wxWidgets/include/wx/matrix.h

244 lines
8.8 KiB
C
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////
// Name: matrix.h
// Purpose: wxTransformMatrix class. NOT YET USED
//! Author: Chris Breeze, Julian Smart
// Modified by: Klaas Holwerda
// Created: 01/02/97
// RCS-ID: $Id$
// Copyright: (c) Julian Smart and Markus Holzem
// Licence: wxWindows licence
/////////////////////////////////////////////////////////////////////////////
#ifndef _WX_MATRIXH__
#define _WX_MATRIXH__
#ifdef __GNUG__
#pragma interface "matrix.h"
#endif
//! headerfiles="matrix.h wx/object.h"
#include "wx/object.h"
//! codefiles="matrix.cpp"
// A simple 3x3 matrix. This may be replaced by a more general matrix
// class some day.
//
// Note: this is intended to be used in wxDC at some point to replace
// the current system of scaling/translation. It is not yet used.
//:defenition
// A 3x3 matrix to do 2D transformations.
// It can be used to map data to window coordinates.
// But also for manipulating your own data.
// For example drawing a picture (composed of several primitives)
// at a certain coordinate and angle within another parent picture.
// At all times m_isIdentity is set if the matrix itself is an Identity matrix.
// It is used where possible to optimize calculations.
class WXDLLEXPORT wxTransformMatrix: public wxObject
{
public:
wxTransformMatrix(void);
wxTransformMatrix(const wxTransformMatrix& mat);
//get the value in the matrix at col,row
//rows are horizontal (second index of m_matrix member)
//columns are vertical (first index of m_matrix member)
double GetValue(int col, int row) const;
//set the value in the matrix at col,row
//rows are horizontal (second index of m_matrix member)
//columns are vertical (first index of m_matrix member)
void SetValue(int col, int row, double value);
void operator = (const wxTransformMatrix& mat);
bool operator == (const wxTransformMatrix& mat);
bool operator != (const wxTransformMatrix& mat);
//multiply every element by t
wxTransformMatrix& operator*=(const double& t);
//divide every element by t
wxTransformMatrix& operator/=(const double& t);
//add matrix m to this t
wxTransformMatrix& operator+=(const wxTransformMatrix& m);
//subtract matrix m from this
wxTransformMatrix& operator-=(const wxTransformMatrix& m);
//multiply matrix m with this
wxTransformMatrix& operator*=(const wxTransformMatrix& m);
// constant operators
//multiply every element by t and return result
wxTransformMatrix operator*(const double& t) const;
//divide this matrix by t and return result
wxTransformMatrix operator/(const double& t) const;
//add matrix m to this and return result
wxTransformMatrix operator+(const wxTransformMatrix& m) const;
//subtract matrix m from this and return result
wxTransformMatrix operator-(const wxTransformMatrix& m) const;
//multiply this by matrix m and return result
wxTransformMatrix operator*(const wxTransformMatrix& m) const;
wxTransformMatrix operator-() const;
//rows are horizontal (second index of m_matrix member)
//columns are vertical (first index of m_matrix member)
double& operator()(int col, int row);
//rows are horizontal (second index of m_matrix member)
//columns are vertical (first index of m_matrix member)
double operator()(int col, int row) const;
// Invert matrix
bool Invert(void);
// Make into identity matrix
bool Identity(void);
// Is the matrix the identity matrix?
// Only returns a flag, which is set whenever an operation
// is done.
inline bool IsIdentity(void) const { return m_isIdentity; };
// This does an actual check.
inline bool IsIdentity1(void) const ;
//Scale by scale (isotropic scaling i.e. the same in x and y):
//!ex:
//!code: | scale 0 0 |
//!code: matrix' = | 0 scale 0 | x matrix
//!code: | 0 0 scale |
bool Scale(double scale);
//Scale with center point and x/y scale
//
//!ex:
//!code: | xs 0 xc(1-xs) |
//!code: matrix' = | 0 ys yc(1-ys) | x matrix
//!code: | 0 0 1 |
wxTransformMatrix& Scale(const double &xs, const double &ys,const double &xc, const double &yc);
// mirror a matrix in x, y
//!ex:
//!code: | -1 0 0 |
//!code: matrix' = | 0 -1 0 | x matrix
//!code: | 0 0 1 |
#if defined(__WXPM__)
wxTransformMatrix& Mirror(bool x=TRUE, bool y=FALSE);
#else
wxTransformMatrix& Mirror(bool x=true, bool y=false);
#endif
// Translate by dx, dy:
//!ex:
//!code: | 1 0 dx |
//!code: matrix' = | 0 1 dy | x matrix
//!code: | 0 0 1 |
bool Translate(double x, double y);
// Rotate clockwise by the given number of degrees:
//!ex:
//!code: | cos sin 0 |
//!code: matrix' = | -sin cos 0 | x matrix
//!code: | 0 0 1 |
bool Rotate(double angle);
//Rotate counter clockwise with point of rotation
//
//!ex:
//!code: | cos(r) -sin(r) x(1-cos(r))+y(sin(r)|
//!code: matrix' = | sin(r) cos(r) y(1-cos(r))-x(sin(r)| x matrix
//!code: | 0 0 1 |
wxTransformMatrix& Rotate(const double &r, const double &x, const double &y);
// Transform X value from logical to device
inline double TransformX(double x) const;
// Transform Y value from logical to device
inline double TransformY(double y) const;
// Transform a point from logical to device coordinates
bool TransformPoint(double x, double y, double& tx, double& ty) const;
// Transform a point from device to logical coordinates.
// Example of use:
// wxTransformMatrix mat = dc.GetTransformation();
// mat.Invert();
// mat.InverseTransformPoint(x, y, x1, y1);
// OR (shorthand:)
// dc.LogicalToDevice(x, y, x1, y1);
// The latter is slightly less efficient if we're doing several
// conversions, since the matrix is inverted several times.
// N.B. 'this' matrix is the inverse at this point
bool InverseTransformPoint(double x, double y, double& tx, double& ty) const;
double Get_scaleX();
double Get_scaleY();
double GetRotation();
void SetRotation(double rotation);
public:
double m_matrix[3][3];
bool m_isIdentity;
};
/*
Chris Breeze reported, that
some functions of wxTransformMatrix cannot work because it is not
known if he matrix has been inverted. Be careful when using it.
*/
// Transform X value from logical to device
// warning: this function can only be used for this purpose
// because no rotation is involved when mapping logical to device coordinates
// mirror and scaling for x and y will be part of the matrix
// if you have a matrix that is rotated, eg a shape containing a matrix to place
// it in the logical coordinate system, use TransformPoint
inline double wxTransformMatrix::TransformX(double x) const
{
//normally like this, but since no rotation is involved (only mirror and scale)
//we can do without Y -> m_matrix[1]{0] is -sin(rotation angle) and therefore zero
//(x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]))
return (m_isIdentity ? x : (x * m_matrix[0][0] + m_matrix[2][0]));
}
// Transform Y value from logical to device
// warning: this function can only be used for this purpose
// because no rotation is involved when mapping logical to device coordinates
// mirror and scaling for x and y will be part of the matrix
// if you have a matrix that is rotated, eg a shape containing a matrix to place
// it in the logical coordinate system, use TransformPoint
inline double wxTransformMatrix::TransformY(double y) const
{
//normally like this, but since no rotation is involved (only mirror and scale)
//we can do without X -> m_matrix[0]{1] is sin(rotation angle) and therefore zero
//(x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]))
return (m_isIdentity ? y : (y * m_matrix[1][1] + m_matrix[2][1]));
}
// Is the matrix the identity matrix?
// Each operation checks whether the result is still the identity matrix and sets a flag.
inline bool wxTransformMatrix::IsIdentity1(void) const
{
return
(m_matrix[0][0] == 1.0 &&
m_matrix[1][1] == 1.0 &&
m_matrix[2][2] == 1.0 &&
m_matrix[1][0] == 0.0 &&
m_matrix[2][0] == 0.0 &&
m_matrix[0][1] == 0.0 &&
m_matrix[2][1] == 0.0 &&
m_matrix[0][2] == 0.0 &&
m_matrix[1][2] == 0.0) ;
}
// Calculates the determinant of a 2 x 2 matrix
inline double wxCalculateDet(double a11, double a21, double a12, double a22)
{
return a11 * a22 - a12 * a21;
}
#endif
// _WX_MATRIXH__