90045ddd5e
objects in the startup heap from a partial snapshot. This happens through the partial snapshot cache. A startup snapshot and a partial snapshot are created together so that the startup snapshot contains the partial snapshot cache entries needed. Review URL: http://codereview.chromium.org/548149 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3713 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
536 lines
17 KiB
C++
536 lines
17 KiB
C++
// Copyright 2006-2009 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_SERIALIZE_H_
|
|
#define V8_SERIALIZE_H_
|
|
|
|
#include "hashmap.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// A TypeCode is used to distinguish different kinds of external reference.
|
|
// It is a single bit to make testing for types easy.
|
|
enum TypeCode {
|
|
UNCLASSIFIED, // One-of-a-kind references.
|
|
BUILTIN,
|
|
RUNTIME_FUNCTION,
|
|
IC_UTILITY,
|
|
DEBUG_ADDRESS,
|
|
STATS_COUNTER,
|
|
TOP_ADDRESS,
|
|
C_BUILTIN,
|
|
EXTENSION,
|
|
ACCESSOR,
|
|
RUNTIME_ENTRY,
|
|
STUB_CACHE_TABLE
|
|
};
|
|
|
|
const int kTypeCodeCount = STUB_CACHE_TABLE + 1;
|
|
const int kFirstTypeCode = UNCLASSIFIED;
|
|
|
|
const int kReferenceIdBits = 16;
|
|
const int kReferenceIdMask = (1 << kReferenceIdBits) - 1;
|
|
const int kReferenceTypeShift = kReferenceIdBits;
|
|
const int kDebugRegisterBits = 4;
|
|
const int kDebugIdShift = kDebugRegisterBits;
|
|
|
|
|
|
class ExternalReferenceEncoder {
|
|
public:
|
|
ExternalReferenceEncoder();
|
|
|
|
uint32_t Encode(Address key) const;
|
|
|
|
const char* NameOfAddress(Address key) const;
|
|
|
|
private:
|
|
HashMap encodings_;
|
|
static uint32_t Hash(Address key) {
|
|
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key) >> 2);
|
|
}
|
|
|
|
int IndexOf(Address key) const;
|
|
|
|
static bool Match(void* key1, void* key2) { return key1 == key2; }
|
|
|
|
void Put(Address key, int index);
|
|
};
|
|
|
|
|
|
class ExternalReferenceDecoder {
|
|
public:
|
|
ExternalReferenceDecoder();
|
|
~ExternalReferenceDecoder();
|
|
|
|
Address Decode(uint32_t key) const {
|
|
if (key == 0) return NULL;
|
|
return *Lookup(key);
|
|
}
|
|
|
|
private:
|
|
Address** encodings_;
|
|
|
|
Address* Lookup(uint32_t key) const {
|
|
int type = key >> kReferenceTypeShift;
|
|
ASSERT(kFirstTypeCode <= type && type < kTypeCodeCount);
|
|
int id = key & kReferenceIdMask;
|
|
return &encodings_[type][id];
|
|
}
|
|
|
|
void Put(uint32_t key, Address value) {
|
|
*Lookup(key) = value;
|
|
}
|
|
};
|
|
|
|
|
|
class SnapshotByteSource {
|
|
public:
|
|
SnapshotByteSource(const byte* array, int length)
|
|
: data_(array), length_(length), position_(0) { }
|
|
|
|
bool HasMore() { return position_ < length_; }
|
|
|
|
int Get() {
|
|
ASSERT(position_ < length_);
|
|
return data_[position_++];
|
|
}
|
|
|
|
void CopyRaw(byte* to, int number_of_bytes) {
|
|
memcpy(to, data_ + position_, number_of_bytes);
|
|
position_ += number_of_bytes;
|
|
}
|
|
|
|
int GetInt() {
|
|
// A little unwind to catch the really small ints.
|
|
int snapshot_byte = Get();
|
|
if ((snapshot_byte & 0x80) == 0) {
|
|
return snapshot_byte;
|
|
}
|
|
int accumulator = (snapshot_byte & 0x7f) << 7;
|
|
while (true) {
|
|
snapshot_byte = Get();
|
|
if ((snapshot_byte & 0x80) == 0) {
|
|
return accumulator | snapshot_byte;
|
|
}
|
|
accumulator = (accumulator | (snapshot_byte & 0x7f)) << 7;
|
|
}
|
|
UNREACHABLE();
|
|
return accumulator;
|
|
}
|
|
|
|
bool AtEOF() {
|
|
return position_ == length_;
|
|
}
|
|
|
|
int position() { return position_; }
|
|
|
|
private:
|
|
const byte* data_;
|
|
int length_;
|
|
int position_;
|
|
};
|
|
|
|
|
|
// It is very common to have a reference to the object at word 10 in space 2,
|
|
// the object at word 5 in space 2 and the object at word 28 in space 4. This
|
|
// only works for objects in the first page of a space.
|
|
#define COMMON_REFERENCE_PATTERNS(f) \
|
|
f(kNumberOfSpaces, 2, 10) \
|
|
f(kNumberOfSpaces + 1, 2, 5) \
|
|
f(kNumberOfSpaces + 2, 4, 28) \
|
|
f(kNumberOfSpaces + 3, 2, 21) \
|
|
f(kNumberOfSpaces + 4, 2, 98) \
|
|
f(kNumberOfSpaces + 5, 2, 67) \
|
|
f(kNumberOfSpaces + 6, 4, 132)
|
|
|
|
#define COMMON_RAW_LENGTHS(f) \
|
|
f(1, 1) \
|
|
f(2, 2) \
|
|
f(3, 3) \
|
|
f(4, 4) \
|
|
f(5, 5) \
|
|
f(6, 6) \
|
|
f(7, 7) \
|
|
f(8, 8) \
|
|
f(9, 12) \
|
|
f(10, 16) \
|
|
f(11, 20) \
|
|
f(12, 24) \
|
|
f(13, 28) \
|
|
f(14, 32) \
|
|
f(15, 36)
|
|
|
|
// The Serializer/Deserializer class is a common superclass for Serializer and
|
|
// Deserializer which is used to store common constants and methods used by
|
|
// both.
|
|
class SerializerDeserializer: public ObjectVisitor {
|
|
public:
|
|
static void Iterate(ObjectVisitor* visitor);
|
|
static void SetSnapshotCacheSize(int size);
|
|
|
|
protected:
|
|
enum DataType {
|
|
RAW_DATA_SERIALIZATION = 0,
|
|
// And 15 common raw lengths.
|
|
OBJECT_SERIALIZATION = 16,
|
|
// One variant per space.
|
|
CODE_OBJECT_SERIALIZATION = 25,
|
|
// One per space (only code spaces in use).
|
|
EXTERNAL_REFERENCE_SERIALIZATION = 34,
|
|
EXTERNAL_BRANCH_TARGET_SERIALIZATION = 35,
|
|
SYNCHRONIZE = 36,
|
|
START_NEW_PAGE_SERIALIZATION = 37,
|
|
NATIVES_STRING_RESOURCE = 38,
|
|
ROOT_SERIALIZATION = 39,
|
|
PARTIAL_SNAPSHOT_CACHE_ENTRY = 40,
|
|
// Free: 41-47.
|
|
BACKREF_SERIALIZATION = 48,
|
|
// One per space, must be kSpaceMask aligned.
|
|
// Free: 57-63.
|
|
REFERENCE_SERIALIZATION = 64,
|
|
// One per space and common references. Must be kSpaceMask aligned.
|
|
CODE_BACKREF_SERIALIZATION = 80,
|
|
// One per space, must be kSpaceMask aligned.
|
|
// Free: 89-95.
|
|
CODE_REFERENCE_SERIALIZATION = 96
|
|
// One per space, must be kSpaceMask aligned.
|
|
// Free: 105-255.
|
|
};
|
|
static const int kLargeData = LAST_SPACE;
|
|
static const int kLargeCode = kLargeData + 1;
|
|
static const int kLargeFixedArray = kLargeCode + 1;
|
|
static const int kNumberOfSpaces = kLargeFixedArray + 1;
|
|
|
|
// A bitmask for getting the space out of an instruction.
|
|
static const int kSpaceMask = 15;
|
|
|
|
static inline bool SpaceIsLarge(int space) { return space >= kLargeData; }
|
|
static inline bool SpaceIsPaged(int space) {
|
|
return space >= FIRST_PAGED_SPACE && space <= LAST_PAGED_SPACE;
|
|
}
|
|
|
|
static int partial_snapshot_cache_length_;
|
|
static const int kPartialSnapshotCacheCapacity = 1024;
|
|
static Object* partial_snapshot_cache_[];
|
|
};
|
|
|
|
|
|
|
|
// A Deserializer reads a snapshot and reconstructs the Object graph it defines.
|
|
class Deserializer: public SerializerDeserializer {
|
|
public:
|
|
// Create a deserializer from a snapshot byte source.
|
|
explicit Deserializer(SnapshotByteSource* source);
|
|
|
|
virtual ~Deserializer();
|
|
|
|
// Deserialize the snapshot into an empty heap.
|
|
void Deserialize();
|
|
|
|
// Deserialize a single object and the objects reachable from it.
|
|
void DeserializePartial(Object** root);
|
|
|
|
#ifdef DEBUG
|
|
virtual void Synchronize(const char* tag);
|
|
#endif
|
|
|
|
private:
|
|
virtual void VisitPointers(Object** start, Object** end);
|
|
|
|
virtual void VisitExternalReferences(Address* start, Address* end) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
virtual void VisitRuntimeEntry(RelocInfo* rinfo) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
void ReadChunk(Object** start, Object** end, int space, Address address);
|
|
HeapObject* GetAddressFromStart(int space);
|
|
inline HeapObject* GetAddressFromEnd(int space);
|
|
Address Allocate(int space_number, Space* space, int size);
|
|
void ReadObject(int space_number, Space* space, Object** write_back);
|
|
|
|
// Keep track of the pages in the paged spaces.
|
|
// (In large object space we are keeping track of individual objects
|
|
// rather than pages.) In new space we just need the address of the
|
|
// first object and the others will flow from that.
|
|
List<Address> pages_[SerializerDeserializer::kNumberOfSpaces];
|
|
|
|
SnapshotByteSource* source_;
|
|
static ExternalReferenceDecoder* external_reference_decoder_;
|
|
// This is the address of the next object that will be allocated in each
|
|
// space. It is used to calculate the addresses of back-references.
|
|
Address high_water_[LAST_SPACE + 1];
|
|
// This is the address of the most recent object that was allocated. It
|
|
// is used to set the location of the new page when we encounter a
|
|
// START_NEW_PAGE_SERIALIZATION tag.
|
|
Address last_object_address_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(Deserializer);
|
|
};
|
|
|
|
|
|
class SnapshotByteSink {
|
|
public:
|
|
virtual ~SnapshotByteSink() { }
|
|
virtual void Put(int byte, const char* description) = 0;
|
|
virtual void PutSection(int byte, const char* description) {
|
|
Put(byte, description);
|
|
}
|
|
void PutInt(uintptr_t integer, const char* description);
|
|
virtual int Position() = 0;
|
|
};
|
|
|
|
|
|
// Mapping objects to their location after deserialization.
|
|
// This is used during building, but not at runtime by V8.
|
|
class SerializationAddressMapper {
|
|
public:
|
|
SerializationAddressMapper()
|
|
: serialization_map_(new HashMap(&SerializationMatchFun)),
|
|
no_allocation_(new AssertNoAllocation()) { }
|
|
|
|
~SerializationAddressMapper() {
|
|
delete serialization_map_;
|
|
delete no_allocation_;
|
|
}
|
|
|
|
bool IsMapped(HeapObject* obj) {
|
|
return serialization_map_->Lookup(Key(obj), Hash(obj), false) != NULL;
|
|
}
|
|
|
|
int MappedTo(HeapObject* obj) {
|
|
ASSERT(IsMapped(obj));
|
|
return static_cast<int>(reinterpret_cast<intptr_t>(
|
|
serialization_map_->Lookup(Key(obj), Hash(obj), false)->value));
|
|
}
|
|
|
|
void AddMapping(HeapObject* obj, int to) {
|
|
ASSERT(!IsMapped(obj));
|
|
HashMap::Entry* entry =
|
|
serialization_map_->Lookup(Key(obj), Hash(obj), true);
|
|
entry->value = Value(to);
|
|
}
|
|
|
|
private:
|
|
static bool SerializationMatchFun(void* key1, void* key2) {
|
|
return key1 == key2;
|
|
}
|
|
|
|
static uint32_t Hash(HeapObject* obj) {
|
|
return static_cast<int32_t>(reinterpret_cast<intptr_t>(obj->address()));
|
|
}
|
|
|
|
static void* Key(HeapObject* obj) {
|
|
return reinterpret_cast<void*>(obj->address());
|
|
}
|
|
|
|
static void* Value(int v) {
|
|
return reinterpret_cast<void*>(v);
|
|
}
|
|
|
|
HashMap* serialization_map_;
|
|
AssertNoAllocation* no_allocation_;
|
|
DISALLOW_COPY_AND_ASSIGN(SerializationAddressMapper);
|
|
};
|
|
|
|
|
|
class Serializer : public SerializerDeserializer {
|
|
public:
|
|
explicit Serializer(SnapshotByteSink* sink);
|
|
void VisitPointers(Object** start, Object** end);
|
|
// You can call this after serialization to find out how much space was used
|
|
// in each space.
|
|
int CurrentAllocationAddress(int space) {
|
|
if (SpaceIsLarge(space)) return large_object_total_;
|
|
return fullness_[space];
|
|
}
|
|
|
|
static void Enable() {
|
|
if (!serialization_enabled_) {
|
|
ASSERT(!too_late_to_enable_now_);
|
|
}
|
|
serialization_enabled_ = true;
|
|
}
|
|
|
|
static void Disable() { serialization_enabled_ = false; }
|
|
// Call this when you have made use of the fact that there is no serialization
|
|
// going on.
|
|
static void TooLateToEnableNow() { too_late_to_enable_now_ = true; }
|
|
static bool enabled() { return serialization_enabled_; }
|
|
SerializationAddressMapper* address_mapper() { return &address_mapper_; }
|
|
#ifdef DEBUG
|
|
virtual void Synchronize(const char* tag);
|
|
#endif
|
|
|
|
protected:
|
|
enum ReferenceRepresentation {
|
|
TAGGED_REPRESENTATION, // A tagged object reference.
|
|
CODE_TARGET_REPRESENTATION // A reference to first instruction in target.
|
|
};
|
|
static const int kInvalidRootIndex = -1;
|
|
virtual int RootIndex(HeapObject* heap_object) = 0;
|
|
virtual bool ShouldBeInThePartialSnapshotCache(HeapObject* o) = 0;
|
|
|
|
class ObjectSerializer : public ObjectVisitor {
|
|
public:
|
|
ObjectSerializer(Serializer* serializer,
|
|
Object* o,
|
|
SnapshotByteSink* sink,
|
|
ReferenceRepresentation representation)
|
|
: serializer_(serializer),
|
|
object_(HeapObject::cast(o)),
|
|
sink_(sink),
|
|
reference_representation_(representation),
|
|
bytes_processed_so_far_(0) { }
|
|
void Serialize();
|
|
void VisitPointers(Object** start, Object** end);
|
|
void VisitExternalReferences(Address* start, Address* end);
|
|
void VisitCodeTarget(RelocInfo* target);
|
|
void VisitRuntimeEntry(RelocInfo* reloc);
|
|
// Used for seralizing the external strings that hold the natives source.
|
|
void VisitExternalAsciiString(
|
|
v8::String::ExternalAsciiStringResource** resource);
|
|
// We can't serialize a heap with external two byte strings.
|
|
void VisitExternalTwoByteString(
|
|
v8::String::ExternalStringResource** resource) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
private:
|
|
void OutputRawData(Address up_to);
|
|
|
|
Serializer* serializer_;
|
|
HeapObject* object_;
|
|
SnapshotByteSink* sink_;
|
|
ReferenceRepresentation reference_representation_;
|
|
int bytes_processed_so_far_;
|
|
};
|
|
|
|
virtual void SerializeObject(Object* o,
|
|
ReferenceRepresentation representation) = 0;
|
|
void SerializeReferenceToPreviousObject(
|
|
int space,
|
|
int address,
|
|
ReferenceRepresentation reference_representation);
|
|
void InitializeAllocators();
|
|
// This will return the space for an object. If the object is in large
|
|
// object space it may return kLargeCode or kLargeFixedArray in order
|
|
// to indicate to the deserializer what kind of large object allocation
|
|
// to make.
|
|
static int SpaceOfObject(HeapObject* object);
|
|
// This just returns the space of the object. It will return LO_SPACE
|
|
// for all large objects since you can't check the type of the object
|
|
// once the map has been used for the serialization address.
|
|
static int SpaceOfAlreadySerializedObject(HeapObject* object);
|
|
int Allocate(int space, int size, bool* new_page_started);
|
|
int EncodeExternalReference(Address addr) {
|
|
return external_reference_encoder_->Encode(addr);
|
|
}
|
|
|
|
// Keep track of the fullness of each space in order to generate
|
|
// relative addresses for back references. Large objects are
|
|
// just numbered sequentially since relative addresses make no
|
|
// sense in large object space.
|
|
int fullness_[LAST_SPACE + 1];
|
|
SnapshotByteSink* sink_;
|
|
int current_root_index_;
|
|
ExternalReferenceEncoder* external_reference_encoder_;
|
|
static bool serialization_enabled_;
|
|
// Did we already make use of the fact that serialization was not enabled?
|
|
static bool too_late_to_enable_now_;
|
|
int large_object_total_;
|
|
SerializationAddressMapper address_mapper_;
|
|
|
|
friend class ObjectSerializer;
|
|
friend class Deserializer;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(Serializer);
|
|
};
|
|
|
|
|
|
class PartialSerializer : public Serializer {
|
|
public:
|
|
PartialSerializer(Serializer* startup_snapshot_serializer,
|
|
SnapshotByteSink* sink)
|
|
: Serializer(sink),
|
|
startup_serializer_(startup_snapshot_serializer) {
|
|
}
|
|
|
|
// Serialize the objects reachable from a single object pointer.
|
|
virtual void Serialize(Object** o);
|
|
virtual void SerializeObject(Object* o,
|
|
ReferenceRepresentation representation);
|
|
|
|
protected:
|
|
virtual int RootIndex(HeapObject* o);
|
|
virtual int PartialSnapshotCacheIndex(HeapObject* o);
|
|
virtual bool ShouldBeInThePartialSnapshotCache(HeapObject* o) {
|
|
return o->IsString() || o->IsSharedFunctionInfo();
|
|
}
|
|
|
|
private:
|
|
Serializer* startup_serializer_;
|
|
DISALLOW_COPY_AND_ASSIGN(PartialSerializer);
|
|
};
|
|
|
|
|
|
class StartupSerializer : public Serializer {
|
|
public:
|
|
explicit StartupSerializer(SnapshotByteSink* sink) : Serializer(sink) {
|
|
// Clear the cache of objects used by the partial snapshot. After the
|
|
// strong roots have been serialized we can create a partial snapshot
|
|
// which will repopulate the cache with objects neede by that partial
|
|
// snapshot.
|
|
partial_snapshot_cache_length_ = 0;
|
|
}
|
|
// Serialize the current state of the heap. The order is:
|
|
// 1) Strong references.
|
|
// 2) Partial snapshot cache.
|
|
// 3) Weak references (eg the symbol table).
|
|
virtual void SerializeStrongReferences();
|
|
virtual void SerializeObject(Object* o,
|
|
ReferenceRepresentation representation);
|
|
void SerializeWeakReferences();
|
|
void Serialize() {
|
|
SerializeStrongReferences();
|
|
SerializeWeakReferences();
|
|
}
|
|
|
|
private:
|
|
virtual int RootIndex(HeapObject* o) { return kInvalidRootIndex; }
|
|
virtual bool ShouldBeInThePartialSnapshotCache(HeapObject* o) {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_SERIALIZE_H_
|