because by definition srcSize is not known when using this prototype.
added relevant test
Note : this use was already working, because at a later stage
(both ZSTD_compressBegin_usingCDict() and ZSTD_copyCCtx())
pledgedSrcSize=0 is translated into "unknown", no matter the frame parameter.
This is not correct, but of little importance,
as the medium term plan is to no longer set fParams within CDict
This is now the regroup point for ZSTD_initCStream*() functions
ZSTD_initCStream_advanced() now properly checks for parameters validity.
Also : added <assert.h> usage inside zstd_compress.c
Needs ZSTD_DEBUG=1 macro to be triggered.
Will be triggered by default from `tests` directory
does no longer allocate temporary buffers
when there is enough room in dstBuffer to decompress directly there.
(previous method would skip that for 1st chunk only).
Also : fix ZSTD_compressBound() for small srcSize
required so that if Total = A+B
compressBound(Total) <= compressBound(A) + compressBound(B)
under condition of a minimum size for A and B
Will help for ZSTDMT_compress() memory allocation
Method 1 __packed is always as good or better than memcpy().
But it's not portable, as it depends on compiler extension.
For gcc, __pakced directive works fine.
Furthermore, gcc has serious performance issues with memcpy() on ARM 32 bits.
See #620
now works with the `=` variant, which is the recommended one.
Old variant `--dictID #` still works, for compatibility with existing scripts.
Long term objective is to remove the old variant..
forgot to add the dictionary content
(tests were not failing, just compressing less).
Also : added size protections when adding dict content
since hc/bt table filling would fail if size < 8
The compressor always reuses the existing Huffman table if the literals
size is at most 1 KiB. If the compression strategy is `ZSTD_lazy` or
stronger always check to see if reusing the previous table or creating
a new table is better.
This doesn't yet weigh in decompression speed. I don't want to add any
heuristics there until I have real data to work with to ensure that the
heuristic works for at least one use case, preferably more.
This decoder variant is detrimental to x86 architecture
likely due to register pressure.
Note that the variant is disabled for all 32-bits targets.
It's unclear if it would help for different architectures,
such as ARM, MIPS or PowerPC.
* Compressor saves most recently used Huffman table and reuses it
if it produces better results.
* I attempted to preserve CPU usage profile.
I intentionally left all of the existing heuristics in place.
There is only a speed difference on the second block and later.
When compressing large enough blocks (say >= 4 KiB) there is
no significant difference in compression speed.
Dictionary compression of one block is the same speed for blocks
with literals <= 1 KiB, and after that the difference is not
very significant.
* In the synthetic data, with blocks 10 KB or smaller, most blocks
can't use repeated tables because the previous block did not
contain a symbol that the current block contains.
Once blocks are about 12 KB or more, most previous blocks have
valid Huffman tables for the current block, and the compression
ratio and decompression speed jumped.
* In silesia blocks as small as 4KB can frequently reuse the
previous Huffman table (85%), but it isn't as profitable, and
the previous Huffman table only gets used about 3% of the time.
* Microbenchmarks show that `HUF_validateCTable()` takes ~55 ns
and `HUF_estimateCompressedSize()` takes ~35 ns.
They are decently well optimized, the first versions took 90 ns
and 120 ns respectively. `HUF_validateCTable()` could be twice as
fast, if we cast the `HUF_CElt*` to a `U32*` and compare to 0.
However, `U32` has an alignment of 4 instead of 2, so I think that
might be undefined behavior.
* I've ran `zstreamtest` compiled normally, with UASAN and with MSAN
for 4 hours each.
The worst case for the speed difference is a bunch of small blocks
in the same frame. I modified `bench.c` to compress the input in a
single frame but with blocks of the given block size, set by `-B`.
Benchmarks on level 1:
| Program | Block size | Corpus | Ratio | Compression MB/s | Decompression MB/s |
|-----------|------------|-----------|-------|------------------|--------------------|
| zstd.base | 256 | synthetic | 2.364 | 110.0 | 297.0 |
| zstd | 256 | synthetic | 2.367 | 108.9 | 297.0 |
| zstd.base | 256 | silesia | 2.204 | 93.8 | 415.7 |
| zstd | 256 | silesia | 2.204 | 93.4 | 415.7 |
| zstd.base | 512 | synthetic | 2.594 | 144.2 | 420.0 |
| zstd | 512 | synthetic | 2.599 | 141.5 | 425.7 |
| zstd.base | 512 | silesia | 2.358 | 118.4 | 432.6 |
| zstd | 512 | silesia | 2.358 | 119.8 | 432.6 |
| zstd.base | 1024 | synthetic | 2.790 | 192.3 | 594.1 |
| zstd | 1024 | synthetic | 2.794 | 192.3 | 600.0 |
| zstd.base | 1024 | silesia | 2.524 | 148.2 | 464.2 |
| zstd | 1024 | silesia | 2.525 | 148.2 | 467.6 |
| zstd.base | 4096 | synthetic | 3.023 | 300.0 | 1000.0 |
| zstd | 4096 | synthetic | 3.024 | 300.0 | 1010.1 |
| zstd.base | 4096 | silesia | 2.779 | 223.1 | 623.5 |
| zstd | 4096 | silesia | 2.779 | 223.1 | 636.0 |
| zstd.base | 16384 | synthetic | 3.131 | 350.0 | 1150.1 |
| zstd | 16384 | synthetic | 3.152 | 350.0 | 1630.3 |
| zstd.base | 16384 | silesia | 2.871 | 296.5 | 883.3 |
| zstd | 16384 | silesia | 2.872 | 294.4 | 898.3 |