d2c443b774
I'd like to propagate bailout reason to cpu profiler. So I need to save it into heap object SharedFunctionInfo. But: 1) all bailout reason strings spread across all the sources. 2) they are native strings and if I convert them into String then I may have a performance issue. 3) one byte is enough for 184 bailout reasons. Otherwise we need 8 bytes for the pointer. Also I think it would be nice to have error strings collected in one place. In that case we will get additional benefits: It allows us to keep this set of messages under control. It gives us a chance to internationalize them. It slightly reduces the binary footprint. From the other hand the developers have to add new strings into that enum. BUG= R=jkummerow@chromium.org Review URL: https://codereview.chromium.org/20843012 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@16024 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
728 lines
27 KiB
C++
728 lines
27 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#if V8_TARGET_ARCH_IA32
|
|
|
|
#include "codegen.h"
|
|
#include "deoptimizer.h"
|
|
#include "full-codegen.h"
|
|
#include "safepoint-table.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
const int Deoptimizer::table_entry_size_ = 10;
|
|
|
|
|
|
int Deoptimizer::patch_size() {
|
|
return Assembler::kCallInstructionLength;
|
|
}
|
|
|
|
|
|
void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
|
|
Isolate* isolate = code->GetIsolate();
|
|
HandleScope scope(isolate);
|
|
|
|
// Compute the size of relocation information needed for the code
|
|
// patching in Deoptimizer::DeoptimizeFunction.
|
|
int min_reloc_size = 0;
|
|
int prev_pc_offset = 0;
|
|
DeoptimizationInputData* deopt_data =
|
|
DeoptimizationInputData::cast(code->deoptimization_data());
|
|
for (int i = 0; i < deopt_data->DeoptCount(); i++) {
|
|
int pc_offset = deopt_data->Pc(i)->value();
|
|
if (pc_offset == -1) continue;
|
|
ASSERT_GE(pc_offset, prev_pc_offset);
|
|
int pc_delta = pc_offset - prev_pc_offset;
|
|
// We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
|
|
// if encodable with small pc delta encoding and up to 6 bytes
|
|
// otherwise.
|
|
if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
|
|
min_reloc_size += 2;
|
|
} else {
|
|
min_reloc_size += 6;
|
|
}
|
|
prev_pc_offset = pc_offset;
|
|
}
|
|
|
|
// If the relocation information is not big enough we create a new
|
|
// relocation info object that is padded with comments to make it
|
|
// big enough for lazy doptimization.
|
|
int reloc_length = code->relocation_info()->length();
|
|
if (min_reloc_size > reloc_length) {
|
|
int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
|
|
// Padding needed.
|
|
int min_padding = min_reloc_size - reloc_length;
|
|
// Number of comments needed to take up at least that much space.
|
|
int additional_comments =
|
|
(min_padding + comment_reloc_size - 1) / comment_reloc_size;
|
|
// Actual padding size.
|
|
int padding = additional_comments * comment_reloc_size;
|
|
// Allocate new relocation info and copy old relocation to the end
|
|
// of the new relocation info array because relocation info is
|
|
// written and read backwards.
|
|
Factory* factory = isolate->factory();
|
|
Handle<ByteArray> new_reloc =
|
|
factory->NewByteArray(reloc_length + padding, TENURED);
|
|
OS::MemCopy(new_reloc->GetDataStartAddress() + padding,
|
|
code->relocation_info()->GetDataStartAddress(),
|
|
reloc_length);
|
|
// Create a relocation writer to write the comments in the padding
|
|
// space. Use position 0 for everything to ensure short encoding.
|
|
RelocInfoWriter reloc_info_writer(
|
|
new_reloc->GetDataStartAddress() + padding, 0);
|
|
intptr_t comment_string
|
|
= reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
|
|
RelocInfo rinfo(0, RelocInfo::COMMENT, comment_string, NULL);
|
|
for (int i = 0; i < additional_comments; ++i) {
|
|
#ifdef DEBUG
|
|
byte* pos_before = reloc_info_writer.pos();
|
|
#endif
|
|
reloc_info_writer.Write(&rinfo);
|
|
ASSERT(RelocInfo::kMinRelocCommentSize ==
|
|
pos_before - reloc_info_writer.pos());
|
|
}
|
|
// Replace relocation information on the code object.
|
|
code->set_relocation_info(*new_reloc);
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
|
|
Address code_start_address = code->instruction_start();
|
|
// We will overwrite the code's relocation info in-place. Relocation info
|
|
// is written backward. The relocation info is the payload of a byte
|
|
// array. Later on we will slide this to the start of the byte array and
|
|
// create a filler object in the remaining space.
|
|
ByteArray* reloc_info = code->relocation_info();
|
|
Address reloc_end_address = reloc_info->address() + reloc_info->Size();
|
|
RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);
|
|
|
|
// For each LLazyBailout instruction insert a call to the corresponding
|
|
// deoptimization entry.
|
|
|
|
// Since the call is a relative encoding, write new
|
|
// reloc info. We do not need any of the existing reloc info because the
|
|
// existing code will not be used again (we zap it in debug builds).
|
|
//
|
|
// Emit call to lazy deoptimization at all lazy deopt points.
|
|
DeoptimizationInputData* deopt_data =
|
|
DeoptimizationInputData::cast(code->deoptimization_data());
|
|
#ifdef DEBUG
|
|
Address prev_call_address = NULL;
|
|
#endif
|
|
for (int i = 0; i < deopt_data->DeoptCount(); i++) {
|
|
if (deopt_data->Pc(i)->value() == -1) continue;
|
|
// Patch lazy deoptimization entry.
|
|
Address call_address = code_start_address + deopt_data->Pc(i)->value();
|
|
CodePatcher patcher(call_address, patch_size());
|
|
Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
|
|
patcher.masm()->call(deopt_entry, RelocInfo::NONE32);
|
|
// We use RUNTIME_ENTRY for deoptimization bailouts.
|
|
RelocInfo rinfo(call_address + 1, // 1 after the call opcode.
|
|
RelocInfo::RUNTIME_ENTRY,
|
|
reinterpret_cast<intptr_t>(deopt_entry),
|
|
NULL);
|
|
reloc_info_writer.Write(&rinfo);
|
|
ASSERT_GE(reloc_info_writer.pos(),
|
|
reloc_info->address() + ByteArray::kHeaderSize);
|
|
ASSERT(prev_call_address == NULL ||
|
|
call_address >= prev_call_address + patch_size());
|
|
ASSERT(call_address + patch_size() <= code->instruction_end());
|
|
#ifdef DEBUG
|
|
prev_call_address = call_address;
|
|
#endif
|
|
}
|
|
|
|
// Move the relocation info to the beginning of the byte array.
|
|
int new_reloc_size = reloc_end_address - reloc_info_writer.pos();
|
|
OS::MemMove(
|
|
code->relocation_start(), reloc_info_writer.pos(), new_reloc_size);
|
|
|
|
// The relocation info is in place, update the size.
|
|
reloc_info->set_length(new_reloc_size);
|
|
|
|
// Handle the junk part after the new relocation info. We will create
|
|
// a non-live object in the extra space at the end of the former reloc info.
|
|
Address junk_address = reloc_info->address() + reloc_info->Size();
|
|
ASSERT(junk_address <= reloc_end_address);
|
|
isolate->heap()->CreateFillerObjectAt(junk_address,
|
|
reloc_end_address - junk_address);
|
|
}
|
|
|
|
|
|
static const byte kJnsInstruction = 0x79;
|
|
static const byte kJnsOffset = 0x11;
|
|
static const byte kCallInstruction = 0xe8;
|
|
static const byte kNopByteOne = 0x66;
|
|
static const byte kNopByteTwo = 0x90;
|
|
|
|
// The back edge bookkeeping code matches the pattern:
|
|
//
|
|
// sub <profiling_counter>, <delta>
|
|
// jns ok
|
|
// call <interrupt stub>
|
|
// ok:
|
|
//
|
|
// The patched back edge looks like this:
|
|
//
|
|
// sub <profiling_counter>, <delta> ;; Not changed
|
|
// nop
|
|
// nop
|
|
// call <on-stack replacment>
|
|
// ok:
|
|
|
|
void Deoptimizer::PatchInterruptCodeAt(Code* unoptimized_code,
|
|
Address pc_after,
|
|
Code* interrupt_code,
|
|
Code* replacement_code) {
|
|
ASSERT(!InterruptCodeIsPatched(unoptimized_code,
|
|
pc_after,
|
|
interrupt_code,
|
|
replacement_code));
|
|
// Turn the jump into nops.
|
|
Address call_target_address = pc_after - kIntSize;
|
|
*(call_target_address - 3) = kNopByteOne;
|
|
*(call_target_address - 2) = kNopByteTwo;
|
|
// Replace the call address.
|
|
Assembler::set_target_address_at(call_target_address,
|
|
replacement_code->entry());
|
|
|
|
unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
|
|
unoptimized_code, call_target_address, replacement_code);
|
|
}
|
|
|
|
|
|
void Deoptimizer::RevertInterruptCodeAt(Code* unoptimized_code,
|
|
Address pc_after,
|
|
Code* interrupt_code,
|
|
Code* replacement_code) {
|
|
ASSERT(InterruptCodeIsPatched(unoptimized_code,
|
|
pc_after,
|
|
interrupt_code,
|
|
replacement_code));
|
|
// Restore the original jump.
|
|
Address call_target_address = pc_after - kIntSize;
|
|
*(call_target_address - 3) = kJnsInstruction;
|
|
*(call_target_address - 2) = kJnsOffset;
|
|
// Restore the original call address.
|
|
Assembler::set_target_address_at(call_target_address,
|
|
interrupt_code->entry());
|
|
|
|
interrupt_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
|
|
unoptimized_code, call_target_address, interrupt_code);
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
bool Deoptimizer::InterruptCodeIsPatched(Code* unoptimized_code,
|
|
Address pc_after,
|
|
Code* interrupt_code,
|
|
Code* replacement_code) {
|
|
Address call_target_address = pc_after - kIntSize;
|
|
ASSERT_EQ(kCallInstruction, *(call_target_address - 1));
|
|
if (*(call_target_address - 3) == kNopByteOne) {
|
|
ASSERT_EQ(replacement_code->entry(),
|
|
Assembler::target_address_at(call_target_address));
|
|
ASSERT_EQ(kNopByteTwo, *(call_target_address - 2));
|
|
return true;
|
|
} else {
|
|
ASSERT_EQ(interrupt_code->entry(),
|
|
Assembler::target_address_at(call_target_address));
|
|
ASSERT_EQ(kJnsInstruction, *(call_target_address - 3));
|
|
ASSERT_EQ(kJnsOffset, *(call_target_address - 2));
|
|
return false;
|
|
}
|
|
}
|
|
#endif // DEBUG
|
|
|
|
|
|
static int LookupBailoutId(DeoptimizationInputData* data, BailoutId ast_id) {
|
|
ByteArray* translations = data->TranslationByteArray();
|
|
int length = data->DeoptCount();
|
|
for (int i = 0; i < length; i++) {
|
|
if (data->AstId(i) == ast_id) {
|
|
TranslationIterator it(translations, data->TranslationIndex(i)->value());
|
|
int value = it.Next();
|
|
ASSERT(Translation::BEGIN == static_cast<Translation::Opcode>(value));
|
|
// Read the number of frames.
|
|
value = it.Next();
|
|
if (value == 1) return i;
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
return -1;
|
|
}
|
|
|
|
|
|
void Deoptimizer::DoComputeOsrOutputFrame() {
|
|
DeoptimizationInputData* data = DeoptimizationInputData::cast(
|
|
compiled_code_->deoptimization_data());
|
|
unsigned ast_id = data->OsrAstId()->value();
|
|
// TODO(kasperl): This should not be the bailout_id_. It should be
|
|
// the ast id. Confusing.
|
|
ASSERT(bailout_id_ == ast_id);
|
|
|
|
int bailout_id = LookupBailoutId(data, BailoutId(ast_id));
|
|
unsigned translation_index = data->TranslationIndex(bailout_id)->value();
|
|
ByteArray* translations = data->TranslationByteArray();
|
|
|
|
TranslationIterator iterator(translations, translation_index);
|
|
Translation::Opcode opcode =
|
|
static_cast<Translation::Opcode>(iterator.Next());
|
|
ASSERT(Translation::BEGIN == opcode);
|
|
USE(opcode);
|
|
int count = iterator.Next();
|
|
iterator.Next(); // Drop JS frames count.
|
|
ASSERT(count == 1);
|
|
USE(count);
|
|
|
|
opcode = static_cast<Translation::Opcode>(iterator.Next());
|
|
USE(opcode);
|
|
ASSERT(Translation::JS_FRAME == opcode);
|
|
unsigned node_id = iterator.Next();
|
|
USE(node_id);
|
|
ASSERT(node_id == ast_id);
|
|
int closure_id = iterator.Next();
|
|
USE(closure_id);
|
|
ASSERT_EQ(Translation::kSelfLiteralId, closure_id);
|
|
unsigned height = iterator.Next();
|
|
unsigned height_in_bytes = height * kPointerSize;
|
|
USE(height_in_bytes);
|
|
|
|
unsigned fixed_size = ComputeFixedSize(function_);
|
|
unsigned input_frame_size = input_->GetFrameSize();
|
|
ASSERT(fixed_size + height_in_bytes == input_frame_size);
|
|
|
|
unsigned stack_slot_size = compiled_code_->stack_slots() * kPointerSize;
|
|
unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value();
|
|
unsigned outgoing_size = outgoing_height * kPointerSize;
|
|
unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size;
|
|
ASSERT(outgoing_size == 0); // OSR does not happen in the middle of a call.
|
|
|
|
if (FLAG_trace_osr) {
|
|
PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ",
|
|
reinterpret_cast<intptr_t>(function_));
|
|
PrintFunctionName();
|
|
PrintF(" => node=%u, frame=%d->%d, ebp:esp=0x%08x:0x%08x]\n",
|
|
ast_id,
|
|
input_frame_size,
|
|
output_frame_size,
|
|
input_->GetRegister(ebp.code()),
|
|
input_->GetRegister(esp.code()));
|
|
}
|
|
|
|
// There's only one output frame in the OSR case.
|
|
output_count_ = 1;
|
|
output_ = new FrameDescription*[1];
|
|
output_[0] = new(output_frame_size) FrameDescription(
|
|
output_frame_size, function_);
|
|
output_[0]->SetFrameType(StackFrame::JAVA_SCRIPT);
|
|
|
|
// Clear the incoming parameters in the optimized frame to avoid
|
|
// confusing the garbage collector.
|
|
unsigned output_offset = output_frame_size - kPointerSize;
|
|
int parameter_count = function_->shared()->formal_parameter_count() + 1;
|
|
for (int i = 0; i < parameter_count; ++i) {
|
|
output_[0]->SetFrameSlot(output_offset, 0);
|
|
output_offset -= kPointerSize;
|
|
}
|
|
|
|
// Translate the incoming parameters. This may overwrite some of the
|
|
// incoming argument slots we've just cleared.
|
|
int input_offset = input_frame_size - kPointerSize;
|
|
bool ok = true;
|
|
int limit = input_offset - (parameter_count * kPointerSize);
|
|
while (ok && input_offset > limit) {
|
|
ok = DoOsrTranslateCommand(&iterator, &input_offset);
|
|
}
|
|
|
|
// There are no translation commands for the caller's pc and fp, the
|
|
// context, and the function. Set them up explicitly.
|
|
for (int i = StandardFrameConstants::kCallerPCOffset;
|
|
ok && i >= StandardFrameConstants::kMarkerOffset;
|
|
i -= kPointerSize) {
|
|
uint32_t input_value = input_->GetFrameSlot(input_offset);
|
|
if (FLAG_trace_osr) {
|
|
const char* name = "UNKNOWN";
|
|
switch (i) {
|
|
case StandardFrameConstants::kCallerPCOffset:
|
|
name = "caller's pc";
|
|
break;
|
|
case StandardFrameConstants::kCallerFPOffset:
|
|
name = "fp";
|
|
break;
|
|
case StandardFrameConstants::kContextOffset:
|
|
name = "context";
|
|
break;
|
|
case StandardFrameConstants::kMarkerOffset:
|
|
name = "function";
|
|
break;
|
|
}
|
|
PrintF(" [sp + %d] <- 0x%08x ; [sp + %d] (fixed part - %s)\n",
|
|
output_offset,
|
|
input_value,
|
|
input_offset,
|
|
name);
|
|
}
|
|
output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset));
|
|
input_offset -= kPointerSize;
|
|
output_offset -= kPointerSize;
|
|
}
|
|
|
|
// All OSR stack frames are dynamically aligned to an 8-byte boundary.
|
|
int frame_pointer = input_->GetRegister(ebp.code());
|
|
if ((frame_pointer & kPointerSize) != 0) {
|
|
frame_pointer -= kPointerSize;
|
|
has_alignment_padding_ = 1;
|
|
}
|
|
|
|
int32_t alignment_state = (has_alignment_padding_ == 1) ?
|
|
kAlignmentPaddingPushed :
|
|
kNoAlignmentPadding;
|
|
if (FLAG_trace_osr) {
|
|
PrintF(" [sp + %d] <- 0x%08x ; (alignment state)\n",
|
|
output_offset,
|
|
alignment_state);
|
|
}
|
|
output_[0]->SetFrameSlot(output_offset, alignment_state);
|
|
output_offset -= kPointerSize;
|
|
|
|
// Translate the rest of the frame.
|
|
while (ok && input_offset >= 0) {
|
|
ok = DoOsrTranslateCommand(&iterator, &input_offset);
|
|
}
|
|
|
|
// If translation of any command failed, continue using the input frame.
|
|
if (!ok) {
|
|
delete output_[0];
|
|
output_[0] = input_;
|
|
output_[0]->SetPc(reinterpret_cast<uint32_t>(from_));
|
|
} else {
|
|
// Set up the frame pointer and the context pointer.
|
|
output_[0]->SetRegister(ebp.code(), frame_pointer);
|
|
output_[0]->SetRegister(esi.code(), input_->GetRegister(esi.code()));
|
|
|
|
unsigned pc_offset = data->OsrPcOffset()->value();
|
|
uint32_t pc = reinterpret_cast<uint32_t>(
|
|
compiled_code_->entry() + pc_offset);
|
|
output_[0]->SetPc(pc);
|
|
}
|
|
Code* continuation =
|
|
function_->GetIsolate()->builtins()->builtin(Builtins::kNotifyOSR);
|
|
output_[0]->SetContinuation(
|
|
reinterpret_cast<uint32_t>(continuation->entry()));
|
|
|
|
if (FLAG_trace_osr) {
|
|
PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ",
|
|
ok ? "finished" : "aborted",
|
|
reinterpret_cast<intptr_t>(function_));
|
|
PrintFunctionName();
|
|
PrintF(" => pc=0x%0x]\n", output_[0]->GetPc());
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) {
|
|
// Set the register values. The values are not important as there are no
|
|
// callee saved registers in JavaScript frames, so all registers are
|
|
// spilled. Registers ebp and esp are set to the correct values though.
|
|
|
|
for (int i = 0; i < Register::kNumRegisters; i++) {
|
|
input_->SetRegister(i, i * 4);
|
|
}
|
|
input_->SetRegister(esp.code(), reinterpret_cast<intptr_t>(frame->sp()));
|
|
input_->SetRegister(ebp.code(), reinterpret_cast<intptr_t>(frame->fp()));
|
|
for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); i++) {
|
|
input_->SetDoubleRegister(i, 0.0);
|
|
}
|
|
|
|
// Fill the frame content from the actual data on the frame.
|
|
for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) {
|
|
input_->SetFrameSlot(i, Memory::uint32_at(tos + i));
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::SetPlatformCompiledStubRegisters(
|
|
FrameDescription* output_frame, CodeStubInterfaceDescriptor* descriptor) {
|
|
intptr_t handler =
|
|
reinterpret_cast<intptr_t>(descriptor->deoptimization_handler_);
|
|
int params = descriptor->register_param_count_;
|
|
if (descriptor->stack_parameter_count_ != NULL) {
|
|
params++;
|
|
}
|
|
output_frame->SetRegister(eax.code(), params);
|
|
output_frame->SetRegister(ebx.code(), handler);
|
|
}
|
|
|
|
|
|
void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
|
|
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
|
|
double double_value = input_->GetDoubleRegister(i);
|
|
output_frame->SetDoubleRegister(i, double_value);
|
|
}
|
|
}
|
|
|
|
|
|
bool Deoptimizer::HasAlignmentPadding(JSFunction* function) {
|
|
int parameter_count = function->shared()->formal_parameter_count() + 1;
|
|
unsigned input_frame_size = input_->GetFrameSize();
|
|
unsigned alignment_state_offset =
|
|
input_frame_size - parameter_count * kPointerSize -
|
|
StandardFrameConstants::kFixedFrameSize -
|
|
kPointerSize;
|
|
ASSERT(JavaScriptFrameConstants::kDynamicAlignmentStateOffset ==
|
|
JavaScriptFrameConstants::kLocal0Offset);
|
|
int32_t alignment_state = input_->GetFrameSlot(alignment_state_offset);
|
|
return (alignment_state == kAlignmentPaddingPushed);
|
|
}
|
|
|
|
|
|
#define __ masm()->
|
|
|
|
void Deoptimizer::EntryGenerator::Generate() {
|
|
GeneratePrologue();
|
|
|
|
// Save all general purpose registers before messing with them.
|
|
const int kNumberOfRegisters = Register::kNumRegisters;
|
|
|
|
const int kDoubleRegsSize = kDoubleSize *
|
|
XMMRegister::kNumAllocatableRegisters;
|
|
__ sub(esp, Immediate(kDoubleRegsSize));
|
|
if (CpuFeatures::IsSupported(SSE2)) {
|
|
CpuFeatureScope scope(masm(), SSE2);
|
|
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
|
|
XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
|
|
int offset = i * kDoubleSize;
|
|
__ movdbl(Operand(esp, offset), xmm_reg);
|
|
}
|
|
}
|
|
|
|
__ pushad();
|
|
|
|
const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize +
|
|
kDoubleRegsSize;
|
|
|
|
// Get the bailout id from the stack.
|
|
__ mov(ebx, Operand(esp, kSavedRegistersAreaSize));
|
|
|
|
// Get the address of the location in the code object
|
|
// and compute the fp-to-sp delta in register edx.
|
|
__ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
|
|
__ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));
|
|
|
|
__ sub(edx, ebp);
|
|
__ neg(edx);
|
|
|
|
// Allocate a new deoptimizer object.
|
|
__ PrepareCallCFunction(6, eax);
|
|
__ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
|
|
__ mov(Operand(esp, 0 * kPointerSize), eax); // Function.
|
|
__ mov(Operand(esp, 1 * kPointerSize), Immediate(type())); // Bailout type.
|
|
__ mov(Operand(esp, 2 * kPointerSize), ebx); // Bailout id.
|
|
__ mov(Operand(esp, 3 * kPointerSize), ecx); // Code address or 0.
|
|
__ mov(Operand(esp, 4 * kPointerSize), edx); // Fp-to-sp delta.
|
|
__ mov(Operand(esp, 5 * kPointerSize),
|
|
Immediate(ExternalReference::isolate_address(isolate())));
|
|
{
|
|
AllowExternalCallThatCantCauseGC scope(masm());
|
|
__ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
|
|
}
|
|
|
|
// Preserve deoptimizer object in register eax and get the input
|
|
// frame descriptor pointer.
|
|
__ mov(ebx, Operand(eax, Deoptimizer::input_offset()));
|
|
|
|
// Fill in the input registers.
|
|
for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
|
|
int offset = (i * kPointerSize) + FrameDescription::registers_offset();
|
|
__ pop(Operand(ebx, offset));
|
|
}
|
|
|
|
int double_regs_offset = FrameDescription::double_registers_offset();
|
|
if (CpuFeatures::IsSupported(SSE2)) {
|
|
CpuFeatureScope scope(masm(), SSE2);
|
|
// Fill in the double input registers.
|
|
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
|
|
int dst_offset = i * kDoubleSize + double_regs_offset;
|
|
int src_offset = i * kDoubleSize;
|
|
__ movdbl(xmm0, Operand(esp, src_offset));
|
|
__ movdbl(Operand(ebx, dst_offset), xmm0);
|
|
}
|
|
}
|
|
|
|
// Clear FPU all exceptions.
|
|
// TODO(ulan): Find out why the TOP register is not zero here in some cases,
|
|
// and check that the generated code never deoptimizes with unbalanced stack.
|
|
__ fnclex();
|
|
|
|
// Remove the bailout id, return address and the double registers.
|
|
__ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize));
|
|
|
|
// Compute a pointer to the unwinding limit in register ecx; that is
|
|
// the first stack slot not part of the input frame.
|
|
__ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
|
|
__ add(ecx, esp);
|
|
|
|
// Unwind the stack down to - but not including - the unwinding
|
|
// limit and copy the contents of the activation frame to the input
|
|
// frame description.
|
|
__ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
|
|
Label pop_loop_header;
|
|
__ jmp(&pop_loop_header);
|
|
Label pop_loop;
|
|
__ bind(&pop_loop);
|
|
__ pop(Operand(edx, 0));
|
|
__ add(edx, Immediate(sizeof(uint32_t)));
|
|
__ bind(&pop_loop_header);
|
|
__ cmp(ecx, esp);
|
|
__ j(not_equal, &pop_loop);
|
|
|
|
// Compute the output frame in the deoptimizer.
|
|
__ push(eax);
|
|
__ PrepareCallCFunction(1, ebx);
|
|
__ mov(Operand(esp, 0 * kPointerSize), eax);
|
|
{
|
|
AllowExternalCallThatCantCauseGC scope(masm());
|
|
__ CallCFunction(
|
|
ExternalReference::compute_output_frames_function(isolate()), 1);
|
|
}
|
|
__ pop(eax);
|
|
|
|
if (type() != OSR) {
|
|
// If frame was dynamically aligned, pop padding.
|
|
Label no_padding;
|
|
__ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()),
|
|
Immediate(0));
|
|
__ j(equal, &no_padding);
|
|
__ pop(ecx);
|
|
if (FLAG_debug_code) {
|
|
__ cmp(ecx, Immediate(kAlignmentZapValue));
|
|
__ Assert(equal, kAlignmentMarkerExpected);
|
|
}
|
|
__ bind(&no_padding);
|
|
} else {
|
|
// If frame needs dynamic alignment push padding.
|
|
Label no_padding;
|
|
__ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()),
|
|
Immediate(0));
|
|
__ j(equal, &no_padding);
|
|
__ push(Immediate(kAlignmentZapValue));
|
|
__ bind(&no_padding);
|
|
}
|
|
|
|
// Replace the current frame with the output frames.
|
|
Label outer_push_loop, inner_push_loop,
|
|
outer_loop_header, inner_loop_header;
|
|
// Outer loop state: eax = current FrameDescription**, edx = one past the
|
|
// last FrameDescription**.
|
|
__ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
|
|
__ mov(eax, Operand(eax, Deoptimizer::output_offset()));
|
|
__ lea(edx, Operand(eax, edx, times_4, 0));
|
|
__ jmp(&outer_loop_header);
|
|
__ bind(&outer_push_loop);
|
|
// Inner loop state: ebx = current FrameDescription*, ecx = loop index.
|
|
__ mov(ebx, Operand(eax, 0));
|
|
__ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
|
|
__ jmp(&inner_loop_header);
|
|
__ bind(&inner_push_loop);
|
|
__ sub(ecx, Immediate(sizeof(uint32_t)));
|
|
__ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
|
|
__ bind(&inner_loop_header);
|
|
__ test(ecx, ecx);
|
|
__ j(not_zero, &inner_push_loop);
|
|
__ add(eax, Immediate(kPointerSize));
|
|
__ bind(&outer_loop_header);
|
|
__ cmp(eax, edx);
|
|
__ j(below, &outer_push_loop);
|
|
|
|
// In case of OSR or a failed STUB, we have to restore the XMM registers.
|
|
if (CpuFeatures::IsSupported(SSE2)) {
|
|
CpuFeatureScope scope(masm(), SSE2);
|
|
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
|
|
XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
|
|
int src_offset = i * kDoubleSize + double_regs_offset;
|
|
__ movdbl(xmm_reg, Operand(ebx, src_offset));
|
|
}
|
|
}
|
|
|
|
// Push state, pc, and continuation from the last output frame.
|
|
if (type() != OSR) {
|
|
__ push(Operand(ebx, FrameDescription::state_offset()));
|
|
}
|
|
__ push(Operand(ebx, FrameDescription::pc_offset()));
|
|
__ push(Operand(ebx, FrameDescription::continuation_offset()));
|
|
|
|
|
|
// Push the registers from the last output frame.
|
|
for (int i = 0; i < kNumberOfRegisters; i++) {
|
|
int offset = (i * kPointerSize) + FrameDescription::registers_offset();
|
|
__ push(Operand(ebx, offset));
|
|
}
|
|
|
|
// Restore the registers from the stack.
|
|
__ popad();
|
|
|
|
// Return to the continuation point.
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
|
|
// Create a sequence of deoptimization entries.
|
|
Label done;
|
|
for (int i = 0; i < count(); i++) {
|
|
int start = masm()->pc_offset();
|
|
USE(start);
|
|
__ push_imm32(i);
|
|
__ jmp(&done);
|
|
ASSERT(masm()->pc_offset() - start == table_entry_size_);
|
|
}
|
|
__ bind(&done);
|
|
}
|
|
|
|
|
|
void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
|
|
SetFrameSlot(offset, value);
|
|
}
|
|
|
|
|
|
void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
|
|
SetFrameSlot(offset, value);
|
|
}
|
|
|
|
|
|
#undef __
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_TARGET_ARCH_IA32
|