Setting `loadedDictEnd` was accidently removed from `ZSTD_loadDictionaryContent()`,
which means that dictionary compression will only be able to reference the parts of
the dictionary within the window. The spec allows us to reference the entire
dictionary so long as even one byte is in the window.
`ZSTD_enforceMaxDist()` incorrectly always allowed offsets up to `loadedDictEnd`
beyond the window, even once the dictionary was out of range.
When overflow protection kicked in, the check `current > loadedDictEnd + maxDist`
is incorrect if `loadedDictEnd` isn't reset back to zero. `current` could be reset
below the value, which would incorrectly allow references beyond the window. This
bug is present in `master`, but is very hard to trigger, since it requires both
dictionaries and data which triggers overflow correction.
* Expose the reference external sequences API for zstdmt.
Allows external sequences of any length, which get split when necessary.
* Reset the LDM window when the context is reset.
* Store the maximum number of LDM sequences.
* Sequence generation now returns the number of last literals.
* Fix sequence generation to not throw out the last literals when blocks of
more than 1 MB are encountered.
The overflow protection is broken when the window log is `> (3U << 29)`, so 31.
It doesn't work when `current` isn't around `1U << windowLog` ahead of `lowLimit`,
and the the assertion `current > newCurrent` fails. This happens when the same
context is used many times over, but with a large window log, like in zstdmt.
Fix it by triggering correction based on `nextSrc - base` instead of `lowLimit`.
The added test fails before the patch, and passes after.
* Replaced a non-breaking space and an en dash with a plain space and
a hyphen.
* This means the files are simple ASCII and less likely to run into
codepage issues.
- do not test level 0, as it is converted into level 3,
which feels strange when compressing multiple levels
- Use direct synchronous mode when a single worker is requested.
access negative compression levels from command line
for both compression and benchmark modes.
also : ensure proper propagation of parameters
through ZSTD_compress_generic() interface.
added relevant cli tests.
negative compression level trade compression ratio for more compression speed.
They turn off huffman compression of literals,
and use row 0 as baseline with a stepSize = -cLevel.
added associated test in fuzzer
also added : new advanced parameter ZSTD_p_literalCompression
zstd bench module can focus on decompression speed _only_.
This is useful when trying to measure performance
on large input data compressed using a high level
as compression time becomes problematic (too long).
This mode is triggered by command : zstd -b -d
Problem was : in such a mode,
measured decoding speed was > 10% slower
than in nominal mode (compression + decompression),
making decompression benchmark mode much less useful.
This patch fixes the issue.
It's not completely clear why, but
moving the `memcpy()` operation sooner in the pipeline fixed it.
I can still measure some difference, but it is in the < 2% range,
so it's much more tolerable.
also : it doesn't matter anymore in which order are selected
commands `-b` and `-d`.
The combination always triggers bench_decodeOnly mode.