|
output_frame->SetCallerPc(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n");
|
|
|
|
// The caller's frame pointer for the bottommost output frame is the same
|
|
// as in the input frame. For all subsequent output frames, it can be
|
|
// read from the previous one. Also compute and set this frame's frame
|
|
// pointer.
|
|
output_offset -= kFPOnStackSize;
|
|
if (is_bottommost) {
|
|
value = caller_fp_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetFp();
|
|
}
|
|
output_frame->SetCallerFp(output_offset, value);
|
|
intptr_t fp_value = top_address + output_offset;
|
|
output_frame->SetFp(fp_value);
|
|
if (is_topmost) {
|
|
Register fp_reg = JavaScriptFrame::fp_register();
|
|
output_frame->SetRegister(fp_reg.code(), fp_value);
|
|
}
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// For the bottommost output frame the constant pool pointer can be gotten
|
|
// from the input frame. For subsequent output frames, it can be read from
|
|
// the previous frame.
|
|
output_offset -= kPointerSize;
|
|
if (is_bottommost) {
|
|
value = caller_constant_pool_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetConstantPool();
|
|
}
|
|
output_frame->SetCallerConstantPool(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// For the bottommost output frame the context can be gotten from the input
|
|
// frame. For all subsequent output frames it can be gotten from the function
|
|
// so long as we don't inline functions that need local contexts.
|
|
output_offset -= kPointerSize;
|
|
|
|
// When deoptimizing into a catch block, we need to take the context
|
|
// from just above the top of the operand stack (we push the context
|
|
// at the entry of the try block).
|
|
TranslatedFrame::iterator context_pos = value_iterator;
|
|
int context_input_index = input_index;
|
|
if (goto_catch_handler) {
|
|
for (unsigned i = 0; i < height + 1; ++i) {
|
|
context_pos++;
|
|
context_input_index++;
|
|
}
|
|
}
|
|
// Read the context from the translations.
|
|
Object* context = context_pos->GetRawValue();
|
|
if (context->IsUndefined(isolate_)) {
|
|
// If the context was optimized away, just use the context from
|
|
// the activation. This should only apply to Crankshaft code.
|
|
CHECK(!compiled_code_->is_turbofanned());
|
|
context = is_bottommost ? reinterpret_cast<Object*>(input_frame_context_)
|
|
: function->context();
|
|
}
|
|
value = reinterpret_cast<intptr_t>(context);
|
|
output_frame->SetContext(value);
|
|
WriteValueToOutput(context, context_input_index, frame_index, output_offset,
|
|
"context ");
|
|
if (context == isolate_->heap()->arguments_marker()) {
|
|
Address output_address =
|
|
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
|
|
output_offset;
|
|
values_to_materialize_.push_back({output_address, context_pos});
|
|
}
|
|
value_iterator++;
|
|
input_index++;
|
|
|
|
// The function was mentioned explicitly in the BEGIN_FRAME.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(function);
|
|
WriteValueToOutput(function, 0, frame_index, output_offset, "function ");
|
|
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(), " -------------------------\n");
|
|
}
|
|
|
|
// Translate the rest of the frame.
|
|
for (unsigned i = 0; i < height; ++i) {
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
if (goto_catch_handler) {
|
|
// Write out the exception for the catch handler.
|
|
output_offset -= kPointerSize;
|
|
Object* exception_obj = reinterpret_cast<Object*>(
|
|
input_->GetRegister(FullCodeGenerator::result_register().code()));
|
|
WriteValueToOutput(exception_obj, input_index, frame_index, output_offset,
|
|
"exception ");
|
|
input_index++;
|
|
}
|
|
CHECK_EQ(0u, output_offset);
|
|
|
|
// Update constant pool.
|
|
Code* non_optimized_code = shared->code();
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(non_optimized_code->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
if (is_topmost) {
|
|
Register constant_pool_reg =
|
|
JavaScriptFrame::constant_pool_pointer_register();
|
|
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
|
|
}
|
|
}
|
|
|
|
// Compute this frame's PC and state.
|
|
FixedArray* raw_data = non_optimized_code->deoptimization_data();
|
|
DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
|
|
Address start = non_optimized_code->instruction_start();
|
|
unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared());
|
|
unsigned pc_offset = goto_catch_handler
|
|
? catch_handler_pc_offset_
|
|
: FullCodeGenerator::PcField::decode(pc_and_state);
|
|
intptr_t pc_value = reinterpret_cast<intptr_t>(start + pc_offset);
|
|
output_frame->SetPc(pc_value);
|
|
|
|
// If we are going to the catch handler, then the exception lives in
|
|
// the accumulator.
|
|
BailoutState state =
|
|
goto_catch_handler
|
|
? BailoutState::TOS_REGISTER
|
|
: FullCodeGenerator::BailoutStateField::decode(pc_and_state);
|
|
output_frame->SetState(Smi::FromInt(static_cast<int>(state)));
|
|
|
|
// Clear the context register. The context might be a de-materialized object
|
|
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
|
|
// safety we use Smi(0) instead of the potential {arguments_marker} here.
|
|
if (is_topmost) {
|
|
intptr_t context_value = reinterpret_cast<intptr_t>(Smi::kZero);
|
|
Register context_reg = JavaScriptFrame::context_register();
|
|
output_frame->SetRegister(context_reg.code(), context_value);
|
|
}
|
|
|
|
// Set the continuation for the topmost frame.
|
|
if (is_topmost) {
|
|
Builtins* builtins = isolate_->builtins();
|
|
Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
|
|
if (bailout_type_ == LAZY) {
|
|
continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
|
|
} else if (bailout_type_ == SOFT) {
|
|
continuation = builtins->builtin(Builtins::kNotifySoftDeoptimized);
|
|
} else {
|
|
CHECK_EQ(bailout_type_, EAGER);
|
|
}
|
|
output_frame->SetContinuation(
|
|
reinterpret_cast<intptr_t>(continuation->entry()));
|
|
}
|
|
}
|
|
|
|
void Deoptimizer::DoComputeInterpretedFrame(TranslatedFrame* translated_frame,
|
|
int frame_index,
|
|
bool goto_catch_handler) {
|
|
SharedFunctionInfo* shared = translated_frame->raw_shared_info();
|
|
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
bool is_bottommost = (0 == frame_index);
|
|
bool is_topmost = (output_count_ - 1 == frame_index);
|
|
int input_index = 0;
|
|
|
|
int bytecode_offset = translated_frame->node_id().ToInt();
|
|
unsigned height = translated_frame->height();
|
|
unsigned height_in_bytes = height * kPointerSize;
|
|
|
|
// All tranlations for interpreted frames contain the accumulator and hence
|
|
// are assumed to be in bailout state {BailoutState::TOS_REGISTER}. However
|
|
// such a state is only supported for the topmost frame. We need to skip
|
|
// pushing the accumulator for any non-topmost frame.
|
|
if (!is_topmost) height_in_bytes -= kPointerSize;
|
|
|
|
JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
|
|
value_iterator++;
|
|
input_index++;
|
|
if (trace_scope_ != NULL) {
|
|
PrintF(trace_scope_->file(), " translating interpreted frame ");
|
|
std::unique_ptr<char[]> name = shared->DebugName()->ToCString();
|
|
PrintF(trace_scope_->file(), "%s", name.get());
|
|
PrintF(trace_scope_->file(), " => bytecode_offset=%d, height=%d%s\n",
|
|
bytecode_offset, height_in_bytes,
|
|
goto_catch_handler ? " (throw)" : "");
|
|
}
|
|
if (goto_catch_handler) {
|
|
bytecode_offset = catch_handler_pc_offset_;
|
|
}
|
|
|
|
// The 'fixed' part of the frame consists of the incoming parameters and
|
|
// the part described by InterpreterFrameConstants.
|
|
unsigned fixed_frame_size = ComputeInterpretedFixedSize(shared);
|
|
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
|
|
|
|
// Allocate and store the output frame description.
|
|
int parameter_count = shared->internal_formal_parameter_count() + 1;
|
|
FrameDescription* output_frame = new (output_frame_size)
|
|
FrameDescription(output_frame_size, parameter_count);
|
|
output_frame->SetFrameType(StackFrame::INTERPRETED);
|
|
|
|
CHECK(frame_index >= 0 && frame_index < output_count_);
|
|
CHECK_NULL(output_[frame_index]);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address of the frame is computed from the previous frame's top and
|
|
// this frame's size.
|
|
intptr_t top_address;
|
|
if (is_bottommost) {
|
|
top_address = caller_frame_top_ - output_frame_size;
|
|
} else {
|
|
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
|
|
}
|
|
output_frame->SetTop(top_address);
|
|
|
|
// Compute the incoming parameter translation.
|
|
unsigned output_offset = output_frame_size;
|
|
for (int i = 0; i < parameter_count; ++i) {
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(), " -------------------------\n");
|
|
}
|
|
|
|
// There are no translation commands for the caller's pc and fp, the
|
|
// context, the function, new.target and the bytecode offset. Synthesize
|
|
// their values and set them up
|
|
// explicitly.
|
|
//
|
|
// The caller's pc for the bottommost output frame is the same as in the
|
|
// input frame. For all subsequent output frames, it can be read from the
|
|
// previous one. This frame's pc can be computed from the non-optimized
|
|
// function code and AST id of the bailout.
|
|
output_offset -= kPCOnStackSize;
|
|
intptr_t value;
|
|
if (is_bottommost) {
|
|
value = caller_pc_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetPc();
|
|
}
|
|
output_frame->SetCallerPc(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n");
|
|
|
|
// The caller's frame pointer for the bottommost output frame is the same
|
|
// as in the input frame. For all subsequent output frames, it can be
|
|
// read from the previous one. Also compute and set this frame's frame
|
|
// pointer.
|
|
output_offset -= kFPOnStackSize;
|
|
if (is_bottommost) {
|
|
value = caller_fp_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetFp();
|
|
}
|
|
output_frame->SetCallerFp(output_offset, value);
|
|
intptr_t fp_value = top_address + output_offset;
|
|
output_frame->SetFp(fp_value);
|
|
if (is_topmost) {
|
|
Register fp_reg = InterpretedFrame::fp_register();
|
|
output_frame->SetRegister(fp_reg.code(), fp_value);
|
|
}
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// For the bottommost output frame the constant pool pointer can be gotten
|
|
// from the input frame. For subsequent output frames, it can be read from
|
|
// the previous frame.
|
|
output_offset -= kPointerSize;
|
|
if (is_bottommost) {
|
|
value = caller_constant_pool_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetConstantPool();
|
|
}
|
|
output_frame->SetCallerConstantPool(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// For the bottommost output frame the context can be gotten from the input
|
|
// frame. For all subsequent output frames it can be gotten from the function
|
|
// so long as we don't inline functions that need local contexts.
|
|
output_offset -= kPointerSize;
|
|
|
|
// When deoptimizing into a catch block, we need to take the context
|
|
// from a register that was specified in the handler table.
|
|
TranslatedFrame::iterator context_pos = value_iterator;
|
|
int context_input_index = input_index;
|
|
if (goto_catch_handler) {
|
|
// Skip to the translated value of the register specified
|
|
// in the handler table.
|
|
for (int i = 0; i < catch_handler_data_ + 1; ++i) {
|
|
context_pos++;
|
|
context_input_index++;
|
|
}
|
|
}
|
|
// Read the context from the translations.
|
|
Object* context = context_pos->GetRawValue();
|
|
value = reinterpret_cast<intptr_t>(context);
|
|
output_frame->SetContext(value);
|
|
WriteValueToOutput(context, context_input_index, frame_index, output_offset,
|
|
"context ");
|
|
if (context == isolate_->heap()->arguments_marker()) {
|
|
Address output_address =
|
|
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
|
|
output_offset;
|
|
values_to_materialize_.push_back({output_address, context_pos});
|
|
}
|
|
value_iterator++;
|
|
input_index++;
|
|
|
|
// The function was mentioned explicitly in the BEGIN_FRAME.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(function);
|
|
WriteValueToOutput(function, 0, frame_index, output_offset, "function ");
|
|
|
|
// The new.target slot is only used during function activiation which is
|
|
// before the first deopt point, so should never be needed. Just set it to
|
|
// undefined.
|
|
output_offset -= kPointerSize;
|
|
Object* new_target = isolate_->heap()->undefined_value();
|
|
WriteValueToOutput(new_target, 0, frame_index, output_offset, "new_target ");
|
|
|
|
// Set the bytecode array pointer.
|
|
output_offset -= kPointerSize;
|
|
Object* bytecode_array = shared->HasDebugInfo()
|
|
? shared->GetDebugInfo()->DebugBytecodeArray()
|
|
: shared->bytecode_array();
|
|
WriteValueToOutput(bytecode_array, 0, frame_index, output_offset,
|
|
"bytecode array ");
|
|
|
|
// The bytecode offset was mentioned explicitly in the BEGIN_FRAME.
|
|
output_offset -= kPointerSize;
|
|
int raw_bytecode_offset =
|
|
BytecodeArray::kHeaderSize - kHeapObjectTag + bytecode_offset;
|
|
Smi* smi_bytecode_offset = Smi::FromInt(raw_bytecode_offset);
|
|
WriteValueToOutput(smi_bytecode_offset, 0, frame_index, output_offset,
|
|
"bytecode offset ");
|
|
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(), " -------------------------\n");
|
|
}
|
|
|
|
// Translate the rest of the interpreter registers in the frame.
|
|
for (unsigned i = 0; i < height - 1; ++i) {
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
|
|
// Translate the accumulator register (depending on frame position).
|
|
if (is_topmost) {
|
|
// For topmost frame, put the accumulator on the stack. The bailout state
|
|
// for interpreted frames is always set to {BailoutState::TOS_REGISTER} and
|
|
// the {NotifyDeoptimized} builtin pops it off the topmost frame (possibly
|
|
// after materialization).
|
|
output_offset -= kPointerSize;
|
|
if (goto_catch_handler) {
|
|
// If we are lazy deopting to a catch handler, we set the accumulator to
|
|
// the exception (which lives in the result register).
|
|
intptr_t accumulator_value =
|
|
input_->GetRegister(FullCodeGenerator::result_register().code());
|
|
WriteValueToOutput(reinterpret_cast<Object*>(accumulator_value), 0,
|
|
frame_index, output_offset, "accumulator ");
|
|
value_iterator++;
|
|
} else {
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset, "accumulator ");
|
|
}
|
|
} else {
|
|
// For non-topmost frames, skip the accumulator translation. For those
|
|
// frames, the return value from the callee will become the accumulator.
|
|
value_iterator++;
|
|
input_index++;
|
|
}
|
|
CHECK_EQ(0u, output_offset);
|
|
|
|
// Compute this frame's PC and state. The PC will be a special builtin that
|
|
// continues the bytecode dispatch. Note that non-topmost and lazy-style
|
|
// bailout handlers also advance the bytecode offset before dispatch, hence
|
|
// simulating what normal handlers do upon completion of the operation.
|
|
Builtins* builtins = isolate_->builtins();
|
|
Code* dispatch_builtin =
|
|
(!is_topmost || (bailout_type_ == LAZY)) && !goto_catch_handler
|
|
? builtins->builtin(Builtins::kInterpreterEnterBytecodeAdvance)
|
|
: builtins->builtin(Builtins::kInterpreterEnterBytecodeDispatch);
|
|
output_frame->SetPc(reinterpret_cast<intptr_t>(dispatch_builtin->entry()));
|
|
// Restore accumulator (TOS) register.
|
|
output_frame->SetState(
|
|
Smi::FromInt(static_cast<int>(BailoutState::TOS_REGISTER)));
|
|
|
|
// Update constant pool.
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(dispatch_builtin->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
if (is_topmost) {
|
|
Register constant_pool_reg =
|
|
InterpretedFrame::constant_pool_pointer_register();
|
|
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
|
|
}
|
|
}
|
|
|
|
// Clear the context register. The context might be a de-materialized object
|
|
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
|
|
// safety we use Smi(0) instead of the potential {arguments_marker} here.
|
|
if (is_topmost) {
|
|
intptr_t context_value = reinterpret_cast<intptr_t>(Smi::kZero);
|
|
Register context_reg = JavaScriptFrame::context_register();
|
|
output_frame->SetRegister(context_reg.code(), context_value);
|
|
}
|
|
|
|
// Set the continuation for the topmost frame.
|
|
if (is_topmost) {
|
|
Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
|
|
if (bailout_type_ == LAZY) {
|
|
continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
|
|
} else if (bailout_type_ == SOFT) {
|
|
continuation = builtins->builtin(Builtins::kNotifySoftDeoptimized);
|
|
} else {
|
|
CHECK_EQ(bailout_type_, EAGER);
|
|
}
|
|
output_frame->SetContinuation(
|
|
reinterpret_cast<intptr_t>(continuation->entry()));
|
|
}
|
|
}
|
|
|
|
void Deoptimizer::DoComputeArgumentsAdaptorFrame(
|
|
TranslatedFrame* translated_frame, int frame_index) {
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
bool is_bottommost = (0 == frame_index);
|
|
int input_index = 0;
|
|
|
|
unsigned height = translated_frame->height();
|
|
unsigned height_in_bytes = height * kPointerSize;
|
|
JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
|
|
value_iterator++;
|
|
input_index++;
|
|
if (trace_scope_ != NULL) {
|
|
PrintF(trace_scope_->file(),
|
|
" translating arguments adaptor => height=%d\n", height_in_bytes);
|
|
}
|
|
|
|
unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFixedFrameSize;
|
|
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
|
|
|
|
// Allocate and store the output frame description.
|
|
int parameter_count = height;
|
|
FrameDescription* output_frame = new (output_frame_size)
|
|
FrameDescription(output_frame_size, parameter_count);
|
|
output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR);
|
|
|
|
// Arguments adaptor can not be topmost.
|
|
CHECK(frame_index < output_count_ - 1);
|
|
CHECK(output_[frame_index] == NULL);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address of the frame is computed from the previous frame's top and
|
|
// this frame's size.
|
|
intptr_t top_address;
|
|
if (is_bottommost) {
|
|
top_address = caller_frame_top_ - output_frame_size;
|
|
} else {
|
|
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
|
|
}
|
|
output_frame->SetTop(top_address);
|
|
|
|
// Compute the incoming parameter translation.
|
|
unsigned output_offset = output_frame_size;
|
|
for (int i = 0; i < parameter_count; ++i) {
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
|
|
// Read caller's PC from the previous frame.
|
|
output_offset -= kPCOnStackSize;
|
|
intptr_t value;
|
|
if (is_bottommost) {
|
|
value = caller_pc_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetPc();
|
|
}
|
|
output_frame->SetCallerPc(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n");
|
|
|
|
// Read caller's FP from the previous frame, and set this frame's FP.
|
|
output_offset -= kFPOnStackSize;
|
|
if (is_bottommost) {
|
|
value = caller_fp_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetFp();
|
|
}
|
|
output_frame->SetCallerFp(output_offset, value);
|
|
intptr_t fp_value = top_address + output_offset;
|
|
output_frame->SetFp(fp_value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// Read the caller's constant pool from the previous frame.
|
|
output_offset -= kPointerSize;
|
|
if (is_bottommost) {
|
|
value = caller_constant_pool_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetConstantPool();
|
|
}
|
|
output_frame->SetCallerConstantPool(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// A marker value is used in place of the context.
|
|
output_offset -= kPointerSize;
|
|
intptr_t context = reinterpret_cast<intptr_t>(
|
|
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
|
output_frame->SetFrameSlot(output_offset, context);
|
|
DebugPrintOutputSlot(context, frame_index, output_offset,
|
|
"context (adaptor sentinel)\n");
|
|
|
|
// The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(function);
|
|
WriteValueToOutput(function, 0, frame_index, output_offset, "function ");
|
|
|
|
// Number of incoming arguments.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "argc ");
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(), "(%d)\n", height - 1);
|
|
}
|
|
|
|
DCHECK(0 == output_offset);
|
|
|
|
Builtins* builtins = isolate_->builtins();
|
|
Code* adaptor_trampoline =
|
|
builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
|
|
intptr_t pc_value = reinterpret_cast<intptr_t>(
|
|
adaptor_trampoline->instruction_start() +
|
|
isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
|
|
output_frame->SetPc(pc_value);
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(adaptor_trampoline->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
}
|
|
}
|
|
|
|
void Deoptimizer::DoComputeTailCallerFrame(TranslatedFrame* translated_frame,
|
|
int frame_index) {
|
|
SharedFunctionInfo* shared = translated_frame->raw_shared_info();
|
|
|
|
bool is_bottommost = (0 == frame_index);
|
|
// Tail caller frame can't be topmost.
|
|
CHECK_NE(output_count_ - 1, frame_index);
|
|
|
|
if (trace_scope_ != NULL) {
|
|
PrintF(trace_scope_->file(), " translating tail caller frame ");
|
|
std::unique_ptr<char[]> name = shared->DebugName()->ToCString();
|
|
PrintF(trace_scope_->file(), "%s\n", name.get());
|
|
}
|
|
|
|
if (!is_bottommost) return;
|
|
|
|
// Drop arguments adaptor frame below current frame if it exsits.
|
|
Address fp_address = input_->GetFramePointerAddress();
|
|
Address adaptor_fp_address =
|
|
Memory::Address_at(fp_address + CommonFrameConstants::kCallerFPOffset);
|
|
|
|
if (Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR) !=
|
|
Memory::Object_at(adaptor_fp_address +
|
|
CommonFrameConstants::kContextOrFrameTypeOffset)) {
|
|
return;
|
|
}
|
|
|
|
int caller_params_count =
|
|
Smi::cast(
|
|
Memory::Object_at(adaptor_fp_address +
|
|
ArgumentsAdaptorFrameConstants::kLengthOffset))
|
|
->value();
|
|
|
|
int callee_params_count =
|
|
function_->shared()->internal_formal_parameter_count();
|
|
|
|
// Both caller and callee parameters count do not include receiver.
|
|
int offset = (caller_params_count - callee_params_count) * kPointerSize;
|
|
intptr_t new_stack_fp =
|
|
reinterpret_cast<intptr_t>(adaptor_fp_address) + offset;
|
|
|
|
intptr_t new_caller_frame_top = new_stack_fp +
|
|
(callee_params_count + 1) * kPointerSize +
|
|
CommonFrameConstants::kFixedFrameSizeAboveFp;
|
|
|
|
intptr_t adaptor_caller_pc = Memory::intptr_at(
|
|
adaptor_fp_address + CommonFrameConstants::kCallerPCOffset);
|
|
intptr_t adaptor_caller_fp = Memory::intptr_at(
|
|
adaptor_fp_address + CommonFrameConstants::kCallerFPOffset);
|
|
|
|
if (trace_scope_ != NULL) {
|
|
PrintF(trace_scope_->file(),
|
|
" dropping caller arguments adaptor frame: offset=%d, "
|
|
"fp: 0x%08" V8PRIxPTR " -> 0x%08" V8PRIxPTR
|
|
", "
|
|
"caller sp: 0x%08" V8PRIxPTR " -> 0x%08" V8PRIxPTR "\n",
|
|
offset, stack_fp_, new_stack_fp, caller_frame_top_,
|
|
new_caller_frame_top);
|
|
}
|
|
caller_frame_top_ = new_caller_frame_top;
|
|
caller_fp_ = adaptor_caller_fp;
|
|
caller_pc_ = adaptor_caller_pc;
|
|
}
|
|
|
|
void Deoptimizer::DoComputeConstructStubFrame(TranslatedFrame* translated_frame,
|
|
int frame_index) {
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
bool is_topmost = (output_count_ - 1 == frame_index);
|
|
// The construct frame could become topmost only if we inlined a constructor
|
|
// call which does a tail call (otherwise the tail callee's frame would be
|
|
// the topmost one). So it could only be the LAZY case.
|
|
CHECK(!is_topmost || bailout_type_ == LAZY);
|
|
int input_index = 0;
|
|
|
|
Builtins* builtins = isolate_->builtins();
|
|
Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric);
|
|
unsigned height = translated_frame->height();
|
|
unsigned height_in_bytes = height * kPointerSize;
|
|
|
|
// If the construct frame appears to be topmost we should ensure that the
|
|
// value of result register is preserved during continuation execution.
|
|
// We do this here by "pushing" the result of the constructor function to the
|
|
// top of the reconstructed stack and then using the
|
|
// BailoutState::TOS_REGISTER machinery.
|
|
if (is_topmost) {
|
|
height_in_bytes += kPointerSize;
|
|
}
|
|
|
|
// Skip function.
|
|
value_iterator++;
|
|
input_index++;
|
|
if (trace_scope_ != NULL) {
|
|
PrintF(trace_scope_->file(),
|
|
" translating construct stub => height=%d\n", height_in_bytes);
|
|
}
|
|
|
|
unsigned fixed_frame_size = ConstructFrameConstants::kFixedFrameSize;
|
|
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
|
|
|
|
// Allocate and store the output frame description.
|
|
FrameDescription* output_frame =
|
|
new (output_frame_size) FrameDescription(output_frame_size);
|
|
output_frame->SetFrameType(StackFrame::CONSTRUCT);
|
|
|
|
// Construct stub can not be topmost.
|
|
DCHECK(frame_index > 0 && frame_index < output_count_);
|
|
DCHECK(output_[frame_index] == NULL);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address of the frame is computed from the previous frame's top and
|
|
// this frame's size.
|
|
intptr_t top_address;
|
|
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
|
|
output_frame->SetTop(top_address);
|
|
|
|
// Compute the incoming parameter translation.
|
|
int parameter_count = height;
|
|
unsigned output_offset = output_frame_size;
|
|
for (int i = 0; i < parameter_count; ++i) {
|
|
output_offset -= kPointerSize;
|
|
// The allocated receiver of a construct stub frame is passed as the
|
|
// receiver parameter through the translation. It might be encoding
|
|
// a captured object, override the slot address for a captured object.
|
|
WriteTranslatedValueToOutput(
|
|
&value_iterator, &input_index, frame_index, output_offset, nullptr,
|
|
(i == 0) ? reinterpret_cast<Address>(top_address) : nullptr);
|
|
}
|
|
|
|
// Read caller's PC from the previous frame.
|
|
output_offset -= kPCOnStackSize;
|
|
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
|
|
output_frame->SetCallerPc(output_offset, callers_pc);
|
|
DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
|
|
|
|
// Read caller's FP from the previous frame, and set this frame's FP.
|
|
output_offset -= kFPOnStackSize;
|
|
intptr_t value = output_[frame_index - 1]->GetFp();
|
|
output_frame->SetCallerFp(output_offset, value);
|
|
intptr_t fp_value = top_address + output_offset;
|
|
output_frame->SetFp(fp_value);
|
|
if (is_topmost) {
|
|
Register fp_reg = JavaScriptFrame::fp_register();
|
|
output_frame->SetRegister(fp_reg.code(), fp_value);
|
|
}
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// Read the caller's constant pool from the previous frame.
|
|
output_offset -= kPointerSize;
|
|
value = output_[frame_index - 1]->GetConstantPool();
|
|
output_frame->SetCallerConstantPool(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// A marker value is used to mark the frame.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::CONSTRUCT));
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"typed frame marker\n");
|
|
|
|
// The context can be gotten from the previous frame.
|
|
output_offset -= kPointerSize;
|
|
value = output_[frame_index - 1]->GetContext();
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "context\n");
|
|
|
|
// Number of incoming arguments.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "argc ");
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(), "(%d)\n", height - 1);
|
|
}
|
|
|
|
// The newly allocated object was passed as receiver in the artificial
|
|
// constructor stub environment created by HEnvironment::CopyForInlining().
|
|
output_offset -= kPointerSize;
|
|
value = output_frame->GetFrameSlot(output_frame_size - kPointerSize);
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"allocated receiver\n");
|
|
|
|
if (is_topmost) {
|
|
// Ensure the result is restored back when we return to the stub.
|
|
output_offset -= kPointerSize;
|
|
Register result_reg = FullCodeGenerator::result_register();
|
|
value = input_->GetRegister(result_reg.code());
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"constructor result\n");
|
|
|
|
output_frame->SetState(
|
|
Smi::FromInt(static_cast<int>(BailoutState::TOS_REGISTER)));
|
|
}
|
|
|
|
CHECK_EQ(0u, output_offset);
|
|
|
|
intptr_t pc = reinterpret_cast<intptr_t>(
|
|
construct_stub->instruction_start() +
|
|
isolate_->heap()->construct_stub_deopt_pc_offset()->value());
|
|
output_frame->SetPc(pc);
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(construct_stub->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
if (is_topmost) {
|
|
Register constant_pool_reg =
|
|
JavaScriptFrame::constant_pool_pointer_register();
|
|
output_frame->SetRegister(constant_pool_reg.code(), fp_value);
|
|
}
|
|
}
|
|
|
|
// Clear the context register. The context might be a de-materialized object
|
|
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
|
|
// safety we use Smi(0) instead of the potential {arguments_marker} here.
|
|
if (is_topmost) {
|
|
intptr_t context_value = reinterpret_cast<intptr_t>(Smi::kZero);
|
|
Register context_reg = JavaScriptFrame::context_register();
|
|
output_frame->SetRegister(context_reg.code(), context_value);
|
|
}
|
|
|
|
// Set the continuation for the topmost frame.
|
|
if (is_topmost) {
|
|
Builtins* builtins = isolate_->builtins();
|
|
DCHECK_EQ(LAZY, bailout_type_);
|
|
Code* continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
|
|
output_frame->SetContinuation(
|
|
reinterpret_cast<intptr_t>(continuation->entry()));
|
|
}
|
|
}
|
|
|
|
void Deoptimizer::DoComputeAccessorStubFrame(TranslatedFrame* translated_frame,
|
|
int frame_index,
|
|
bool is_setter_stub_frame) {
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
bool is_topmost = (output_count_ - 1 == frame_index);
|
|
// The accessor frame could become topmost only if we inlined an accessor
|
|
// call which does a tail call (otherwise the tail callee's frame would be
|
|
// the topmost one). So it could only be the LAZY case.
|
|
CHECK(!is_topmost || bailout_type_ == LAZY);
|
|
int input_index = 0;
|
|
|
|
// Skip accessor.
|
|
value_iterator++;
|
|
input_index++;
|
|
// The receiver (and the implicit return value, if any) are expected in
|
|
// registers by the LoadIC/StoreIC, so they don't belong to the output stack
|
|
// frame. This means that we have to use a height of 0.
|
|
unsigned height = 0;
|
|
unsigned height_in_bytes = height * kPointerSize;
|
|
|
|
// If the accessor frame appears to be topmost we should ensure that the
|
|
// value of result register is preserved during continuation execution.
|
|
// We do this here by "pushing" the result of the accessor function to the
|
|
// top of the reconstructed stack and then using the
|
|
// BailoutState::TOS_REGISTER machinery.
|
|
// We don't need to restore the result in case of a setter call because we
|
|
// have to return the stored value but not the result of the setter function.
|
|
bool should_preserve_result = is_topmost && !is_setter_stub_frame;
|
|
if (should_preserve_result) {
|
|
height_in_bytes += kPointerSize;
|
|
}
|
|
|
|
const char* kind = is_setter_stub_frame ? "setter" : "getter";
|
|
if (trace_scope_ != NULL) {
|
|
PrintF(trace_scope_->file(),
|
|
" translating %s stub => height=%u\n", kind, height_in_bytes);
|
|
}
|
|
|
|
// We need 1 stack entry for the return address and enough entries for the
|
|
// StackFrame::INTERNAL (FP, frame type, context, code object and constant
|
|
// pool (if enabled)- see MacroAssembler::EnterFrame).
|
|
// For a setter stub frame we need one additional entry for the implicit
|
|
// return value, see StoreStubCompiler::CompileStoreViaSetter.
|
|
unsigned fixed_frame_entries =
|
|
(StandardFrameConstants::kFixedFrameSize / kPointerSize) + 1 +
|
|
(is_setter_stub_frame ? 1 : 0);
|
|
unsigned fixed_frame_size = fixed_frame_entries * kPointerSize;
|
|
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
|
|
|
|
// Allocate and store the output frame description.
|
|
FrameDescription* output_frame =
|
|
new (output_frame_size) FrameDescription(output_frame_size);
|
|
output_frame->SetFrameType(StackFrame::INTERNAL);
|
|
|
|
// A frame for an accessor stub can not be bottommost.
|
|
CHECK(frame_index > 0 && frame_index < output_count_);
|
|
CHECK_NULL(output_[frame_index]);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address of the frame is computed from the previous frame's top and
|
|
// this frame's size.
|
|
intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
|
|
output_frame->SetTop(top_address);
|
|
|
|
unsigned output_offset = output_frame_size;
|
|
|
|
// Read caller's PC from the previous frame.
|
|
output_offset -= kPCOnStackSize;
|
|
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
|
|
output_frame->SetCallerPc(output_offset, callers_pc);
|
|
DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
|
|
|
|
// Read caller's FP from the previous frame, and set this frame's FP.
|
|
output_offset -= kFPOnStackSize;
|
|
intptr_t value = output_[frame_index - 1]->GetFp();
|
|
output_frame->SetCallerFp(output_offset, value);
|
|
intptr_t fp_value = top_address + output_offset;
|
|
output_frame->SetFp(fp_value);
|
|
if (is_topmost) {
|
|
Register fp_reg = JavaScriptFrame::fp_register();
|
|
output_frame->SetRegister(fp_reg.code(), fp_value);
|
|
}
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// Read the caller's constant pool from the previous frame.
|
|
output_offset -= kPointerSize;
|
|
value = output_[frame_index - 1]->GetConstantPool();
|
|
output_frame->SetCallerConstantPool(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// Set the frame type.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::INTERNAL));
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "frame type ");
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(), "(%s sentinel)\n", kind);
|
|
}
|
|
|
|
// Get Code object from accessor stub.
|
|
output_offset -= kPointerSize;
|
|
Builtins::Name name = is_setter_stub_frame ?
|
|
Builtins::kStoreIC_Setter_ForDeopt :
|
|
Builtins::kLoadIC_Getter_ForDeopt;
|
|
Code* accessor_stub = isolate_->builtins()->builtin(name);
|
|
value = reinterpret_cast<intptr_t>(accessor_stub);
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "code object\n");
|
|
|
|
// The context can be gotten from the previous frame.
|
|
output_offset -= kPointerSize;
|
|
value = output_[frame_index - 1]->GetContext();
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "context\n");
|
|
|
|
// Skip receiver.
|
|
value_iterator++;
|
|
input_index++;
|
|
|
|
if (is_setter_stub_frame) {
|
|
// The implicit return value was part of the artificial setter stub
|
|
// environment.
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
|
|
if (should_preserve_result) {
|
|
// Ensure the result is restored back when we return to the stub.
|
|
output_offset -= kPointerSize;
|
|
Register result_reg = FullCodeGenerator::result_register();
|
|
value = input_->GetRegister(result_reg.code());
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"accessor result\n");
|
|
|
|
output_frame->SetState(
|
|
Smi::FromInt(static_cast<int>(BailoutState::TOS_REGISTER)));
|
|
} else {
|
|
output_frame->SetState(
|
|
Smi::FromInt(static_cast<int>(BailoutState::NO_REGISTERS)));
|
|
}
|
|
|
|
CHECK_EQ(0u, output_offset);
|
|
|
|
Smi* offset = is_setter_stub_frame ?
|
|
isolate_->heap()->setter_stub_deopt_pc_offset() :
|
|
isolate_->heap()->getter_stub_deopt_pc_offset();
|
|
intptr_t pc = reinterpret_cast<intptr_t>(
|
|
accessor_stub->instruction_start() + offset->value());
|
|
output_frame->SetPc(pc);
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(accessor_stub->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
if (is_topmost) {
|
|
Register constant_pool_reg =
|
|
JavaScriptFrame::constant_pool_pointer_register();
|
|
output_frame->SetRegister(constant_pool_reg.code(), fp_value);
|
|
}
|
|
}
|
|
|
|
// Clear the context register. The context might be a de-materialized object
|
|
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
|
|
// safety we use Smi(0) instead of the potential {arguments_marker} here.
|
|
if (is_topmost) {
|
|
intptr_t context_value = reinterpret_cast<intptr_t>(Smi::kZero);
|
|
Register context_reg = JavaScriptFrame::context_register();
|
|
output_frame->SetRegister(context_reg.code(), context_value);
|
|
}
|
|
|
|
// Set the continuation for the topmost frame.
|
|
if (is_topmost) {
|
|
Builtins* builtins = isolate_->builtins();
|
|
DCHECK_EQ(LAZY, bailout_type_);
|
|
Code* continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
|
|
output_frame->SetContinuation(
|
|
reinterpret_cast<intptr_t>(continuation->entry()));
|
|
}
|
|
}
|
|
|
|
void Deoptimizer::DoComputeCompiledStubFrame(TranslatedFrame* translated_frame,
|
|
int frame_index) {
|
|
//
|
|
// FROM TO
|
|
// | .... | | .... |
|
|
// +-------------------------+ +-------------------------+
|
|
// | JSFunction continuation | | JSFunction continuation |
|
|
// +-------------------------+ +-------------------------+
|
|
// | | saved frame (FP) | | saved frame (FP) |
|
|
// | +=========================+<-fpreg +=========================+<-fpreg
|
|
// | |constant pool (if ool_cp)| |constant pool (if ool_cp)|
|
|
// | +-------------------------+ +-------------------------|
|
|
// | | JSFunction context | | JSFunction context |
|
|
// v +-------------------------+ +-------------------------|
|
|
// | COMPILED_STUB marker | | STUB_FAILURE marker |
|
|
// +-------------------------+ +-------------------------+
|
|
// | | | caller args.arguments_ |
|
|
// | ... | +-------------------------+
|
|
// | | | caller args.length_ |
|
|
// |-------------------------|<-spreg +-------------------------+
|
|
// | caller args pointer |
|
|
// +-------------------------+
|
|
// | caller stack param 1 |
|
|
// parameters in registers +-------------------------+
|
|
// and spilled to stack | .... |
|
|
// +-------------------------+
|
|
// | caller stack param n |
|
|
// +-------------------------+<-spreg
|
|
// reg = number of parameters
|
|
// reg = failure handler address
|
|
// reg = saved frame
|
|
// reg = JSFunction context
|
|
//
|
|
// Caller stack params contain the register parameters to the stub first,
|
|
// and then, if the descriptor specifies a constant number of stack
|
|
// parameters, the stack parameters as well.
|
|
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
int input_index = 0;
|
|
|
|
CHECK(compiled_code_->is_hydrogen_stub());
|
|
int major_key = CodeStub::GetMajorKey(compiled_code_);
|
|
CodeStubDescriptor descriptor(isolate_, compiled_code_->stub_key());
|
|
|
|
// The output frame must have room for all pushed register parameters
|
|
// and the standard stack frame slots. Include space for an argument
|
|
// object to the callee and optionally the space to pass the argument
|
|
// object to the stub failure handler.
|
|
int param_count = descriptor.GetRegisterParameterCount();
|
|
int stack_param_count = descriptor.GetStackParameterCount();
|
|
// The translated frame contains all of the register parameters
|
|
// plus the context.
|
|
CHECK_EQ(translated_frame->height(), param_count + 1);
|
|
CHECK_GE(param_count, 0);
|
|
|
|
int height_in_bytes = kPointerSize * (param_count + stack_param_count);
|
|
int fixed_frame_size = StubFailureTrampolineFrameConstants::kFixedFrameSize;
|
|
int output_frame_size = height_in_bytes + fixed_frame_size;
|
|
if (trace_scope_ != NULL) {
|
|
PrintF(trace_scope_->file(),
|
|
" translating %s => StubFailureTrampolineStub, height=%d\n",
|
|
CodeStub::MajorName(static_cast<CodeStub::Major>(major_key)),
|
|
height_in_bytes);
|
|
}
|
|
|
|
// The stub failure trampoline is a single frame.
|
|
FrameDescription* output_frame =
|
|
new (output_frame_size) FrameDescription(output_frame_size);
|
|
output_frame->SetFrameType(StackFrame::STUB_FAILURE_TRAMPOLINE);
|
|
CHECK_EQ(frame_index, 0);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address of the frame is computed from the previous frame's top and
|
|
// this frame's size.
|
|
intptr_t top_address = caller_frame_top_ - output_frame_size;
|
|
output_frame->SetTop(top_address);
|
|
|
|
// Set caller's PC (JSFunction continuation).
|
|
unsigned output_frame_offset = output_frame_size - kFPOnStackSize;
|
|
intptr_t value = caller_pc_;
|
|
output_frame->SetCallerPc(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"caller's pc\n");
|
|
|
|
// Read caller's FP from the input frame, and set this frame's FP.
|
|
value = caller_fp_;
|
|
output_frame_offset -= kFPOnStackSize;
|
|
output_frame->SetCallerFp(output_frame_offset, value);
|
|
intptr_t frame_ptr = top_address + output_frame_offset;
|
|
Register fp_reg = StubFailureTrampolineFrame::fp_register();
|
|
output_frame->SetRegister(fp_reg.code(), frame_ptr);
|
|
output_frame->SetFp(frame_ptr);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"caller's fp\n");
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// Read the caller's constant pool from the input frame.
|
|
value = caller_constant_pool_;
|
|
output_frame_offset -= kPointerSize;
|
|
output_frame->SetCallerConstantPool(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// The marker for the typed stack frame
|
|
output_frame_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(
|
|
Smi::FromInt(StackFrame::STUB_FAILURE_TRAMPOLINE));
|
|
output_frame->SetFrameSlot(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"function (stub failure sentinel)\n");
|
|
|
|
intptr_t caller_arg_count = stack_param_count;
|
|
bool arg_count_known = !descriptor.stack_parameter_count().is_valid();
|
|
|
|
// Build the Arguments object for the caller's parameters and a pointer to it.
|
|
output_frame_offset -= kPointerSize;
|
|
int args_arguments_offset = output_frame_offset;
|
|
intptr_t the_hole = reinterpret_cast<intptr_t>(
|
|
isolate_->heap()->the_hole_value());
|
|
if (arg_count_known) {
|
|
value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
|
|
(caller_arg_count - 1) * kPointerSize;
|
|
} else {
|
|
value = the_hole;
|
|
}
|
|
|
|
output_frame->SetFrameSlot(args_arguments_offset, value);
|
|
DebugPrintOutputSlot(
|
|
value, frame_index, args_arguments_offset,
|
|
arg_count_known ? "args.arguments\n" : "args.arguments (the hole)\n");
|
|
|
|
output_frame_offset -= kPointerSize;
|
|
int length_frame_offset = output_frame_offset;
|
|
value = arg_count_known ? caller_arg_count : the_hole;
|
|
output_frame->SetFrameSlot(length_frame_offset, value);
|
|
DebugPrintOutputSlot(
|
|
value, frame_index, length_frame_offset,
|
|
arg_count_known ? "args.length\n" : "args.length (the hole)\n");
|
|
|
|
output_frame_offset -= kPointerSize;
|
|
value = frame_ptr + StandardFrameConstants::kCallerSPOffset -
|
|
(output_frame_size - output_frame_offset) + kPointerSize;
|
|
output_frame->SetFrameSlot(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset, "args*\n");
|
|
|
|
// Copy the register parameters to the failure frame.
|
|
int arguments_length_offset = -1;
|
|
for (int i = 0; i < param_count; ++i) {
|
|
output_frame_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, 0,
|
|
output_frame_offset);
|
|
|
|
if (!arg_count_known &&
|
|
descriptor.GetRegisterParameter(i)
|
|
.is(descriptor.stack_parameter_count())) {
|
|
arguments_length_offset = output_frame_offset;
|
|
}
|
|
}
|
|
|
|
Object* maybe_context = value_iterator->GetRawValue();
|
|
CHECK(maybe_context->IsContext());
|
|
Register context_reg = StubFailureTrampolineFrame::context_register();
|
|
value = reinterpret_cast<intptr_t>(maybe_context);
|
|
output_frame->SetRegister(context_reg.code(), value);
|
|
++value_iterator;
|
|
|
|
// Copy constant stack parameters to the failure frame. If the number of stack
|
|
// parameters is not known in the descriptor, the arguments object is the way
|
|
// to access them.
|
|
for (int i = 0; i < stack_param_count; i++) {
|
|
output_frame_offset -= kPointerSize;
|
|
Object** stack_parameter = reinterpret_cast<Object**>(
|
|
frame_ptr + StandardFrameConstants::kCallerSPOffset +
|
|
(stack_param_count - i - 1) * kPointerSize);
|
|
value = reinterpret_cast<intptr_t>(*stack_parameter);
|
|
output_frame->SetFrameSlot(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"stack parameter\n");
|
|
}
|
|
|
|
CHECK_EQ(0u, output_frame_offset);
|
|
|
|
if (!arg_count_known) {
|
|
CHECK_GE(arguments_length_offset, 0);
|
|
// We know it's a smi because 1) the code stub guarantees the stack
|
|
// parameter count is in smi range, and 2) the DoTranslateCommand in the
|
|
// parameter loop above translated that to a tagged value.
|
|
Smi* smi_caller_arg_count = reinterpret_cast<Smi*>(
|
|
output_frame->GetFrameSlot(arguments_length_offset));
|
|
caller_arg_count = smi_caller_arg_count->value();
|
|
output_frame->SetFrameSlot(length_frame_offset, caller_arg_count);
|
|
DebugPrintOutputSlot(caller_arg_count, frame_index, length_frame_offset,
|
|
"args.length\n");
|
|
value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
|
|
(caller_arg_count - 1) * kPointerSize;
|
|
output_frame->SetFrameSlot(args_arguments_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, args_arguments_offset,
|
|
"args.arguments");
|
|
}
|
|
|
|
// Copy the double registers from the input into the output frame.
|
|
CopyDoubleRegisters(output_frame);
|
|
|
|
// Fill registers containing handler and number of parameters.
|
|
SetPlatformCompiledStubRegisters(output_frame, &descriptor);
|
|
|
|
// Compute this frame's PC, state, and continuation.
|
|
Code* trampoline = NULL;
|
|
StubFunctionMode function_mode = descriptor.function_mode();
|
|
StubFailureTrampolineStub(isolate_, function_mode)
|
|
.FindCodeInCache(&trampoline);
|
|
DCHECK(trampoline != NULL);
|
|
output_frame->SetPc(reinterpret_cast<intptr_t>(
|
|
trampoline->instruction_start()));
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
Register constant_pool_reg =
|
|
StubFailureTrampolineFrame::constant_pool_pointer_register();
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(trampoline->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
|
|
}
|
|
output_frame->SetState(
|
|
Smi::FromInt(static_cast<int>(BailoutState::NO_REGISTERS)));
|
|
Code* notify_failure =
|
|
isolate_->builtins()->builtin(Builtins::kNotifyStubFailureSaveDoubles);
|
|
output_frame->SetContinuation(
|
|
reinterpret_cast<intptr_t>(notify_failure->entry()));
|
|
}
|
|
|
|
|
|
void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) {
|
|
// Walk to the last JavaScript output frame to find out if it has
|
|
// adapted arguments.
|
|
for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) {
|
|
if (frame_index != 0) it->Advance();
|
|
}
|
|
translated_state_.Prepare(it->frame()->has_adapted_arguments(),
|
|
reinterpret_cast<Address>(stack_fp_));
|
|
|
|
for (auto& materialization : values_to_materialize_) {
|
|
Handle<Object> value = materialization.value_->GetValue();
|
|
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF("Materialization [0x%08" V8PRIxPTR "] <- 0x%08" V8PRIxPTR " ; ",
|
|
reinterpret_cast<intptr_t>(materialization.output_slot_address_),
|
|
reinterpret_cast<intptr_t>(*value));
|
|
value->ShortPrint(trace_scope_->file());
|
|
PrintF(trace_scope_->file(), "\n");
|
|
}
|
|
|
|
*(reinterpret_cast<intptr_t*>(materialization.output_slot_address_)) =
|
|
reinterpret_cast<intptr_t>(*value);
|
|
}
|
|
|
|
isolate_->materialized_object_store()->Remove(
|
|
reinterpret_cast<Address>(stack_fp_));
|
|
}
|
|
|
|
|
|
void Deoptimizer::WriteTranslatedValueToOutput(
|
|
TranslatedFrame::iterator* iterator, int* input_index, int frame_index,
|
|
unsigned output_offset, const char* debug_hint_string,
|
|
Address output_address_for_materialization) {
|
|
Object* value = (*iterator)->GetRawValue();
|
|
|
|
WriteValueToOutput(value, *input_index, frame_index, output_offset,
|
|
debug_hint_string);
|
|
|
|
if (value == isolate_->heap()->arguments_marker()) {
|
|
Address output_address =
|
|
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
|
|
output_offset;
|
|
if (output_address_for_materialization == nullptr) {
|
|
output_address_for_materialization = output_address;
|
|
}
|
|
values_to_materialize_.push_back(
|
|
{output_address_for_materialization, *iterator});
|
|
}
|
|
|
|
(*iterator)++;
|
|
(*input_index)++;
|
|
}
|
|
|
|
|
|
void Deoptimizer::WriteValueToOutput(Object* value, int input_index,
|
|
int frame_index, unsigned output_offset,
|
|
const char* debug_hint_string) {
|
|
output_[frame_index]->SetFrameSlot(output_offset,
|
|
reinterpret_cast<intptr_t>(value));
|
|
|
|
if (trace_scope_ != nullptr) {
|
|
DebugPrintOutputSlot(reinterpret_cast<intptr_t>(value), frame_index,
|
|
output_offset, debug_hint_string);
|
|
value->ShortPrint(trace_scope_->file());
|
|
PrintF(trace_scope_->file(), " (input #%d)\n", input_index);
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::DebugPrintOutputSlot(intptr_t value, int frame_index,
|
|
unsigned output_offset,
|
|
const char* debug_hint_string) {
|
|
if (trace_scope_ != nullptr) {
|
|
Address output_address =
|
|
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
|
|
output_offset;
|
|
PrintF(trace_scope_->file(),
|
|
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; %s",
|
|
reinterpret_cast<intptr_t>(output_address), output_offset, value,
|
|
debug_hint_string == nullptr ? "" : debug_hint_string);
|
|
}
|
|
}
|
|
|
|
unsigned Deoptimizer::ComputeInputFrameAboveFpFixedSize() const {
|
|
unsigned fixed_size = CommonFrameConstants::kFixedFrameSizeAboveFp;
|
|
if (!function_->IsSmi()) {
|
|
fixed_size += ComputeIncomingArgumentSize(function_->shared());
|
|
}
|
|
return fixed_size;
|
|
}
|
|
|
|
unsigned Deoptimizer::ComputeInputFrameSize() const {
|
|
// The fp-to-sp delta already takes the context, constant pool pointer and the
|
|
// function into account so we have to avoid double counting them.
|
|
unsigned fixed_size_above_fp = ComputeInputFrameAboveFpFixedSize();
|
|
unsigned result = fixed_size_above_fp + fp_to_sp_delta_;
|
|
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
|
|
unsigned stack_slots = compiled_code_->stack_slots();
|
|
unsigned outgoing_size =
|
|
ComputeOutgoingArgumentSize(compiled_code_, bailout_id_);
|
|
CHECK_EQ(fixed_size_above_fp + (stack_slots * kPointerSize) -
|
|
CommonFrameConstants::kFixedFrameSizeAboveFp + outgoing_size,
|
|
result);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// static
|
|
unsigned Deoptimizer::ComputeJavascriptFixedSize(SharedFunctionInfo* shared) {
|
|
// The fixed part of the frame consists of the return address, frame
|
|
// pointer, function, context, and all the incoming arguments.
|
|
return ComputeIncomingArgumentSize(shared) +
|
|
StandardFrameConstants::kFixedFrameSize;
|
|
}
|
|
|
|
// static
|
|
unsigned Deoptimizer::ComputeInterpretedFixedSize(SharedFunctionInfo* shared) {
|
|
// The fixed part of the frame consists of the return address, frame
|
|
// pointer, function, context, new.target, bytecode offset and all the
|
|
// incoming arguments.
|
|
return ComputeIncomingArgumentSize(shared) +
|
|
InterpreterFrameConstants::kFixedFrameSize;
|
|
}
|
|
|
|
// static
|
|
unsigned Deoptimizer::ComputeIncomingArgumentSize(SharedFunctionInfo* shared) {
|
|
return (shared->internal_formal_parameter_count() + 1) * kPointerSize;
|
|
}
|
|
|
|
|
|
// static
|
|
unsigned Deoptimizer::ComputeOutgoingArgumentSize(Code* code,
|
|
unsigned bailout_id) {
|
|
DeoptimizationInputData* data =
|
|
DeoptimizationInputData::cast(code->deoptimization_data());
|
|
unsigned height = data->ArgumentsStackHeight(bailout_id)->value();
|
|
return height * kPointerSize;
|
|
}
|
|
|
|
void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate,
|
|
BailoutType type,
|
|
int max_entry_id) {
|
|
// We cannot run this if the serializer is enabled because this will
|
|
// cause us to emit relocation information for the external
|
|
// references. This is fine because the deoptimizer's code section
|
|
// isn't meant to be serialized at all.
|
|
CHECK(type == EAGER || type == SOFT || type == LAZY);
|
|
DeoptimizerData* data = isolate->deoptimizer_data();
|
|
int entry_count = data->deopt_entry_code_entries_[type];
|
|
if (max_entry_id < entry_count) return;
|
|
entry_count = Max(entry_count, Deoptimizer::kMinNumberOfEntries);
|
|
while (max_entry_id >= entry_count) entry_count *= 2;
|
|
CHECK(entry_count <= Deoptimizer::kMaxNumberOfEntries);
|
|
|
|
MacroAssembler masm(isolate, NULL, 16 * KB, CodeObjectRequired::kYes);
|
|
masm.set_emit_debug_code(false);
|
|
GenerateDeoptimizationEntries(&masm, entry_count, type);
|
|
CodeDesc desc;
|
|
masm.GetCode(&desc);
|
|
DCHECK(!RelocInfo::RequiresRelocation(desc));
|
|
|
|
MemoryChunk* chunk = data->deopt_entry_code_[type];
|
|
CHECK(static_cast<int>(Deoptimizer::GetMaxDeoptTableSize()) >=
|
|
desc.instr_size);
|
|
if (!chunk->CommitArea(desc.instr_size)) {
|
|
V8::FatalProcessOutOfMemory(
|
|
"Deoptimizer::EnsureCodeForDeoptimizationEntry");
|
|
}
|
|
CopyBytes(chunk->area_start(), desc.buffer,
|
|
static_cast<size_t>(desc.instr_size));
|
|
Assembler::FlushICache(isolate, chunk->area_start(), desc.instr_size);
|
|
|
|
data->deopt_entry_code_entries_[type] = entry_count;
|
|
}
|
|
|
|
FrameDescription::FrameDescription(uint32_t frame_size, int parameter_count)
|
|
: frame_size_(frame_size),
|
|
parameter_count_(parameter_count),
|
|
top_(kZapUint32),
|
|
pc_(kZapUint32),
|
|
fp_(kZapUint32),
|
|
context_(kZapUint32),
|
|
constant_pool_(kZapUint32) {
|
|
// Zap all the registers.
|
|
for (int r = 0; r < Register::kNumRegisters; r++) {
|
|
// TODO(jbramley): It isn't safe to use kZapUint32 here. If the register
|
|
// isn't used before the next safepoint, the GC will try to scan it as a
|
|
// tagged value. kZapUint32 looks like a valid tagged pointer, but it isn't.
|
|
SetRegister(r, kZapUint32);
|
|
}
|
|
|
|
// Zap all the slots.
|
|
for (unsigned o = 0; o < frame_size; o += kPointerSize) {
|
|
SetFrameSlot(o, kZapUint32);
|
|
}
|
|
}
|
|
|
|
void TranslationBuffer::Add(int32_t value) {
|
|
// This wouldn't handle kMinInt correctly if it ever encountered it.
|
|
DCHECK(value != kMinInt);
|
|
// Encode the sign bit in the least significant bit.
|
|
bool is_negative = (value < 0);
|
|
uint32_t bits = ((is_negative ? -value : value) << 1) |
|
|
static_cast<int32_t>(is_negative);
|
|
// Encode the individual bytes using the least significant bit of
|
|
// each byte to indicate whether or not more bytes follow.
|
|
do {
|
|
uint32_t next = bits >> 7;
|
|
contents_.push_back(((bits << 1) & 0xFF) | (next != 0));
|
|
bits = next;
|
|
} while (bits != 0);
|
|
}
|
|
|
|
|
|
int32_t TranslationIterator::Next() {
|
|
// Run through the bytes until we reach one with a least significant
|
|
// bit of zero (marks the end).
|
|
uint32_t bits = 0;
|
|
for (int i = 0; true; i += 7) {
|
|
DCHECK(HasNext());
|
|
uint8_t next = buffer_->get(index_++);
|
|
bits |= (next >> 1) << i;
|
|
if ((next & 1) == 0) break;
|
|
}
|
|
// The bits encode the sign in the least significant bit.
|
|
bool is_negative = (bits & 1) == 1;
|
|
int32_t result = bits >> 1;
|
|
return is_negative ? -result : result;
|
|
}
|
|
|
|
|
|
Handle<ByteArray> TranslationBuffer::CreateByteArray(Factory* factory) {
|
|
Handle<ByteArray> result = factory->NewByteArray(CurrentIndex(), TENURED);
|
|
contents_.CopyTo(result->GetDataStartAddress());
|
|
return result;
|
|
}
|
|
|
|
|
|
void Translation::BeginConstructStubFrame(int literal_id, unsigned height) {
|
|
buffer_->Add(CONSTRUCT_STUB_FRAME);
|
|
buffer_->Add(literal_id);
|
|
buffer_->Add(height);
|
|
}
|
|
|
|
|
|
void Translation::BeginGetterStubFrame(int literal_id) {
|
|
buffer_->Add(GETTER_STUB_FRAME);
|
|
buffer_->Add(literal_id);
|
|
}
|
|
|
|
|
|
void Translation::BeginSetterStubFrame(int literal_id) {
|
|
buffer_->Add(SETTER_STUB_FRAME);
|
|
buffer_->Add(literal_id);
|
|
}
|
|
|
|
|
|
void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
|
|
buffer_->Add(ARGUMENTS_ADAPTOR_FRAME);
|
|
buffer_->Add(literal_id);
|
|
buffer_->Add(height);
|
|
}
|
|
|
|
void Translation::BeginTailCallerFrame(int literal_id) {
|
|
buffer_->Add(TAIL_CALLER_FRAME);
|
|
buffer_->Add(literal_id);
|
|
}
|
|
|
|
void Translation::BeginJSFrame(BailoutId node_id,
|
|
int literal_id,
|
|
unsigned height) {
|
|
buffer_->Add(JS_FRAME);
|
|
buffer_->Add(node_id.ToInt());
|
|
buffer_->Add(literal_id);
|
|
buffer_->Add(height);
|
|
}
|
|
|
|
|
|
void Translation::BeginInterpretedFrame(BailoutId bytecode_offset,
|
|
int literal_id, unsigned height) {
|
|
buffer_->Add(INTERPRETED_FRAME);
|
|
buffer_->Add(bytecode_offset.ToInt());
|
|
buffer_->Add(literal_id);
|
|
buffer_->Add(height);
|
|
}
|
|
|
|
|
|
void Translation::BeginCompiledStubFrame(int height) {
|
|
buffer_->Add(COMPILED_STUB_FRAME);
|
|
buffer_->Add(height);
|
|
}
|
|
|
|
|
|
void Translation::BeginArgumentsObject(int args_length) {
|
|
buffer_->Add(ARGUMENTS_OBJECT);
|
|
buffer_->Add(args_length);
|
|
}
|
|
|
|
|
|
void Translation::BeginCapturedObject(int length) {
|
|
buffer_->Add(CAPTURED_OBJECT);
|
|
buffer_->Add(length);
|
|
}
|
|
|
|
|
|
void Translation::DuplicateObject(int object_index) {
|
|
buffer_->Add(DUPLICATED_OBJECT);
|
|
buffer_->Add(object_index);
|
|
}
|
|
|
|
|
|
void Translation::StoreRegister(Register reg) {
|
|
buffer_->Add(REGISTER);
|
|
buffer_->Add(reg.code());
|
|
}
|
|
|
|
|
|
void Translation::StoreInt32Register(Register reg) {
|
|
buffer_->Add(INT32_REGISTER);
|
|
buffer_->Add(reg.code());
|
|
}
|
|
|
|
|
|
void Translation::StoreUint32Register(Register reg) {
|
|
buffer_->Add(UINT32_REGISTER);
|
|
buffer_->Add(reg.code());
|
|
}
|
|
|
|
|
|
void Translation::StoreBoolRegister(Register reg) {
|
|
buffer_->Add(BOOL_REGISTER);
|
|
buffer_->Add(reg.code());
|
|
}
|
|
|
|
void Translation::StoreFloatRegister(FloatRegister reg) {
|
|
buffer_->Add(FLOAT_REGISTER);
|
|
buffer_->Add(reg.code());
|
|
}
|
|
|
|
void Translation::StoreDoubleRegister(DoubleRegister reg) {
|
|
buffer_->Add(DOUBLE_REGISTER);
|
|
buffer_->Add(reg.code());
|
|
}
|
|
|
|
|
|
void Translation::StoreStackSlot(int index) {
|
|
buffer_->Add(STACK_SLOT);
|
|
buffer_->Add(index);
|
|
}
|
|
|
|
|
|
void Translation::StoreInt32StackSlot(int index) {
|
|
buffer_->Add(INT32_STACK_SLOT);
|
|
buffer_->Add(index);
|
|
}
|
|
|
|
|
|
void Translation::StoreUint32StackSlot(int index) {
|
|
buffer_->Add(UINT32_STACK_SLOT);
|
|
buffer_->Add(index);
|
|
}
|
|
|
|
|
|
void Translation::StoreBoolStackSlot(int index) {
|
|
buffer_->Add(BOOL_STACK_SLOT);
|
|
buffer_->Add(index);
|
|
}
|
|
|
|
void Translation::StoreFloatStackSlot(int index) {
|
|
buffer_->Add(FLOAT_STACK_SLOT);
|
|
buffer_->Add(index);
|
|
}
|
|
|
|
void Translation::StoreDoubleStackSlot(int index) {
|
|
buffer_->Add(DOUBLE_STACK_SLOT);
|
|
buffer_->Add(index);
|
|
}
|
|
|
|
|
|
void Translation::StoreLiteral(int literal_id) {
|
|
buffer_->Add(LITERAL);
|
|
buffer_->Add(literal_id);
|
|
}
|
|
|
|
|
|
void Translation::StoreArgumentsObject(bool args_known,
|
|
int args_index,
|
|
int args_length) {
|
|
buffer_->Add(ARGUMENTS_OBJECT);
|
|
buffer_->Add(args_known);
|
|
buffer_->Add(args_index);
|
|
buffer_->Add(args_length);
|
|
}
|
|
|
|
|
|
void Translation::StoreJSFrameFunction() {
|
|
StoreStackSlot((StandardFrameConstants::kCallerPCOffset -
|
|
StandardFrameConstants::kFunctionOffset) /
|
|
kPointerSize);
|
|
}
|
|
|
|
int Translation::NumberOfOperandsFor(Opcode opcode) {
|
|
switch (opcode) {
|
|
case GETTER_STUB_FRAME:
|
|
case SETTER_STUB_FRAME:
|
|
case DUPLICATED_OBJECT:
|
|
case ARGUMENTS_OBJECT:
|
|
case CAPTURED_OBJECT:
|
|
case REGISTER:
|
|
case INT32_REGISTER:
|
|
case UINT32_REGISTER:
|
|
case BOOL_REGISTER:
|
|
case FLOAT_REGISTER:
|
|
case DOUBLE_REGISTER:
|
|
case STACK_SLOT:
|
|
case INT32_STACK_SLOT:
|
|
case UINT32_STACK_SLOT:
|
|
case BOOL_STACK_SLOT:
|
|
case FLOAT_STACK_SLOT:
|
|
case DOUBLE_STACK_SLOT:
|
|
case LITERAL:
|
|
case COMPILED_STUB_FRAME:
|
|
case TAIL_CALLER_FRAME:
|
|
return 1;
|
|
case BEGIN:
|
|
case ARGUMENTS_ADAPTOR_FRAME:
|
|
case CONSTRUCT_STUB_FRAME:
|
|
return 2;
|
|
case JS_FRAME:
|
|
case INTERPRETED_FRAME:
|
|
return 3;
|
|
}
|
|
FATAL("Unexpected translation type");
|
|
return -1;
|
|
}
|
|
|
|
|
|
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
|
|
|
|
const char* Translation::StringFor(Opcode opcode) {
|
|
#define TRANSLATION_OPCODE_CASE(item) case item: return #item;
|
|
switch (opcode) {
|
|
TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE)
|
|
}
|
|
#undef TRANSLATION_OPCODE_CASE
|
|
UNREACHABLE();
|
|
return "";
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
Handle<FixedArray> MaterializedObjectStore::Get(Address fp) {
|
|
int index = StackIdToIndex(fp);
|
|
if (index == -1) {
|
|
return Handle<FixedArray>::null();
|
|
}
|
|
Handle<FixedArray> array = GetStackEntries();
|
|
CHECK_GT(array->length(), index);
|
|
return Handle<FixedArray>::cast(Handle<Object>(array->get(index), isolate()));
|
|
}
|
|
|
|
|
|
void MaterializedObjectStore::Set(Address fp,
|
|
Handle<FixedArray> materialized_objects) {
|
|
int index = StackIdToIndex(fp);
|
|
if (index == -1) {
|
|
index = frame_fps_.length();
|
|
frame_fps_.Add(fp);
|
|
}
|
|
|
|
Handle<FixedArray> array = EnsureStackEntries(index + 1);
|
|
array->set(index, *materialized_objects);
|
|
}
|
|
|
|
|
|
bool MaterializedObjectStore::Remove(Address fp) {
|
|
int index = StackIdToIndex(fp);
|
|
if (index == -1) {
|
|
return false;
|
|
}
|
|
CHECK_GE(index, 0);
|
|
|
|
frame_fps_.Remove(index);
|
|
FixedArray* array = isolate()->heap()->materialized_objects();
|
|
CHECK_LT(index, array->length());
|
|
for (int i = index; i < frame_fps_.length(); i++) {
|
|
array->set(i, array->get(i + 1));
|
|
}
|
|
array->set(frame_fps_.length(), isolate()->heap()->undefined_value());
|
|
return true;
|
|
}
|
|
|
|
|
|
int MaterializedObjectStore::StackIdToIndex(Address fp) {
|
|
for (int i = 0; i < frame_fps_.length(); i++) {
|
|
if (frame_fps_[i] == fp) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
Handle<FixedArray> MaterializedObjectStore::GetStackEntries() {
|
|
return Handle<FixedArray>(isolate()->heap()->materialized_objects());
|
|
}
|
|
|
|
|
|
Handle<FixedArray> MaterializedObjectStore::EnsureStackEntries(int length) {
|
|
Handle<FixedArray> array = GetStackEntries();
|
|
if (array->length() >= length) {
|
|
return array;
|
|
}
|
|
|
|
int new_length = length > 10 ? length : 10;
|
|
if (new_length < 2 * array->length()) {
|
|
new_length = 2 * array->length();
|
|
}
|
|
|
|
Handle<FixedArray> new_array =
|
|
isolate()->factory()->NewFixedArray(new_length, TENURED);
|
|
for (int i = 0; i < array->length(); i++) {
|
|
new_array->set(i, array->get(i));
|
|
}
|
|
for (int i = array->length(); i < length; i++) {
|
|
new_array->set(i, isolate()->heap()->undefined_value());
|
|
}
|
|
isolate()->heap()->SetRootMaterializedObjects(*new_array);
|
|
return new_array;
|
|
}
|
|
|
|
namespace {
|
|
|
|
Handle<Object> GetValueForDebugger(TranslatedFrame::iterator it,
|
|
Isolate* isolate) {
|
|
if (it->GetRawValue() == isolate->heap()->arguments_marker()) {
|
|
if (!it->IsMaterializableByDebugger()) {
|
|
return isolate->factory()->undefined_value();
|
|
}
|
|
}
|
|
return it->GetValue();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
DeoptimizedFrameInfo::DeoptimizedFrameInfo(TranslatedState* state,
|
|
TranslatedState::iterator frame_it,
|
|
Isolate* isolate) {
|
|
// If the previous frame is an adaptor frame, we will take the parameters
|
|
// from there.
|
|
TranslatedState::iterator parameter_frame = frame_it;
|
|
if (parameter_frame != state->begin()) {
|
|
parameter_frame--;
|
|
}
|
|
int parameter_count;
|
|
if (parameter_frame->kind() == TranslatedFrame::kArgumentsAdaptor) {
|
|
parameter_count = parameter_frame->height() - 1; // Ignore the receiver.
|
|
} else {
|
|
parameter_frame = frame_it;
|
|
parameter_count =
|
|
frame_it->shared_info()->internal_formal_parameter_count();
|
|
}
|
|
TranslatedFrame::iterator parameter_it = parameter_frame->begin();
|
|
parameter_it++; // Skip the function.
|
|
parameter_it++; // Skip the receiver.
|
|
|
|
// Figure out whether there is a construct stub frame on top of
|
|
// the parameter frame.
|
|
has_construct_stub_ =
|
|
parameter_frame != state->begin() &&
|
|
(parameter_frame - 1)->kind() == TranslatedFrame::kConstructStub;
|
|
|
|
if (frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
|
|
source_position_ = Deoptimizer::ComputeSourcePositionFromBytecodeArray(
|
|
*frame_it->shared_info(), frame_it->node_id());
|
|
} else {
|
|
DCHECK_EQ(TranslatedFrame::kFunction, frame_it->kind());
|
|
source_position_ = Deoptimizer::ComputeSourcePositionFromBaselineCode(
|
|
*frame_it->shared_info(), frame_it->node_id());
|
|
}
|
|
|
|
TranslatedFrame::iterator value_it = frame_it->begin();
|
|
// Get the function. Note that this might materialize the function.
|
|
// In case the debugger mutates this value, we should deoptimize
|
|
// the function and remember the value in the materialized value store.
|
|
function_ = Handle<JSFunction>::cast(value_it->GetValue());
|
|
|
|
parameters_.resize(static_cast<size_t>(parameter_count));
|
|
for (int i = 0; i < parameter_count; i++) {
|
|
Handle<Object> parameter = GetValueForDebugger(parameter_it, isolate);
|
|
SetParameter(i, parameter);
|
|
parameter_it++;
|
|
}
|
|
|
|
// Skip the function, the receiver and the arguments.
|
|
int skip_count =
|
|
frame_it->shared_info()->internal_formal_parameter_count() + 2;
|
|
TranslatedFrame::iterator stack_it = frame_it->begin();
|
|
for (int i = 0; i < skip_count; i++) {
|
|
stack_it++;
|
|
}
|
|
|
|
// Get the context.
|
|
context_ = GetValueForDebugger(stack_it, isolate);
|
|
stack_it++;
|
|
|
|
// Get the expression stack.
|
|
int stack_height = frame_it->height();
|
|
if (frame_it->kind() == TranslatedFrame::kFunction ||
|
|
frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
|
|
// For full-code frames, we should not count the context.
|
|
// For interpreter frames, we should not count the accumulator.
|
|
// TODO(jarin): Clean up the indexing in translated frames.
|
|
stack_height--;
|
|
}
|
|
expression_stack_.resize(static_cast<size_t>(stack_height));
|
|
for (int i = 0; i < stack_height; i++) {
|
|
Handle<Object> expression = GetValueForDebugger(stack_it, isolate);
|
|
SetExpression(i, expression);
|
|
stack_it++;
|
|
}
|
|
|
|
// For interpreter frame, skip the accumulator.
|
|
if (frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
|
|
stack_it++;
|
|
}
|
|
CHECK(stack_it == frame_it->end());
|
|
}
|
|
|
|
|
|
Deoptimizer::DeoptInfo Deoptimizer::GetDeoptInfo(Code* code, Address pc) {
|
|
SourcePosition last_position = SourcePosition::Unknown();
|
|
DeoptimizeReason last_reason = DeoptimizeReason::kNoReason;
|
|
int last_deopt_id = kNoDeoptimizationId;
|
|
int mask = RelocInfo::ModeMask(RelocInfo::DEOPT_REASON) |
|
|
RelocInfo::ModeMask(RelocInfo::DEOPT_ID) |
|
|
RelocInfo::ModeMask(RelocInfo::DEOPT_SCRIPT_OFFSET) |
|
|
RelocInfo::ModeMask(RelocInfo::DEOPT_INLINING_ID);
|
|
for (RelocIterator it(code, mask); !it.done(); it.next()) {
|
|
RelocInfo* info = it.rinfo();
|
|
if (info->pc() >= pc) {
|
|
return DeoptInfo(last_position, last_reason, last_deopt_id);
|
|
}
|
|
if (info->rmode() == RelocInfo::DEOPT_SCRIPT_OFFSET) {
|
|
int script_offset = static_cast<int>(info->data());
|
|
it.next();
|
|
DCHECK(it.rinfo()->rmode() == RelocInfo::DEOPT_INLINING_ID);
|
|
int inlining_id = static_cast<int>(it.rinfo()->data());
|
|
last_position = SourcePosition(script_offset, inlining_id);
|
|
} else if (info->rmode() == RelocInfo::DEOPT_ID) {
|
|
last_deopt_id = static_cast<int>(info->data());
|
|
} else if (info->rmode() == RelocInfo::DEOPT_REASON) {
|
|
last_reason = static_cast<DeoptimizeReason>(info->data());
|
|
}
|
|
}
|
|
return DeoptInfo(SourcePosition::Unknown(), DeoptimizeReason::kNoReason, -1);
|
|
}
|
|
|
|
|
|
// static
|
|
int Deoptimizer::ComputeSourcePositionFromBaselineCode(
|
|
SharedFunctionInfo* shared, BailoutId node_id) {
|
|
DCHECK(shared->HasBaselineCode());
|
|
Code* code = shared->code();
|
|
FixedArray* raw_data = code->deoptimization_data();
|
|
DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
|
|
unsigned pc_and_state = Deoptimizer::GetOutputInfo(data, node_id, shared);
|
|
int code_offset =
|
|
static_cast<int>(FullCodeGenerator::PcField::decode(pc_and_state));
|
|
return AbstractCode::cast(code)->SourcePosition(code_offset);
|
|
}
|
|
|
|
// static
|
|
int Deoptimizer::ComputeSourcePositionFromBytecodeArray(
|
|
SharedFunctionInfo* shared, BailoutId node_id) {
|
|
DCHECK(shared->HasBytecodeArray());
|
|
return AbstractCode::cast(shared->bytecode_array())
|
|
->SourcePosition(node_id.ToInt());
|
|
}
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewArgumentsObject(TranslatedState* container,
|
|
int length,
|
|
int object_index) {
|
|
TranslatedValue slot(container, kArgumentsObject);
|
|
slot.materialization_info_ = {object_index, length};
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewDeferredObject(TranslatedState* container,
|
|
int length,
|
|
int object_index) {
|
|
TranslatedValue slot(container, kCapturedObject);
|
|
slot.materialization_info_ = {object_index, length};
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewDuplicateObject(TranslatedState* container,
|
|
int id) {
|
|
TranslatedValue slot(container, kDuplicatedObject);
|
|
slot.materialization_info_ = {id, -1};
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewFloat(TranslatedState* container,
|
|
float value) {
|
|
TranslatedValue slot(container, kFloat);
|
|
slot.float_value_ = value;
|
|
return slot;
|
|
}
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewDouble(TranslatedState* container,
|
|
double value) {
|
|
TranslatedValue slot(container, kDouble);
|
|
slot.double_value_ = value;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewInt32(TranslatedState* container,
|
|
int32_t value) {
|
|
TranslatedValue slot(container, kInt32);
|
|
slot.int32_value_ = value;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewUInt32(TranslatedState* container,
|
|
uint32_t value) {
|
|
TranslatedValue slot(container, kUInt32);
|
|
slot.uint32_value_ = value;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewBool(TranslatedState* container,
|
|
uint32_t value) {
|
|
TranslatedValue slot(container, kBoolBit);
|
|
slot.uint32_value_ = value;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewTagged(TranslatedState* container,
|
|
Object* literal) {
|
|
TranslatedValue slot(container, kTagged);
|
|
slot.raw_literal_ = literal;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewInvalid(TranslatedState* container) {
|
|
return TranslatedValue(container, kInvalid);
|
|
}
|
|
|
|
|
|
Isolate* TranslatedValue::isolate() const { return container_->isolate(); }
|
|
|
|
|
|
Object* TranslatedValue::raw_literal() const {
|
|
DCHECK_EQ(kTagged, kind());
|
|
return raw_literal_;
|
|
}
|
|
|
|
|
|
int32_t TranslatedValue::int32_value() const {
|
|
DCHECK_EQ(kInt32, kind());
|
|
return int32_value_;
|
|
}
|
|
|
|
|
|
uint32_t TranslatedValue::uint32_value() const {
|
|
DCHECK(kind() == kUInt32 || kind() == kBoolBit);
|
|
return uint32_value_;
|
|
}
|
|
|
|
float TranslatedValue::float_value() const {
|
|
DCHECK_EQ(kFloat, kind());
|
|
return float_value_;
|
|
}
|
|
|
|
double TranslatedValue::double_value() const {
|
|
DCHECK_EQ(kDouble, kind());
|
|
return double_value_;
|
|
}
|
|
|
|
|
|
int TranslatedValue::object_length() const {
|
|
DCHECK(kind() == kArgumentsObject || kind() == kCapturedObject);
|
|
return materialization_info_.length_;
|
|
}
|
|
|
|
|
|
int TranslatedValue::object_index() const {
|
|
DCHECK(kind() == kArgumentsObject || kind() == kCapturedObject ||
|
|
kind() == kDuplicatedObject);
|
|
return materialization_info_.id_;
|
|
}
|
|
|
|
|
|
Object* TranslatedValue::GetRawValue() const {
|
|
// If we have a value, return it.
|
|
Handle<Object> result_handle;
|
|
if (value_.ToHandle(&result_handle)) {
|
|
return *result_handle;
|
|
}
|
|
|
|
// Otherwise, do a best effort to get the value without allocation.
|
|
switch (kind()) {
|
|
case kTagged:
|
|
return raw_literal();
|
|
|
|
case kInt32: {
|
|
bool is_smi = Smi::IsValid(int32_value());
|
|
if (is_smi) {
|
|
return Smi::FromInt(int32_value());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case kUInt32: {
|
|
bool is_smi = (uint32_value() <= static_cast<uintptr_t>(Smi::kMaxValue));
|
|
if (is_smi) {
|
|
return Smi::FromInt(static_cast<int32_t>(uint32_value()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case kBoolBit: {
|
|
if (uint32_value() == 0) {
|
|
return isolate()->heap()->false_value();
|
|
} else {
|
|
CHECK_EQ(1U, uint32_value());
|
|
return isolate()->heap()->true_value();
|
|
}
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// If we could not get the value without allocation, return the arguments
|
|
// marker.
|
|
return isolate()->heap()->arguments_marker();
|
|
}
|
|
|
|
|
|
Handle<Object> TranslatedValue::GetValue() {
|
|
Handle<Object> result;
|
|
// If we already have a value, then get it.
|
|
if (value_.ToHandle(&result)) return result;
|
|
|
|
// Otherwise we have to materialize.
|
|
switch (kind()) {
|
|
case TranslatedValue::kTagged:
|
|
case TranslatedValue::kInt32:
|
|
case TranslatedValue::kUInt32:
|
|
case TranslatedValue::kBoolBit:
|
|
case TranslatedValue::kFloat:
|
|
case TranslatedValue::kDouble: {
|
|
MaterializeSimple();
|
|
return value_.ToHandleChecked();
|
|
}
|
|
|
|
case TranslatedValue::kArgumentsObject:
|
|
case TranslatedValue::kCapturedObject:
|
|
case TranslatedValue::kDuplicatedObject:
|
|
return container_->MaterializeObjectAt(object_index());
|
|
|
|
case TranslatedValue::kInvalid:
|
|
FATAL("unexpected case");
|
|
return Handle<Object>::null();
|
|
}
|
|
|
|
FATAL("internal error: value missing");
|
|
return Handle<Object>::null();
|
|
}
|
|
|
|
|
|
void TranslatedValue::MaterializeSimple() {
|
|
// If we already have materialized, return.
|
|
if (!value_.is_null()) return;
|
|
|
|
Object* raw_value = GetRawValue();
|
|
if (raw_value != isolate()->heap()->arguments_marker()) {
|
|
// We can get the value without allocation, just return it here.
|
|
value_ = Handle<Object>(raw_value, isolate());
|
|
return;
|
|
}
|
|
|
|
switch (kind()) {
|
|
case kInt32: {
|
|
value_ = Handle<Object>(isolate()->factory()->NewNumber(int32_value()));
|
|
return;
|
|
}
|
|
|
|
case kUInt32:
|
|
value_ = Handle<Object>(isolate()->factory()->NewNumber(uint32_value()));
|
|
return;
|
|
|
|
case kFloat:
|
|
value_ = Handle<Object>(isolate()->factory()->NewNumber(float_value()));
|
|
return;
|
|
|
|
case kDouble:
|
|
value_ = Handle<Object>(isolate()->factory()->NewNumber(double_value()));
|
|
return;
|
|
|
|
case kCapturedObject:
|
|
case kDuplicatedObject:
|
|
case kArgumentsObject:
|
|
case kInvalid:
|
|
case kTagged:
|
|
case kBoolBit:
|
|
FATAL("internal error: unexpected materialization.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
bool TranslatedValue::IsMaterializedObject() const {
|
|
switch (kind()) {
|
|
case kCapturedObject:
|
|
case kDuplicatedObject:
|
|
case kArgumentsObject:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool TranslatedValue::IsMaterializableByDebugger() const {
|
|
// At the moment, we only allow materialization of doubles.
|
|
return (kind() == kDouble);
|
|
}
|
|
|
|
int TranslatedValue::GetChildrenCount() const {
|
|
if (kind() == kCapturedObject || kind() == kArgumentsObject) {
|
|
return object_length();
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
uint32_t TranslatedState::GetUInt32Slot(Address fp, int slot_offset) {
|
|
Address address = fp + slot_offset;
|
|
#if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
|
|
return Memory::uint32_at(address + kIntSize);
|
|
#else
|
|
return Memory::uint32_at(address);
|
|
#endif
|
|
}
|
|
|
|
|
|
void TranslatedValue::Handlify() {
|
|
if (kind() == kTagged) {
|
|
value_ = Handle<Object>(raw_literal(), isolate());
|
|
raw_literal_ = nullptr;
|
|
}
|
|
}
|
|
|
|
|
|
TranslatedFrame TranslatedFrame::JSFrame(BailoutId node_id,
|
|
SharedFunctionInfo* shared_info,
|
|
int height) {
|
|
TranslatedFrame frame(kFunction, shared_info->GetIsolate(), shared_info,
|
|
height);
|
|
frame.node_id_ = node_id;
|
|
return frame;
|
|
}
|
|
|
|
|
|
TranslatedFrame TranslatedFrame::InterpretedFrame(
|
|
BailoutId bytecode_offset, SharedFunctionInfo* shared_info, int height) {
|
|
TranslatedFrame frame(kInterpretedFunction, shared_info->GetIsolate(),
|
|
shared_info, height);
|
|
frame.node_id_ = bytecode_offset;
|
|
return frame;
|
|
}
|
|
|
|
|
|
TranslatedFrame TranslatedFrame::AccessorFrame(
|
|
Kind kind, SharedFunctionInfo* shared_info) {
|
|
DCHECK(kind == kSetter || kind == kGetter);
|
|
return TranslatedFrame(kind, shared_info->GetIsolate(), shared_info);
|
|
}
|
|
|
|
|
|
TranslatedFrame TranslatedFrame::ArgumentsAdaptorFrame(
|
|
SharedFunctionInfo* shared_info, int height) {
|
|
return TranslatedFrame(kArgumentsAdaptor, shared_info->GetIsolate(),
|
|
shared_info, height);
|
|
}
|
|
|
|
TranslatedFrame TranslatedFrame::TailCallerFrame(
|
|
SharedFunctionInfo* shared_info) {
|
|
return TranslatedFrame(kTailCallerFunction, shared_info->GetIsolate(),
|
|
shared_info, 0);
|
|
}
|
|
|
|
TranslatedFrame TranslatedFrame::ConstructStubFrame(
|
|
SharedFunctionInfo* shared_info, int height) {
|
|
return TranslatedFrame(kConstructStub, shared_info->GetIsolate(), shared_info,
|
|
height);
|
|
}
|
|
|
|
|
|
int TranslatedFrame::GetValueCount() {
|
|
switch (kind()) {
|
|
case kFunction: {
|
|
int parameter_count =
|
|
raw_shared_info_->internal_formal_parameter_count() + 1;
|
|
// + 1 for function.
|
|
return height_ + parameter_count + 1;
|
|
}
|
|
|
|
case kInterpretedFunction: {
|
|
int parameter_count =
|
|
raw_shared_info_->internal_formal_parameter_count() + 1;
|
|
// + 2 for function and context.
|
|
return height_ + parameter_count + 2;
|
|
}
|
|
|
|
case kGetter:
|
|
return 2; // Function and receiver.
|
|
|
|
case kSetter:
|
|
return 3; // Function, receiver and the value to set.
|
|
|
|
case kArgumentsAdaptor:
|
|
case kConstructStub:
|
|
return 1 + height_;
|
|
|
|
case kTailCallerFunction:
|
|
return 1; // Function.
|
|
|
|
case kCompiledStub:
|
|
return height_;
|
|
|
|
case kInvalid:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
UNREACHABLE();
|
|
return -1;
|
|
}
|
|
|
|
|
|
void TranslatedFrame::Handlify() {
|
|
if (raw_shared_info_ != nullptr) {
|
|
shared_info_ = Handle<SharedFunctionInfo>(raw_shared_info_);
|
|
raw_shared_info_ = nullptr;
|
|
}
|
|
for (auto& value : values_) {
|
|
value.Handlify();
|
|
}
|
|
}
|
|
|
|
|
|
TranslatedFrame TranslatedState::CreateNextTranslatedFrame(
|
|
TranslationIterator* iterator, FixedArray* literal_array, Address fp,
|
|
FILE* trace_file) {
|
|
Translation::Opcode opcode =
|
|
static_cast<Translation::Opcode>(iterator->Next());
|
|
switch (opcode) {
|
|
case Translation::JS_FRAME: {
|
|
BailoutId node_id = BailoutId(iterator->Next());
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading input frame %s", name.get());
|
|
int arg_count = shared_info->internal_formal_parameter_count() + 1;
|
|
PrintF(trace_file, " => node=%d, args=%d, height=%d; inputs:\n",
|
|
node_id.ToInt(), arg_count, height);
|
|
}
|
|
return TranslatedFrame::JSFrame(node_id, shared_info, height);
|
|
}
|
|
|
|
case Translation::INTERPRETED_FRAME: {
|
|
BailoutId bytecode_offset = BailoutId(iterator->Next());
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading input frame %s", name.get());
|
|
int arg_count = shared_info->internal_formal_parameter_count() + 1;
|
|
PrintF(trace_file,
|
|
" => bytecode_offset=%d, args=%d, height=%d; inputs:\n",
|
|
bytecode_offset.ToInt(), arg_count, height);
|
|
}
|
|
return TranslatedFrame::InterpretedFrame(bytecode_offset, shared_info,
|
|
height);
|
|
}
|
|
|
|
case Translation::ARGUMENTS_ADAPTOR_FRAME: {
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading arguments adaptor frame %s", name.get());
|
|
PrintF(trace_file, " => height=%d; inputs:\n", height);
|
|
}
|
|
return TranslatedFrame::ArgumentsAdaptorFrame(shared_info, height);
|
|
}
|
|
|
|
case Translation::TAIL_CALLER_FRAME: {
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
if (trace_file != nullptr) {
|
|
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading tail caller frame marker %s\n",
|
|
name.get());
|
|
}
|
|
return TranslatedFrame::TailCallerFrame(shared_info);
|
|
}
|
|
|
|
case Translation::CONSTRUCT_STUB_FRAME: {
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading construct stub frame %s", name.get());
|
|
PrintF(trace_file, " => height=%d; inputs:\n", height);
|
|
}
|
|
return TranslatedFrame::ConstructStubFrame(shared_info, height);
|
|
}
|
|
|
|
case Translation::GETTER_STUB_FRAME: {
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
if (trace_file != nullptr) {
|
|
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading getter frame %s; inputs:\n", name.get());
|
|
}
|
|
return TranslatedFrame::AccessorFrame(TranslatedFrame::kGetter,
|
|
shared_info);
|
|
}
|
|
|
|
case Translation::SETTER_STUB_FRAME: {
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
if (trace_file != nullptr) {
|
|
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading setter frame %s; inputs:\n", name.get());
|
|
}
|
|
return TranslatedFrame::AccessorFrame(TranslatedFrame::kSetter,
|
|
shared_info);
|
|
}
|
|
|
|
case Translation::COMPILED_STUB_FRAME: {
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file,
|
|
" reading compiler stub frame => height=%d; inputs:\n", height);
|
|
}
|
|
return TranslatedFrame::CompiledStubFrame(height,
|
|
literal_array->GetIsolate());
|
|
}
|
|
|
|
case Translation::BEGIN:
|
|
case Translation::DUPLICATED_OBJECT:
|
|
case Translation::ARGUMENTS_OBJECT:
|
|
case Translation::CAPTURED_OBJECT:
|
|
case Translation::REGISTER:
|
|
case Translation::INT32_REGISTER:
|
|
case Translation::UINT32_REGISTER:
|
|
case Translation::BOOL_REGISTER:
|
|
case Translation::FLOAT_REGISTER:
|
|
case Translation::DOUBLE_REGISTER:
|
|
case Translation::STACK_SLOT:
|
|
case Translation::INT32_STACK_SLOT:
|
|
case Translation::UINT32_STACK_SLOT:
|
|
case Translation::BOOL_STACK_SLOT:
|
|
case Translation::FLOAT_STACK_SLOT:
|
|
case Translation::DOUBLE_STACK_SLOT:
|
|
case Translation::LITERAL:
|
|
break;
|
|
}
|
|
FATAL("We should never get here - unexpected deopt info.");
|
|
return TranslatedFrame::InvalidFrame();
|
|
}
|
|
|
|
|
|
// static
|
|
void TranslatedFrame::AdvanceIterator(
|
|
std::deque<TranslatedValue>::iterator* iter) {
|
|
int values_to_skip = 1;
|
|
while (values_to_skip > 0) {
|
|
// Consume the current element.
|
|
values_to_skip--;
|
|
// Add all the children.
|
|
values_to_skip += (*iter)->GetChildrenCount();
|
|
|
|
(*iter)++;
|
|
}
|
|
}
|
|
|
|
|
|
// We can't intermix stack decoding and allocations because
|
|
// deoptimization infrastracture is not GC safe.
|
|
// Thus we build a temporary structure in malloced space.
|
|
TranslatedValue TranslatedState::CreateNextTranslatedValue(
|
|
int frame_index, int value_index, TranslationIterator* iterator,
|
|
FixedArray* literal_array, Address fp, RegisterValues* registers,
|
|
FILE* trace_file) {
|
|
disasm::NameConverter converter;
|
|
|
|
Translation::Opcode opcode =
|
|
static_cast<Translation::Opcode>(iterator->Next());
|
|
switch (opcode) {
|
|
case Translation::BEGIN:
|
|
case Translation::JS_FRAME:
|
|
case Translation::INTERPRETED_FRAME:
|
|
case Translation::ARGUMENTS_ADAPTOR_FRAME:
|
|
case Translation::TAIL_CALLER_FRAME:
|
|
case Translation::CONSTRUCT_STUB_FRAME:
|
|
case Translation::GETTER_STUB_FRAME:
|
|
case Translation::SETTER_STUB_FRAME:
|
|
case Translation::COMPILED_STUB_FRAME:
|
|
// Peeled off before getting here.
|
|
break;
|
|
|
|
case Translation::DUPLICATED_OBJECT: {
|
|
int object_id = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "duplicated object #%d", object_id);
|
|
}
|
|
object_positions_.push_back(object_positions_[object_id]);
|
|
return TranslatedValue::NewDuplicateObject(this, object_id);
|
|
}
|
|
|
|
case Translation::ARGUMENTS_OBJECT: {
|
|
int arg_count = iterator->Next();
|
|
int object_index = static_cast<int>(object_positions_.size());
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "argumets object #%d (length = %d)", object_index,
|
|
arg_count);
|
|
}
|
|
object_positions_.push_back({frame_index, value_index});
|
|
return TranslatedValue::NewArgumentsObject(this, arg_count, object_index);
|
|
}
|
|
|
|
case Translation::CAPTURED_OBJECT: {
|
|
int field_count = iterator->Next();
|
|
int object_index = static_cast<int>(object_positions_.size());
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "captured object #%d (length = %d)", object_index,
|
|
field_count);
|
|
}
|
|
object_positions_.push_back({frame_index, value_index});
|
|
return TranslatedValue::NewDeferredObject(this, field_count,
|
|
object_index);
|
|
}
|
|
|
|
case Translation::REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
|
|
intptr_t value = registers->GetRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "0x%08" V8PRIxPTR " ; %s ", value,
|
|
converter.NameOfCPURegister(input_reg));
|
|
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
|
|
}
|
|
return TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
|
|
}
|
|
|
|
case Translation::INT32_REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
|
|
intptr_t value = registers->GetRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%" V8PRIdPTR " ; %s ", value,
|
|
converter.NameOfCPURegister(input_reg));
|
|
}
|
|
return TranslatedValue::NewInt32(this, static_cast<int32_t>(value));
|
|
}
|
|
|
|
case Translation::UINT32_REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
|
|
intptr_t value = registers->GetRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%" V8PRIuPTR " ; %s (uint)", value,
|
|
converter.NameOfCPURegister(input_reg));
|
|
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
|
|
}
|
|
return TranslatedValue::NewUInt32(this, static_cast<uint32_t>(value));
|
|
}
|
|
|
|
case Translation::BOOL_REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
|
|
intptr_t value = registers->GetRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%" V8PRIdPTR " ; %s (bool)", value,
|
|
converter.NameOfCPURegister(input_reg));
|
|
}
|
|
return TranslatedValue::NewBool(this, static_cast<uint32_t>(value));
|
|
}
|
|
|
|
case Translation::FLOAT_REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
|
|
float value = registers->GetFloatRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%e ; %s (float)", value,
|
|
RegisterConfiguration::Crankshaft()->GetFloatRegisterName(
|
|
input_reg));
|
|
}
|
|
return TranslatedValue::NewFloat(this, value);
|
|
}
|
|
|
|
case Translation::DOUBLE_REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
|
|
double value = registers->GetDoubleRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%e ; %s (double)", value,
|
|
RegisterConfiguration::Crankshaft()->GetDoubleRegisterName(
|
|
input_reg));
|
|
}
|
|
return TranslatedValue::NewDouble(this, value);
|
|
}
|
|
|
|
case Translation::STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
intptr_t value = *(reinterpret_cast<intptr_t*>(fp + slot_offset));
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "0x%08" V8PRIxPTR " ; [fp %c %d] ", value,
|
|
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
|
|
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
|
|
}
|
|
return TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
|
|
}
|
|
|
|
case Translation::INT32_STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
uint32_t value = GetUInt32Slot(fp, slot_offset);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%d ; (int) [fp %c %d] ",
|
|
static_cast<int32_t>(value), slot_offset < 0 ? '-' : '+',
|
|
std::abs(slot_offset));
|
|
}
|
|
return TranslatedValue::NewInt32(this, value);
|
|
}
|
|
|
|
case Translation::UINT32_STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
uint32_t value = GetUInt32Slot(fp, slot_offset);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%u ; (uint) [fp %c %d] ", value,
|
|
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
|
|
}
|
|
return TranslatedValue::NewUInt32(this, value);
|
|
}
|
|
|
|
case Translation::BOOL_STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
uint32_t value = GetUInt32Slot(fp, slot_offset);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%u ; (bool) [fp %c %d] ", value,
|
|
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
|
|
}
|
|
return TranslatedValue::NewBool(this, value);
|
|
}
|
|
|
|
case Translation::FLOAT_STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
float value = ReadFloatValue(fp + slot_offset);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%e ; (float) [fp %c %d] ", value,
|
|
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
|
|
}
|
|
return TranslatedValue::NewFloat(this, value);
|
|
}
|
|
|
|
case Translation::DOUBLE_STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
double value = ReadDoubleValue(fp + slot_offset);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%e ; (double) [fp %c %d] ", value,
|
|
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
|
|
}
|
|
return TranslatedValue::NewDouble(this, value);
|
|
}
|
|
|
|
case Translation::LITERAL: {
|
|
int literal_index = iterator->Next();
|
|
Object* value = literal_array->get(literal_index);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "0x%08" V8PRIxPTR " ; (literal %d) ",
|
|
reinterpret_cast<intptr_t>(value), literal_index);
|
|
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
|
|
}
|
|
|
|
return TranslatedValue::NewTagged(this, value);
|
|
}
|
|
}
|
|
|
|
FATAL("We should never get here - unexpected deopt info.");
|
|
return TranslatedValue(nullptr, TranslatedValue::kInvalid);
|
|
}
|
|
|
|
|
|
TranslatedState::TranslatedState(JavaScriptFrame* frame)
|
|
: isolate_(nullptr),
|
|
stack_frame_pointer_(nullptr),
|
|
has_adapted_arguments_(false) {
|
|
int deopt_index = Safepoint::kNoDeoptimizationIndex;
|
|
DeoptimizationInputData* data =
|
|
static_cast<OptimizedFrame*>(frame)->GetDeoptimizationData(&deopt_index);
|
|
DCHECK(data != nullptr && deopt_index != Safepoint::kNoDeoptimizationIndex);
|
|
TranslationIterator it(data->TranslationByteArray(),
|
|
data->TranslationIndex(deopt_index)->value());
|
|
Init(frame->fp(), &it, data->LiteralArray(), nullptr /* registers */,
|
|
nullptr /* trace file */);
|
|
}
|
|
|
|
|
|
TranslatedState::TranslatedState()
|
|
: isolate_(nullptr),
|
|
stack_frame_pointer_(nullptr),
|
|
has_adapted_arguments_(false) {}
|
|
|
|
|
|
void TranslatedState::Init(Address input_frame_pointer,
|
|
TranslationIterator* iterator,
|
|
FixedArray* literal_array, RegisterValues* registers,
|
|
FILE* trace_file) {
|
|
DCHECK(frames_.empty());
|
|
|
|
isolate_ = literal_array->GetIsolate();
|
|
// Read out the 'header' translation.
|
|
Translation::Opcode opcode =
|
|
static_cast<Translation::Opcode>(iterator->Next());
|
|
CHECK(opcode == Translation::BEGIN);
|
|
|
|
int count = iterator->Next();
|
|
iterator->Next(); // Drop JS frames count.
|
|
|
|
frames_.reserve(count);
|
|
|
|
std::stack<int> nested_counts;
|
|
|
|
// Read the frames
|
|
for (int i = 0; i < count; i++) {
|
|
// Read the frame descriptor.
|
|
frames_.push_back(CreateNextTranslatedFrame(
|
|
iterator, literal_array, input_frame_pointer, trace_file));
|
|
TranslatedFrame& frame = frames_.back();
|
|
|
|
// Read the values.
|
|
int values_to_process = frame.GetValueCount();
|
|
while (values_to_process > 0 || !nested_counts.empty()) {
|
|
if (trace_file != nullptr) {
|
|
if (nested_counts.empty()) {
|
|
// For top level values, print the value number.
|
|
PrintF(trace_file, " %3i: ",
|
|
frame.GetValueCount() - values_to_process);
|
|
} else {
|
|
// Take care of indenting for nested values.
|
|
PrintF(trace_file, " ");
|
|
for (size_t j = 0; j < nested_counts.size(); j++) {
|
|
PrintF(trace_file, " ");
|
|
}
|
|
}
|
|
}
|
|
|
|
TranslatedValue value = CreateNextTranslatedValue(
|
|
i, static_cast<int>(frame.values_.size()), iterator, literal_array,
|
|
input_frame_pointer, registers, trace_file);
|
|
frame.Add(value);
|
|
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "\n");
|
|
}
|
|
|
|
// Update the value count and resolve the nesting.
|
|
values_to_process--;
|
|
int children_count = value.GetChildrenCount();
|
|
if (children_count > 0) {
|
|
nested_counts.push(values_to_process);
|
|
values_to_process = children_count;
|
|
} else {
|
|
while (values_to_process == 0 && !nested_counts.empty()) {
|
|
values_to_process = nested_counts.top();
|
|
nested_counts.pop();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
CHECK(!iterator->HasNext() ||
|
|
static_cast<Translation::Opcode>(iterator->Next()) ==
|
|
Translation::BEGIN);
|
|
}
|
|
|
|
|
|
void TranslatedState::Prepare(bool has_adapted_arguments,
|
|
Address stack_frame_pointer) {
|
|
for (auto& frame : frames_) frame.Handlify();
|
|
|
|
stack_frame_pointer_ = stack_frame_pointer;
|
|
has_adapted_arguments_ = has_adapted_arguments;
|
|
|
|
UpdateFromPreviouslyMaterializedObjects();
|
|
}
|
|
|
|
|
|
Handle<Object> TranslatedState::MaterializeAt(int frame_index,
|
|
int* value_index) {
|
|
TranslatedFrame* frame = &(frames_[frame_index]);
|
|
CHECK(static_cast<size_t>(*value_index) < frame->values_.size());
|
|
|
|
TranslatedValue* slot = &(frame->values_[*value_index]);
|
|
(*value_index)++;
|
|
|
|
switch (slot->kind()) {
|
|
case TranslatedValue::kTagged:
|
|
case TranslatedValue::kInt32:
|
|
case TranslatedValue::kUInt32:
|
|
case TranslatedValue::kBoolBit:
|
|
case TranslatedValue::kFloat:
|
|
case TranslatedValue::kDouble: {
|
|
slot->MaterializeSimple();
|
|
Handle<Object> value = slot->GetValue();
|
|
if (value->IsMutableHeapNumber()) {
|
|
HeapNumber::cast(*value)->set_map(isolate()->heap()->heap_number_map());
|
|
}
|
|
return value;
|
|
}
|
|
|
|
case TranslatedValue::kArgumentsObject: {
|
|
int length = slot->GetChildrenCount();
|
|
Handle<JSObject> arguments;
|
|
if (GetAdaptedArguments(&arguments, frame_index)) {
|
|
// Store the materialized object and consume the nested values.
|
|
for (int i = 0; i < length; ++i) {
|
|
MaterializeAt(frame_index, value_index);
|
|
}
|
|
} else {
|
|
Handle<JSFunction> function =
|
|
Handle<JSFunction>::cast(frame->front().GetValue());
|
|
arguments = isolate_->factory()->NewArgumentsObject(function, length);
|
|
Handle<FixedArray> array = isolate_->factory()->NewFixedArray(length);
|
|
DCHECK_EQ(array->length(), length);
|
|
arguments->set_elements(*array);
|
|
for (int i = 0; i < length; ++i) {
|
|
Handle<Object> value = MaterializeAt(frame_index, value_index);
|
|
array->set(i, *value);
|
|
}
|
|
}
|
|
slot->value_ = arguments;
|
|
return arguments;
|
|
}
|
|
case TranslatedValue::kCapturedObject: {
|
|
int length = slot->GetChildrenCount();
|
|
|
|
// The map must be a tagged object.
|
|
CHECK(frame->values_[*value_index].kind() == TranslatedValue::kTagged);
|
|
|
|
Handle<Object> result;
|
|
if (slot->value_.ToHandle(&result)) {
|
|
// This has been previously materialized, return the previous value.
|
|
// We still need to skip all the nested objects.
|
|
for (int i = 0; i < length; i++) {
|
|
MaterializeAt(frame_index, value_index);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
Handle<Object> map_object = MaterializeAt(frame_index, value_index);
|
|
Handle<Map> map =
|
|
Map::GeneralizeAllFieldRepresentations(Handle<Map>::cast(map_object));
|
|
switch (map->instance_type()) {
|
|
case MUTABLE_HEAP_NUMBER_TYPE:
|
|
case HEAP_NUMBER_TYPE: {
|
|
// Reuse the HeapNumber value directly as it is already properly
|
|
// tagged and skip materializing the HeapNumber explicitly.
|
|
Handle<Object> object = MaterializeAt(frame_index, value_index);
|
|
slot->value_ = object;
|
|
// On 32-bit architectures, there is an extra slot there because
|
|
// the escape analysis calculates the number of slots as
|
|
// object-size/pointer-size. To account for this, we read out
|
|
// any extra slots.
|
|
for (int i = 0; i < length - 2; i++) {
|
|
MaterializeAt(frame_index, value_index);
|
|
}
|
|
return object;
|
|
}
|
|
case JS_OBJECT_TYPE:
|
|
case JS_ERROR_TYPE:
|
|
case JS_ARGUMENTS_TYPE: {
|
|
Handle<JSObject> object =
|
|
isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED);
|
|
slot->value_ = object;
|
|
Handle<Object> properties = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> elements = MaterializeAt(frame_index, value_index);
|
|
object->set_properties(FixedArray::cast(*properties));
|
|
object->set_elements(FixedArrayBase::cast(*elements));
|
|
for (int i = 0; i < length - 3; ++i) {
|
|
Handle<Object> value = MaterializeAt(frame_index, value_index);
|
|
FieldIndex index = FieldIndex::ForPropertyIndex(object->map(), i);
|
|
object->FastPropertyAtPut(index, *value);
|
|
}
|
|
return object;
|
|
}
|
|
case JS_ARRAY_TYPE: {
|
|
Handle<JSArray> object = Handle<JSArray>::cast(
|
|
isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED));
|
|
slot->value_ = object;
|
|
Handle<Object> properties = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> elements = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> length = MaterializeAt(frame_index, value_index);
|
|
object->set_properties(FixedArray::cast(*properties));
|
|
object->set_elements(FixedArrayBase::cast(*elements));
|
|
object->set_length(*length);
|
|
return object;
|
|
}
|
|
case JS_FUNCTION_TYPE: {
|
|
Handle<SharedFunctionInfo> temporary_shared =
|
|
isolate_->factory()->NewSharedFunctionInfo(
|
|
isolate_->factory()->empty_string(), MaybeHandle<Code>(),
|
|
false);
|
|
Handle<JSFunction> object =
|
|
isolate_->factory()->NewFunctionFromSharedFunctionInfo(
|
|
map, temporary_shared, isolate_->factory()->undefined_value(),
|
|
NOT_TENURED);
|
|
slot->value_ = object;
|
|
Handle<Object> properties = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> elements = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> prototype = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> shared = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> context = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> literals = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> entry = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> next_link = MaterializeAt(frame_index, value_index);
|
|
object->ReplaceCode(*isolate_->builtins()->CompileLazy());
|
|
object->set_map(*map);
|
|
object->set_properties(FixedArray::cast(*properties));
|
|
object->set_elements(FixedArrayBase::cast(*elements));
|
|
object->set_prototype_or_initial_map(*prototype);
|
|
object->set_shared(SharedFunctionInfo::cast(*shared));
|
|
object->set_context(Context::cast(*context));
|
|
object->set_literals(LiteralsArray::cast(*literals));
|
|
CHECK(entry->IsNumber()); // Entry to compile lazy stub.
|
|
CHECK(next_link->IsUndefined(isolate_));
|
|
return object;
|
|
}
|
|
case CONS_STRING_TYPE: {
|
|
Handle<ConsString> object = Handle<ConsString>::cast(
|
|
isolate_->factory()
|
|
->NewConsString(isolate_->factory()->undefined_string(),
|
|
isolate_->factory()->undefined_string())
|
|
.ToHandleChecked());
|
|
slot->value_ = object;
|
|
Handle<Object> hash = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> length = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> first = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> second = MaterializeAt(frame_index, value_index);
|
|
object->set_map(*map);
|
|
object->set_length(Smi::cast(*length)->value());
|
|
object->set_first(String::cast(*first));
|
|
object->set_second(String::cast(*second));
|
|
CHECK(hash->IsNumber()); // The {Name::kEmptyHashField} value.
|
|
return object;
|
|
}
|
|
case CONTEXT_EXTENSION_TYPE: {
|
|
Handle<ContextExtension> object =
|
|
isolate_->factory()->NewContextExtension(
|
|
isolate_->factory()->NewScopeInfo(1),
|
|
isolate_->factory()->undefined_value());
|
|
slot->value_ = object;
|
|
Handle<Object> scope_info = MaterializeAt(frame_index, value_index);
|
|
Handle<Object> extension = MaterializeAt(frame_index, value_index);
|
|
object->set_scope_info(ScopeInfo::cast(*scope_info));
|
|
object->set_extension(*extension);
|
|
return object;
|
|
}
|
|
case FIXED_ARRAY_TYPE: {
|
|
Handle<Object> lengthObject = MaterializeAt(frame_index, value_index);
|
|
int32_t length = 0;
|
|
CHECK(lengthObject->ToInt32(&length));
|
|
Handle<FixedArray> object =
|
|
isolate_->factory()->NewFixedArray(length);
|
|
// We need to set the map, because the fixed array we are
|
|
// materializing could be a context or an arguments object,
|
|
// in which case we must retain that information.
|
|
object->set_map(*map);
|
|
slot->value_ = object;
|
|
for (int i = 0; i < length; ++i) {
|
|
Handle<Object> value = MaterializeAt(frame_index, value_index);
|
|
object->set(i, *value);
|
|
}
|
|
return object;
|
|
}
|
|
case FIXED_DOUBLE_ARRAY_TYPE: {
|
|
DCHECK_EQ(*map, isolate_->heap()->fixed_double_array_map());
|
|
Handle<Object> lengthObject = MaterializeAt(frame_index, value_index);
|
|
int32_t length = 0;
|
|
CHECK(lengthObject->ToInt32(&length));
|
|
Handle<FixedArrayBase> object =
|
|
isolate_->factory()->NewFixedDoubleArray(length);
|
|
slot->value_ = object;
|
|
if (length > 0) {
|
|
Handle<FixedDoubleArray> double_array =
|
|
Handle<FixedDoubleArray>::cast(object);
|
|
for (int i = 0; i < length; ++i) {
|
|
Handle<Object> value = MaterializeAt(frame_index, value_index);
|
|
CHECK(value->IsNumber());
|
|
double_array->set(i, value->Number());
|
|
}
|
|
}
|
|
return object;
|
|
}
|
|
default:
|
|
PrintF(stderr, "[couldn't handle instance type %d]\n",
|
|
map->instance_type());
|
|
FATAL("unreachable");
|
|
return Handle<Object>::null();
|
|
}
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
case TranslatedValue::kDuplicatedObject: {
|
|
int object_index = slot->object_index();
|
|
TranslatedState::ObjectPosition pos = object_positions_[object_index];
|
|
|
|
// Make sure the duplicate is refering to a previous object.
|
|
CHECK(pos.frame_index_ < frame_index ||
|
|
(pos.frame_index_ == frame_index &&
|
|
pos.value_index_ < *value_index - 1));
|
|
|
|
Handle<Object> object =
|
|
frames_[pos.frame_index_].values_[pos.value_index_].GetValue();
|
|
|
|
// The object should have a (non-sentinel) value.
|
|
CHECK(!object.is_null() &&
|
|
!object.is_identical_to(isolate_->factory()->arguments_marker()));
|
|
|
|
slot->value_ = object;
|
|
return object;
|
|
}
|
|
|
|
case TranslatedValue::kInvalid:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
FATAL("We should never get here - unexpected deopt slot kind.");
|
|
return Handle<Object>::null();
|
|
}
|
|
|
|
|
|
Handle<Object> TranslatedState::MaterializeObjectAt(int object_index) {
|
|
TranslatedState::ObjectPosition pos = object_positions_[object_index];
|
|
return MaterializeAt(pos.frame_index_, &(pos.value_index_));
|
|
}
|
|
|
|
|
|
bool TranslatedState::GetAdaptedArguments(Handle<JSObject>* result,
|
|
int frame_index) {
|
|
if (frame_index == 0) {
|
|
// Top level frame -> we need to go to the parent frame on the stack.
|
|
if (!has_adapted_arguments_) return false;
|
|
|
|
// This is top level frame, so we need to go to the stack to get
|
|
// this function's argument. (Note that this relies on not inlining
|
|
// recursive functions!)
|
|
Handle<JSFunction> function =
|
|
Handle<JSFunction>::cast(frames_[frame_index].front().GetValue());
|
|
*result = Accessors::FunctionGetArguments(function);
|
|
return true;
|
|
} else {
|
|
TranslatedFrame* previous_frame = &(frames_[frame_index]);
|
|
if (previous_frame->kind() != TranslatedFrame::kArgumentsAdaptor) {
|
|
return false;
|
|
}
|
|
// We get the adapted arguments from the parent translation.
|
|
int length = previous_frame->height();
|
|
Handle<JSFunction> function =
|
|
Handle<JSFunction>::cast(previous_frame->front().GetValue());
|
|
Handle<JSObject> arguments =
|
|
isolate_->factory()->NewArgumentsObject(function, length);
|
|
Handle<FixedArray> array = isolate_->factory()->NewFixedArray(length);
|
|
arguments->set_elements(*array);
|
|
TranslatedFrame::iterator arg_iterator = previous_frame->begin();
|
|
arg_iterator++; // Skip function.
|
|
for (int i = 0; i < length; ++i) {
|
|
Handle<Object> value = arg_iterator->GetValue();
|
|
array->set(i, *value);
|
|
arg_iterator++;
|
|
}
|
|
CHECK(arg_iterator == previous_frame->end());
|
|
*result = arguments;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
TranslatedFrame* TranslatedState::GetArgumentsInfoFromJSFrameIndex(
|
|
int jsframe_index, int* args_count) {
|
|
for (size_t i = 0; i < frames_.size(); i++) {
|
|
if (frames_[i].kind() == TranslatedFrame::kFunction ||
|
|
frames_[i].kind() == TranslatedFrame::kInterpretedFunction) {
|
|
if (jsframe_index > 0) {
|
|
jsframe_index--;
|
|
} else {
|
|
// We have the JS function frame, now check if it has arguments adaptor.
|
|
if (i > 0 &&
|
|
frames_[i - 1].kind() == TranslatedFrame::kArgumentsAdaptor) {
|
|
*args_count = frames_[i - 1].height();
|
|
return &(frames_[i - 1]);
|
|
}
|
|
*args_count =
|
|
frames_[i].shared_info()->internal_formal_parameter_count() + 1;
|
|
return &(frames_[i]);
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void TranslatedState::StoreMaterializedValuesAndDeopt(JavaScriptFrame* frame) {
|
|
MaterializedObjectStore* materialized_store =
|
|
isolate_->materialized_object_store();
|
|
Handle<FixedArray> previously_materialized_objects =
|
|
materialized_store->Get(stack_frame_pointer_);
|
|
|
|
Handle<Object> marker = isolate_->factory()->arguments_marker();
|
|
|
|
int length = static_cast<int>(object_positions_.size());
|
|
bool new_store = false;
|
|
if (previously_materialized_objects.is_null()) {
|
|
previously_materialized_objects =
|
|
isolate_->factory()->NewFixedArray(length);
|
|
for (int i = 0; i < length; i++) {
|
|
previously_materialized_objects->set(i, *marker);
|
|
}
|
|
new_store = true;
|
|
}
|
|
|
|
CHECK_EQ(length, previously_materialized_objects->length());
|
|
|
|
bool value_changed = false;
|
|
for (int i = 0; i < length; i++) {
|
|
TranslatedState::ObjectPosition pos = object_positions_[i];
|
|
TranslatedValue* value_info =
|
|
&(frames_[pos.frame_index_].values_[pos.value_index_]);
|
|
|
|
CHECK(value_info->IsMaterializedObject());
|
|
|
|
Handle<Object> value(value_info->GetRawValue(), isolate_);
|
|
|
|
if (!value.is_identical_to(marker)) {
|
|
if (previously_materialized_objects->get(i) == *marker) {
|
|
previously_materialized_objects->set(i, *value);
|
|
value_changed = true;
|
|
} else {
|
|
CHECK(previously_materialized_objects->get(i) == *value);
|
|
}
|
|
}
|
|
}
|
|
if (new_store && value_changed) {
|
|
materialized_store->Set(stack_frame_pointer_,
|
|
previously_materialized_objects);
|
|
CHECK(frames_[0].kind() == TranslatedFrame::kFunction ||
|
|
frames_[0].kind() == TranslatedFrame::kInterpretedFunction ||
|
|
frames_[0].kind() == TranslatedFrame::kTailCallerFunction);
|
|
CHECK_EQ(frame->function(), frames_[0].front().GetRawValue());
|
|
Deoptimizer::DeoptimizeFunction(frame->function(), frame->LookupCode());
|
|
}
|
|
}
|
|
|
|
|
|
void TranslatedState::UpdateFromPreviouslyMaterializedObjects() {
|
|
MaterializedObjectStore* materialized_store =
|
|
isolate_->materialized_object_store();
|
|
Handle<FixedArray> previously_materialized_objects =
|
|
materialized_store->Get(stack_frame_pointer_);
|
|
|
|
// If we have no previously materialized objects, there is nothing to do.
|
|
if (previously_materialized_objects.is_null()) return;
|
|
|
|
Handle<Object> marker = isolate_->factory()->arguments_marker();
|
|
|
|
int length = static_cast<int>(object_positions_.size());
|
|
CHECK_EQ(length, previously_materialized_objects->length());
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
// For a previously materialized objects, inject their value into the
|
|
// translated values.
|
|
if (previously_materialized_objects->get(i) != *marker) {
|
|
TranslatedState::ObjectPosition pos = object_positions_[i];
|
|
TranslatedValue* value_info =
|
|
&(frames_[pos.frame_index_].values_[pos.value_index_]);
|
|
CHECK(value_info->IsMaterializedObject());
|
|
|
|
value_info->value_ =
|
|
Handle<Object>(previously_materialized_objects->get(i), isolate_);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|