AuroraOpenALSoft/Alc/ALu.c

1265 lines
42 KiB
C
Raw Normal View History

2007-11-14 02:02:18 +00:00
/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
2007-11-14 02:02:18 +00:00
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
2009-02-02 19:18:33 +00:00
#include <assert.h>
2007-11-14 02:02:18 +00:00
#include "alMain.h"
#include "alSource.h"
#include "alBuffer.h"
#include "alListener.h"
#include "alAuxEffectSlot.h"
#include "alu.h"
#include "bs2b.h"
#include "hrtf.h"
#include "static_assert.h"
2007-11-14 02:02:18 +00:00
#include "mixer_defs.h"
#include "backends/base.h"
#include "midi/base.h"
static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
"MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
struct ChanMap {
enum Channel channel;
ALfloat angle;
ALfloat elevation;
};
/* Cone scalar */
2012-08-11 13:20:24 +00:00
ALfloat ConeScale = 1.0f;
/* Localized Z scalar for mono sources */
ALfloat ZScale = 1.0f;
2013-11-04 21:44:46 +00:00
extern inline ALfloat minf(ALfloat a, ALfloat b);
extern inline ALfloat maxf(ALfloat a, ALfloat b);
extern inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max);
2013-11-27 08:30:13 +00:00
extern inline ALdouble mind(ALdouble a, ALdouble b);
extern inline ALdouble maxd(ALdouble a, ALdouble b);
extern inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max);
2013-11-04 21:44:46 +00:00
extern inline ALuint minu(ALuint a, ALuint b);
extern inline ALuint maxu(ALuint a, ALuint b);
extern inline ALuint clampu(ALuint val, ALuint min, ALuint max);
extern inline ALint mini(ALint a, ALint b);
extern inline ALint maxi(ALint a, ALint b);
extern inline ALint clampi(ALint val, ALint min, ALint max);
extern inline ALint64 mini64(ALint64 a, ALint64 b);
extern inline ALint64 maxi64(ALint64 a, ALint64 b);
extern inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max);
extern inline ALuint64 minu64(ALuint64 a, ALuint64 b);
extern inline ALuint64 maxu64(ALuint64 a, ALuint64 b);
extern inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max);
extern inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu);
extern inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu);
static inline HrtfMixerFunc SelectHrtfMixer(void)
{
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixHrtf_SSE;
#endif
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixHrtf_Neon;
#endif
return MixHrtf_C;
}
2013-05-29 05:27:07 +00:00
static inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
{
outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
}
2013-05-29 05:27:07 +00:00
static inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
{
return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
inVector1[2]*inVector2[2];
}
2013-05-29 05:27:07 +00:00
static inline void aluNormalize(ALfloat *inVector)
{
ALfloat lengthsqr = aluDotproduct(inVector, inVector);
if(lengthsqr > 0.0f)
{
ALfloat inv_length = 1.0f/sqrtf(lengthsqr);
inVector[0] *= inv_length;
inVector[1] *= inv_length;
inVector[2] *= inv_length;
}
}
2013-05-29 05:27:07 +00:00
static inline ALvoid aluMatrixVector(ALfloat *vector, ALfloat w, ALfloat (*restrict matrix)[4])
2007-11-14 02:02:18 +00:00
{
ALfloat temp[4] = {
vector[0], vector[1], vector[2], w
};
2007-11-14 02:02:18 +00:00
vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
2007-11-14 02:02:18 +00:00
}
static void UpdateDryStepping(DirectParams *params, ALuint num_chans)
{
ALuint i, j;
if(!params->Moving)
{
for(i = 0;i < num_chans;i++)
{
2014-11-22 20:58:54 +00:00
MixGains *gains = params->Gains[i];
for(j = 0;j < params->OutChannels;j++)
{
gains[j].Current = gains[j].Target;
gains[j].Step = 1.0f;
}
}
params->Moving = AL_TRUE;
params->Counter = 0;
return;
}
for(i = 0;i < num_chans;i++)
{
2014-11-22 20:58:54 +00:00
MixGains *gains = params->Gains[i];
for(j = 0;j < params->OutChannels;j++)
{
ALfloat cur = maxf(gains[j].Current, FLT_EPSILON);
ALfloat trg = maxf(gains[j].Target, FLT_EPSILON);
if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
gains[j].Step = powf(trg/cur, 1.0f/64.0f);
else
gains[j].Step = 1.0f;
gains[j].Current = cur;
}
}
params->Counter = 64;
}
static void UpdateWetStepping(SendParams *params)
{
ALfloat cur, trg;
if(!params->Moving)
{
params->Gain.Current = params->Gain.Target;
params->Gain.Step = 1.0f;
params->Moving = AL_TRUE;
params->Counter = 0;
return;
}
cur = maxf(params->Gain.Current, FLT_EPSILON);
trg = maxf(params->Gain.Target, FLT_EPSILON);
if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
params->Gain.Step = powf(trg/cur, 1.0f/64.0f);
else
params->Gain.Step = 1.0f;
params->Gain.Current = cur;
params->Counter = 64;
}
static ALvoid CalcListenerParams(ALlistener *Listener)
{
ALfloat N[3], V[3], U[3], P[3];
/* AT then UP */
N[0] = Listener->Forward[0];
N[1] = Listener->Forward[1];
N[2] = Listener->Forward[2];
aluNormalize(N);
V[0] = Listener->Up[0];
V[1] = Listener->Up[1];
2012-10-13 06:35:00 +00:00
V[2] = Listener->Up[2];
aluNormalize(V);
/* Build and normalize right-vector */
aluCrossproduct(N, V, U);
aluNormalize(U);
Listener->Params.Matrix[0][0] = U[0];
Listener->Params.Matrix[0][1] = V[0];
Listener->Params.Matrix[0][2] = -N[0];
Listener->Params.Matrix[0][3] = 0.0f;
Listener->Params.Matrix[1][0] = U[1];
Listener->Params.Matrix[1][1] = V[1];
Listener->Params.Matrix[1][2] = -N[1];
Listener->Params.Matrix[1][3] = 0.0f;
Listener->Params.Matrix[2][0] = U[2];
Listener->Params.Matrix[2][1] = V[2];
Listener->Params.Matrix[2][2] = -N[2];
Listener->Params.Matrix[2][3] = 0.0f;
Listener->Params.Matrix[3][0] = 0.0f;
Listener->Params.Matrix[3][1] = 0.0f;
Listener->Params.Matrix[3][2] = 0.0f;
Listener->Params.Matrix[3][3] = 1.0f;
P[0] = Listener->Position[0];
P[1] = Listener->Position[1];
P[2] = Listener->Position[2];
aluMatrixVector(P, 1.0f, Listener->Params.Matrix);
Listener->Params.Matrix[3][0] = -P[0];
Listener->Params.Matrix[3][1] = -P[1];
Listener->Params.Matrix[3][2] = -P[2];
Listener->Params.Velocity[0] = Listener->Velocity[0];
Listener->Params.Velocity[1] = Listener->Velocity[1];
Listener->Params.Velocity[2] = Listener->Velocity[2];
aluMatrixVector(Listener->Params.Velocity, 0.0f, Listener->Params.Matrix);
}
2014-08-21 10:24:48 +00:00
ALvoid CalcNonAttnSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
{
static const struct ChanMap MonoMap[1] = { { FrontCenter, 0.0f, 0.0f } };
2012-02-10 07:52:20 +00:00
static const struct ChanMap StereoMap[2] = {
{ FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
{ FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) }
2012-02-10 07:52:20 +00:00
};
static const struct ChanMap StereoWideMap[2] = {
{ FrontLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
{ FrontRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
};
2012-02-10 07:52:20 +00:00
static const struct ChanMap RearMap[2] = {
{ BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
{ BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) }
2012-02-10 07:52:20 +00:00
};
static const struct ChanMap QuadMap[4] = {
{ FrontLeft, DEG2RAD( -45.0f), DEG2RAD(0.0f) },
{ FrontRight, DEG2RAD( 45.0f), DEG2RAD(0.0f) },
{ BackLeft, DEG2RAD(-135.0f), DEG2RAD(0.0f) },
{ BackRight, DEG2RAD( 135.0f), DEG2RAD(0.0f) }
2012-02-10 07:52:20 +00:00
};
static const struct ChanMap X51Map[6] = {
{ FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
{ FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
{ FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
{ LFE, 0.0f, 0.0f },
{ SideLeft, DEG2RAD(-110.0f), DEG2RAD(0.0f) },
{ SideRight, DEG2RAD( 110.0f), DEG2RAD(0.0f) }
2012-02-10 07:52:20 +00:00
};
static const struct ChanMap X61Map[7] = {
{ FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
{ FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
{ FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
{ LFE, 0.0f, 0.0f },
{ BackCenter, DEG2RAD(180.0f), DEG2RAD(0.0f) },
{ SideLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
{ SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
2012-02-10 07:52:20 +00:00
};
static const struct ChanMap X71Map[8] = {
{ FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
{ FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
{ FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
{ LFE, 0.0f, 0.0f },
{ BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
{ BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) },
{ SideLeft, DEG2RAD( -90.0f), DEG2RAD(0.0f) },
{ SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
2012-02-10 07:52:20 +00:00
};
ALCdevice *Device = ALContext->Device;
ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
ALbufferlistitem *BufferListItem;
2010-11-27 08:15:07 +00:00
enum FmtChannels Channels;
ALfloat DryGain, DryGainHF, DryGainLF;
ALfloat WetGain[MAX_SENDS];
ALfloat WetGainHF[MAX_SENDS];
ALfloat WetGainLF[MAX_SENDS];
ALuint NumSends, Frequency;
ALboolean Relative;
const struct ChanMap *chans = NULL;
ALuint num_channels = 0;
ALboolean DirectChannels;
ALboolean isbformat = AL_FALSE;
ALfloat Pitch;
ALuint i, j, c;
2010-11-27 02:01:29 +00:00
/* Get device properties */
2011-10-12 05:30:58 +00:00
NumSends = Device->NumAuxSends;
Frequency = Device->Frequency;
2010-11-27 02:01:29 +00:00
/* Get listener properties */
ListenerGain = ALContext->Listener->Gain;
2010-11-27 02:01:29 +00:00
/* Get source properties */
2012-04-20 04:46:29 +00:00
SourceVolume = ALSource->Gain;
MinVolume = ALSource->MinGain;
MaxVolume = ALSource->MaxGain;
Pitch = ALSource->Pitch;
Relative = ALSource->HeadRelative;
DirectChannels = ALSource->DirectChannels;
2014-08-21 10:24:48 +00:00
voice->Direct.OutBuffer = Device->DryBuffer;
voice->Direct.OutChannels = Device->NumChannels;
for(i = 0;i < NumSends;i++)
{
ALeffectslot *Slot = ALSource->Send[i].Slot;
if(!Slot && i == 0)
Slot = Device->DefaultSlot;
if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
2014-08-21 10:24:48 +00:00
voice->Send[i].OutBuffer = NULL;
else
2014-08-21 10:24:48 +00:00
voice->Send[i].OutBuffer = Slot->WetBuffer;
}
2010-11-27 02:01:29 +00:00
/* Calculate the stepping value */
2010-11-27 08:15:07 +00:00
Channels = FmtMono;
BufferListItem = ATOMIC_LOAD(&ALSource->queue);
while(BufferListItem != NULL)
{
ALbuffer *ALBuffer;
if((ALBuffer=BufferListItem->buffer) != NULL)
{
2010-11-28 21:08:51 +00:00
Pitch = Pitch * ALBuffer->Frequency / Frequency;
if(Pitch > (ALfloat)MAX_PITCH)
2014-08-21 10:24:48 +00:00
voice->Step = MAX_PITCH<<FRACTIONBITS;
2010-11-27 01:47:43 +00:00
else
{
2014-08-21 10:24:48 +00:00
voice->Step = fastf2i(Pitch*FRACTIONONE);
if(voice->Step == 0)
voice->Step = 1;
2010-11-27 01:47:43 +00:00
}
2010-11-27 08:15:07 +00:00
Channels = ALBuffer->FmtChannels;
break;
}
BufferListItem = BufferListItem->next;
}
2010-11-27 02:01:29 +00:00
/* Calculate gains */
DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
DryGain *= ALSource->Direct.Gain * ListenerGain;
DryGainHF = ALSource->Direct.GainHF;
DryGainLF = ALSource->Direct.GainLF;
for(i = 0;i < NumSends;i++)
{
WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
2012-04-27 07:45:42 +00:00
WetGainHF[i] = ALSource->Send[i].GainHF;
WetGainLF[i] = ALSource->Send[i].GainLF;
}
switch(Channels)
{
case FmtMono:
chans = MonoMap;
2011-05-15 09:12:42 +00:00
num_channels = 1;
break;
case FmtStereo:
/* HACK: Place the stereo channels at +/-90 degrees when using non-
* HRTF stereo output. This helps reduce the "monoization" caused
* by them panning towards the center. */
if(Device->FmtChans == DevFmtStereo && !Device->Hrtf)
chans = StereoWideMap;
else
chans = StereoMap;
num_channels = 2;
break;
case FmtRear:
chans = RearMap;
2011-05-15 09:12:42 +00:00
num_channels = 2;
break;
case FmtQuad:
chans = QuadMap;
2011-05-15 09:12:42 +00:00
num_channels = 4;
break;
case FmtX51:
chans = X51Map;
2011-05-15 09:12:42 +00:00
num_channels = 6;
break;
case FmtX61:
chans = X61Map;
2011-05-15 09:12:42 +00:00
num_channels = 7;
break;
case FmtX71:
chans = X71Map;
2011-05-15 09:12:42 +00:00
num_channels = 8;
break;
case FmtBFormat2D:
num_channels = 3;
isbformat = AL_TRUE;
DirectChannels = AL_FALSE;
2014-11-02 10:30:45 +00:00
break;
case FmtBFormat3D:
num_channels = 4;
isbformat = AL_TRUE;
DirectChannels = AL_FALSE;
2014-11-02 10:30:45 +00:00
break;
2011-05-15 09:12:42 +00:00
}
if(isbformat)
{
ALfloat N[3], V[3], U[3];
ALfloat matrix[4][4];
/* AT then UP */
N[0] = ALSource->Orientation[0][0];
N[1] = ALSource->Orientation[0][1];
N[2] = ALSource->Orientation[0][2];
aluNormalize(N);
V[0] = ALSource->Orientation[1][0];
V[1] = ALSource->Orientation[1][1];
V[2] = ALSource->Orientation[1][2];
aluNormalize(V);
if(!Relative)
{
ALfloat (*restrict lmatrix)[4] = ALContext->Listener->Params.Matrix;
aluMatrixVector(N, 0.0f, lmatrix);
aluMatrixVector(V, 0.0f, lmatrix);
}
/* Build and normalize right-vector */
aluCrossproduct(N, V, U);
aluNormalize(U);
matrix[0][0] = 1.0f;
matrix[0][1] = 0.0f;
matrix[0][2] = 0.0f;
matrix[0][3] = 0.0f;
matrix[1][0] = 0.0f;
matrix[1][1] = -N[2];
matrix[1][2] = -N[0];
matrix[1][3] = N[1];
matrix[2][0] = 0.0f;
matrix[2][1] = U[2];
matrix[2][2] = U[0];
matrix[2][3] = -U[1];
matrix[3][0] = 0.0f;
matrix[3][1] = -V[2];
matrix[3][2] = -V[0];
matrix[3][3] = V[1];
for(c = 0;c < num_channels;c++)
{
2014-11-22 20:58:54 +00:00
MixGains *gains = voice->Direct.Gains[c];
ALfloat Target[MAX_OUTPUT_CHANNELS];
ComputeBFormatGains(Device, matrix[c], DryGain, Target);
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
gains[i].Target = Target[i];
}
/* B-Format cannot handle logarithmic gain stepping, since the gain can
* switch between positive and negative values. */
voice->Direct.Moving = AL_FALSE;
UpdateDryStepping(&voice->Direct, num_channels);
voice->IsHrtf = AL_FALSE;
for(i = 0;i < NumSends;i++)
WetGain[i] *= 1.4142f;
}
else if(DirectChannels != AL_FALSE)
{
if(Device->Hrtf)
{
voice->Direct.OutBuffer = &voice->Direct.OutBuffer[voice->Direct.OutChannels];
voice->Direct.OutChannels = 2;
for(c = 0;c < num_channels;c++)
{
MixGains *gains = voice->Direct.Gains[c];
for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
gains[j].Target = 0.0f;
if(chans[c].channel == FrontLeft)
gains[0].Target = DryGain;
else if(chans[c].channel == FrontRight)
gains[1].Target = DryGain;
}
}
else for(c = 0;c < num_channels;c++)
{
2014-11-22 20:58:54 +00:00
MixGains *gains = voice->Direct.Gains[c];
int idx;
for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
2014-06-13 18:42:04 +00:00
gains[j].Target = 0.0f;
if((idx=GetChannelIdxByName(Device, chans[c].channel)) != -1)
gains[idx].Target = DryGain;
}
UpdateDryStepping(&voice->Direct, num_channels);
2014-08-21 10:24:48 +00:00
voice->IsHrtf = AL_FALSE;
}
else
{
for(c = 0;c < num_channels;c++)
{
2014-11-22 20:58:54 +00:00
MixGains *gains = voice->Direct.Gains[c];
ALfloat Target[MAX_OUTPUT_CHANNELS];
2014-06-13 18:42:04 +00:00
2012-04-26 07:59:17 +00:00
/* Special-case LFE */
if(chans[c].channel == LFE)
{
int idx;
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
gains[i].Target = 0.0f;
if((idx=GetChannelIdxByName(Device, chans[c].channel)) != -1)
gains[idx].Target = DryGain;
continue;
}
ComputeAngleGains(Device, chans[c].angle, chans[c].elevation, DryGain, Target);
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
2014-06-13 18:42:04 +00:00
gains[i].Target = Target[i];
}
UpdateDryStepping(&voice->Direct, num_channels);
2014-08-21 10:24:48 +00:00
voice->IsHrtf = AL_FALSE;
}
for(i = 0;i < NumSends;i++)
2014-03-23 23:11:21 +00:00
{
2014-08-21 10:24:48 +00:00
voice->Send[i].Gain.Target = WetGain[i];
UpdateWetStepping(&voice->Send[i]);
2014-03-23 23:11:21 +00:00
}
{
ALfloat gainhf = maxf(0.01f, DryGainHF);
ALfloat gainlf = maxf(0.01f, DryGainLF);
ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
for(c = 0;c < num_channels;c++)
{
2014-08-21 10:24:48 +00:00
voice->Direct.Filters[c].ActiveType = AF_None;
if(gainhf != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_LowPass;
if(gainlf != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_HighPass;
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Direct.Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
hfscale, 0.0f
);
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Direct.Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
lfscale, 0.0f
);
}
}
for(i = 0;i < NumSends;i++)
{
ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
for(c = 0;c < num_channels;c++)
{
2014-08-21 10:24:48 +00:00
voice->Send[i].Filters[c].ActiveType = AF_None;
if(gainhf != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_LowPass;
if(gainlf != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_HighPass;
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Send[i].Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
hfscale, 0.0f
);
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Send[i].Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
lfscale, 0.0f
);
}
}
}
2014-08-21 10:24:48 +00:00
ALvoid CalcSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
2007-11-14 02:02:18 +00:00
{
ALCdevice *Device = ALContext->Device;
ALfloat Velocity[3],Direction[3],Position[3],SourceToListener[3];
ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
2011-05-06 09:53:22 +00:00
ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
2009-04-13 09:50:40 +00:00
ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
ALfloat DopplerFactor, SpeedOfSound;
2010-09-12 07:10:33 +00:00
ALfloat AirAbsorptionFactor;
ALfloat RoomAirAbsorption[MAX_SENDS];
ALbufferlistitem *BufferListItem;
ALfloat Attenuation;
2009-04-12 03:04:46 +00:00
ALfloat RoomAttenuation[MAX_SENDS];
ALfloat MetersPerUnit;
ALfloat RoomRolloffBase;
2009-04-12 03:04:46 +00:00
ALfloat RoomRolloff[MAX_SENDS];
ALfloat DecayDistance[MAX_SENDS];
ALfloat DryGain;
ALfloat DryGainHF;
ALfloat DryGainLF;
ALboolean DryGainHFAuto;
ALfloat WetGain[MAX_SENDS];
ALfloat WetGainHF[MAX_SENDS];
ALfloat WetGainLF[MAX_SENDS];
ALboolean WetGainAuto;
ALboolean WetGainHFAuto;
ALfloat Pitch;
ALuint Frequency;
ALint NumSends;
ALint i, j;
2007-11-14 02:02:18 +00:00
DryGainHF = 1.0f;
DryGainLF = 1.0f;
for(i = 0;i < MAX_SENDS;i++)
{
WetGainHF[i] = 1.0f;
WetGainLF[i] = 1.0f;
}
2012-04-26 07:59:17 +00:00
/* Get context/device properties */
DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
SpeedOfSound = ALContext->SpeedOfSound * ALContext->DopplerVelocity;
NumSends = Device->NumAuxSends;
Frequency = Device->Frequency;
2007-11-14 02:02:18 +00:00
2012-04-26 07:59:17 +00:00
/* Get listener properties */
ListenerGain = ALContext->Listener->Gain;
MetersPerUnit = ALContext->Listener->MetersPerUnit;
2007-11-14 02:02:18 +00:00
2012-04-26 07:59:17 +00:00
/* Get source properties */
2012-04-20 04:46:29 +00:00
SourceVolume = ALSource->Gain;
MinVolume = ALSource->MinGain;
MaxVolume = ALSource->MaxGain;
Pitch = ALSource->Pitch;
Position[0] = ALSource->Position[0];
Position[1] = ALSource->Position[1];
Position[2] = ALSource->Position[2];
Direction[0] = ALSource->Direction[0];
Direction[1] = ALSource->Direction[1];
Direction[2] = ALSource->Direction[2];
2012-04-20 04:46:29 +00:00
Velocity[0] = ALSource->Velocity[0];
Velocity[1] = ALSource->Velocity[1];
Velocity[2] = ALSource->Velocity[2];
MinDist = ALSource->RefDistance;
MaxDist = ALSource->MaxDistance;
Rolloff = ALSource->RollOffFactor;
2012-08-11 13:20:24 +00:00
InnerAngle = ALSource->InnerAngle;
OuterAngle = ALSource->OuterAngle;
AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
2011-09-11 08:18:57 +00:00
DryGainHFAuto = ALSource->DryGainHFAuto;
WetGainAuto = ALSource->WetGainAuto;
WetGainHFAuto = ALSource->WetGainHFAuto;
RoomRolloffBase = ALSource->RoomRolloffFactor;
2014-08-21 10:24:48 +00:00
voice->Direct.OutBuffer = Device->DryBuffer;
voice->Direct.OutChannels = Device->NumChannels;
for(i = 0;i < NumSends;i++)
{
ALeffectslot *Slot = ALSource->Send[i].Slot;
if(!Slot && i == 0)
Slot = Device->DefaultSlot;
if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
{
Slot = NULL;
RoomRolloff[i] = 0.0f;
DecayDistance[i] = 0.0f;
2011-07-12 05:07:37 +00:00
RoomAirAbsorption[i] = 1.0f;
}
else if(Slot->AuxSendAuto)
{
RoomRolloff[i] = RoomRolloffBase;
if(IsReverbEffect(Slot->EffectType))
{
RoomRolloff[i] += Slot->EffectProps.Reverb.RoomRolloffFactor;
DecayDistance[i] = Slot->EffectProps.Reverb.DecayTime *
SPEEDOFSOUNDMETRESPERSEC;
RoomAirAbsorption[i] = Slot->EffectProps.Reverb.AirAbsorptionGainHF;
}
else
{
DecayDistance[i] = 0.0f;
2011-07-12 05:07:37 +00:00
RoomAirAbsorption[i] = 1.0f;
}
}
else
{
/* If the slot's auxiliary send auto is off, the data sent to the
* effect slot is the same as the dry path, sans filter effects */
RoomRolloff[i] = Rolloff;
DecayDistance[i] = 0.0f;
RoomAirAbsorption[i] = AIRABSORBGAINHF;
}
if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
2014-08-21 10:24:48 +00:00
voice->Send[i].OutBuffer = NULL;
else
2014-08-21 10:24:48 +00:00
voice->Send[i].OutBuffer = Slot->WetBuffer;
}
2007-11-14 02:02:18 +00:00
2012-04-26 07:59:17 +00:00
/* Transform source to listener space (convert to head relative) */
2012-04-20 04:46:29 +00:00
if(ALSource->HeadRelative == AL_FALSE)
{
2013-05-22 22:11:39 +00:00
ALfloat (*restrict Matrix)[4] = ALContext->Listener->Params.Matrix;
2012-04-26 07:59:17 +00:00
/* Transform source vectors */
aluMatrixVector(Position, 1.0f, Matrix);
aluMatrixVector(Direction, 0.0f, Matrix);
aluMatrixVector(Velocity, 0.0f, Matrix);
}
else
2011-10-30 12:49:17 +00:00
{
const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
/* Offset the source velocity to be relative of the listener velocity */
Velocity[0] += ListenerVel[0];
Velocity[1] += ListenerVel[1];
Velocity[2] += ListenerVel[2];
2011-10-30 12:49:17 +00:00
}
SourceToListener[0] = -Position[0];
SourceToListener[1] = -Position[1];
SourceToListener[2] = -Position[2];
aluNormalize(SourceToListener);
aluNormalize(Direction);
2007-11-14 02:02:18 +00:00
2012-04-26 07:59:17 +00:00
/* Calculate distance attenuation */
Distance = sqrtf(aluDotproduct(Position, Position));
ClampedDist = Distance;
2010-10-10 11:00:50 +00:00
Attenuation = 1.0f;
for(i = 0;i < NumSends;i++)
RoomAttenuation[i] = 1.0f;
switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
ALContext->DistanceModel)
{
case InverseDistanceClamped:
ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
if(MaxDist < MinDist)
break;
2012-04-26 07:59:17 +00:00
/*fall-through*/
case InverseDistance:
if(MinDist > 0.0f)
{
if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
for(i = 0;i < NumSends;i++)
{
if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
}
}
break;
case LinearDistanceClamped:
ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
if(MaxDist < MinDist)
2007-11-14 02:02:18 +00:00
break;
2012-04-26 07:59:17 +00:00
/*fall-through*/
case LinearDistance:
if(MaxDist != MinDist)
{
Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
Attenuation = maxf(Attenuation, 0.0f);
for(i = 0;i < NumSends;i++)
{
RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
}
}
break;
2007-11-14 02:02:18 +00:00
case ExponentDistanceClamped:
ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
if(MaxDist < MinDist)
2007-11-14 02:02:18 +00:00
break;
2012-04-26 07:59:17 +00:00
/*fall-through*/
case ExponentDistance:
if(ClampedDist > 0.0f && MinDist > 0.0f)
{
Attenuation = powf(ClampedDist/MinDist, -Rolloff);
for(i = 0;i < NumSends;i++)
RoomAttenuation[i] = powf(ClampedDist/MinDist, -RoomRolloff[i]);
}
break;
2007-11-14 02:02:18 +00:00
case DisableDistance:
ClampedDist = MinDist;
break;
}
2009-04-12 03:27:55 +00:00
2012-04-26 07:59:17 +00:00
/* Source Gain + Attenuation */
2011-06-18 23:45:26 +00:00
DryGain = SourceVolume * Attenuation;
for(i = 0;i < NumSends;i++)
WetGain[i] = SourceVolume * RoomAttenuation[i];
2011-06-18 23:45:26 +00:00
2012-04-26 07:59:17 +00:00
/* Distance-based air absorption */
2012-03-18 15:09:59 +00:00
if(AirAbsorptionFactor > 0.0f && ClampedDist > MinDist)
{
2012-03-18 15:09:59 +00:00
ALfloat meters = maxf(ClampedDist-MinDist, 0.0f) * MetersPerUnit;
DryGainHF *= powf(AIRABSORBGAINHF, AirAbsorptionFactor*meters);
for(i = 0;i < NumSends;i++)
WetGainHF[i] *= powf(RoomAirAbsorption[i], AirAbsorptionFactor*meters);
}
2007-11-14 02:02:18 +00:00
if(WetGainAuto)
{
ALfloat ApparentDist = 1.0f/maxf(Attenuation, 0.00001f) - 1.0f;
/* Apply a decay-time transformation to the wet path, based on the
* attenuation of the dry path.
*
* Using the apparent distance, based on the distance attenuation, the
* initial decay of the reverb effect is calculated and applied to the
* wet path.
*/
for(i = 0;i < NumSends;i++)
{
if(DecayDistance[i] > 0.0f)
WetGain[i] *= powf(0.001f/*-60dB*/, ApparentDist/DecayDistance[i]);
}
}
/* Calculate directional soundcones */
Angle = RAD2DEG(acosf(aluDotproduct(Direction,SourceToListener)) * ConeScale) * 2.0f;
2012-04-26 07:59:17 +00:00
if(Angle > InnerAngle && Angle <= OuterAngle)
{
ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
2012-04-20 04:46:29 +00:00
ConeVolume = lerp(1.0f, ALSource->OuterGain, scale);
ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
}
else if(Angle > OuterAngle)
{
2012-04-20 04:46:29 +00:00
ConeVolume = ALSource->OuterGain;
2011-05-06 09:53:22 +00:00
ConeHF = ALSource->OuterGainHF;
}
else
{
ConeVolume = 1.0f;
ConeHF = 1.0f;
}
2008-01-16 05:57:50 +00:00
DryGain *= ConeVolume;
if(WetGainAuto)
{
for(i = 0;i < NumSends;i++)
WetGain[i] *= ConeVolume;
}
if(DryGainHFAuto)
DryGainHF *= ConeHF;
if(WetGainHFAuto)
{
for(i = 0;i < NumSends;i++)
2011-08-13 13:58:05 +00:00
WetGainHF[i] *= ConeHF;
}
2012-04-26 07:59:17 +00:00
/* Clamp to Min/Max Gain */
DryGain = clampf(DryGain, MinVolume, MaxVolume);
for(i = 0;i < NumSends;i++)
WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
2010-03-08 06:12:33 +00:00
2012-04-26 07:59:17 +00:00
/* Apply gain and frequency filters */
DryGain *= ALSource->Direct.Gain * ListenerGain;
DryGainHF *= ALSource->Direct.GainHF;
DryGainLF *= ALSource->Direct.GainLF;
for(i = 0;i < NumSends;i++)
{
2012-04-27 07:45:42 +00:00
WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
WetGainHF[i] *= ALSource->Send[i].GainHF;
WetGainLF[i] *= ALSource->Send[i].GainLF;
2007-11-14 02:02:18 +00:00
}
2012-04-26 07:59:17 +00:00
/* Calculate velocity-based doppler effect */
if(DopplerFactor > 0.0f)
{
const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
2010-10-10 11:00:50 +00:00
ALfloat VSS, VLS;
if(SpeedOfSound < 1.0f)
{
DopplerFactor *= 1.0f/SpeedOfSound;
SpeedOfSound = 1.0f;
}
VSS = aluDotproduct(Velocity, SourceToListener) * DopplerFactor;
VLS = aluDotproduct(ListenerVel, SourceToListener) * DopplerFactor;
Pitch *= clampf(SpeedOfSound-VLS, 1.0f, SpeedOfSound*2.0f - 1.0f) /
clampf(SpeedOfSound-VSS, 1.0f, SpeedOfSound*2.0f - 1.0f);
}
BufferListItem = ATOMIC_LOAD(&ALSource->queue);
while(BufferListItem != NULL)
{
ALbuffer *ALBuffer;
if((ALBuffer=BufferListItem->buffer) != NULL)
{
2012-04-26 07:59:17 +00:00
/* Calculate fixed-point stepping value, based on the pitch, buffer
* frequency, and output frequency. */
2010-11-28 21:08:51 +00:00
Pitch = Pitch * ALBuffer->Frequency / Frequency;
if(Pitch > (ALfloat)MAX_PITCH)
2014-08-21 10:24:48 +00:00
voice->Step = MAX_PITCH<<FRACTIONBITS;
2010-11-27 01:47:43 +00:00
else
{
2014-08-21 10:24:48 +00:00
voice->Step = fastf2i(Pitch*FRACTIONONE);
if(voice->Step == 0)
voice->Step = 1;
2010-11-27 01:47:43 +00:00
}
break;
}
BufferListItem = BufferListItem->next;
}
{
2014-11-22 20:58:54 +00:00
MixGains *gains = voice->Direct.Gains[0];
ALfloat radius = ALSource->Radius;
ALfloat Target[MAX_OUTPUT_CHANNELS];
2012-04-28 20:06:16 +00:00
/* Normalize the length, and compute panned gains. */
if(!(Distance > FLT_EPSILON) && !(radius > FLT_EPSILON))
{
const ALfloat front[3] = { 0.0f, 0.0f, -1.0f };
ComputeDirectionalGains(Device, front, DryGain, Target);
}
else
{
ALfloat invlen = 1.0f/maxf(Distance, radius);
Position[0] *= invlen;
Position[1] *= invlen;
Position[2] *= invlen;
ComputeDirectionalGains(Device, Position, DryGain, Target);
2012-04-28 20:06:16 +00:00
}
for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
gains[j].Target = Target[j];
UpdateDryStepping(&voice->Direct, 1);
2014-08-21 10:24:48 +00:00
voice->IsHrtf = AL_FALSE;
2007-11-14 02:02:18 +00:00
}
for(i = 0;i < NumSends;i++)
2014-03-23 23:11:21 +00:00
{
2014-08-21 10:24:48 +00:00
voice->Send[i].Gain.Target = WetGain[i];
UpdateWetStepping(&voice->Send[i]);
2014-03-23 23:11:21 +00:00
}
{
ALfloat gainhf = maxf(0.01f, DryGainHF);
ALfloat gainlf = maxf(0.01f, DryGainLF);
ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
2014-08-21 10:24:48 +00:00
voice->Direct.Filters[0].ActiveType = AF_None;
if(gainhf != 1.0f) voice->Direct.Filters[0].ActiveType |= AF_LowPass;
if(gainlf != 1.0f) voice->Direct.Filters[0].ActiveType |= AF_HighPass;
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Direct.Filters[0].LowPass, ALfilterType_HighShelf, gainhf,
hfscale, 0.0f
);
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Direct.Filters[0].HighPass, ALfilterType_LowShelf, gainlf,
lfscale, 0.0f
);
}
for(i = 0;i < NumSends;i++)
{
ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
2014-08-21 10:24:48 +00:00
voice->Send[i].Filters[0].ActiveType = AF_None;
if(gainhf != 1.0f) voice->Send[i].Filters[0].ActiveType |= AF_LowPass;
if(gainlf != 1.0f) voice->Send[i].Filters[0].ActiveType |= AF_HighPass;
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Send[i].Filters[0].LowPass, ALfilterType_HighShelf, gainhf,
hfscale, 0.0f
);
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Send[i].Filters[0].HighPass, ALfilterType_LowShelf, gainlf,
lfscale, 0.0f
);
}
2007-11-14 02:02:18 +00:00
}
2013-05-29 05:27:07 +00:00
static inline ALint aluF2I25(ALfloat val)
2010-11-21 10:51:18 +00:00
{
/* Clamp the value between -1 and +1. This handles that with only a single branch. */
if(fabsf(val) > 1.0f)
2013-03-22 18:21:21 +00:00
val = (ALfloat)((0.0f < val) - (val < 0.0f));
/* Convert to a signed integer, between -16777215 and +16777215. */
return fastf2i(val*16777215.0f);
2010-11-21 10:51:18 +00:00
}
2013-05-29 05:27:07 +00:00
static inline ALfloat aluF2F(ALfloat val)
{ return val; }
2013-05-29 05:27:07 +00:00
static inline ALint aluF2I(ALfloat val)
{ return aluF2I25(val)<<7; }
2013-05-29 05:27:07 +00:00
static inline ALuint aluF2UI(ALfloat val)
{ return aluF2I(val)+2147483648u; }
2013-05-29 05:27:07 +00:00
static inline ALshort aluF2S(ALfloat val)
{ return aluF2I25(val)>>9; }
2013-05-29 05:27:07 +00:00
static inline ALushort aluF2US(ALfloat val)
2011-08-17 09:33:25 +00:00
{ return aluF2S(val)+32768; }
2013-05-29 05:27:07 +00:00
static inline ALbyte aluF2B(ALfloat val)
{ return aluF2I25(val)>>17; }
2013-05-29 05:27:07 +00:00
static inline ALubyte aluF2UB(ALfloat val)
{ return aluF2B(val)+128; }
2010-11-21 10:51:18 +00:00
#define DECL_TEMPLATE(T, func) \
2014-11-08 00:00:07 +00:00
static void Write_##T(const ALfloatBUFFERSIZE *InBuffer, ALvoid *OutBuffer, \
ALuint SamplesToDo, ALuint numchans) \
{ \
ALuint i, j; \
for(j = 0;j < numchans;j++) \
{ \
2014-11-08 00:00:07 +00:00
const ALfloat *in = InBuffer[j]; \
T *restrict out = (T*)OutBuffer + j; \
2012-03-03 18:31:27 +00:00
for(i = 0;i < SamplesToDo;i++) \
2014-09-10 23:52:54 +00:00
out[i*numchans] = func(in[i]); \
} \
}
DECL_TEMPLATE(ALfloat, aluF2F)
DECL_TEMPLATE(ALuint, aluF2UI)
DECL_TEMPLATE(ALint, aluF2I)
DECL_TEMPLATE(ALushort, aluF2US)
DECL_TEMPLATE(ALshort, aluF2S)
DECL_TEMPLATE(ALubyte, aluF2UB)
DECL_TEMPLATE(ALbyte, aluF2B)
#undef DECL_TEMPLATE
2010-11-21 10:51:18 +00:00
ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
{
ALuint SamplesToDo;
ALeffectslot **slot, **slot_end;
2014-08-21 10:24:48 +00:00
ALvoice *voice, *voice_end;
ALCcontext *ctx;
2012-09-16 08:35:16 +00:00
FPUCtl oldMode;
ALuint i, c;
2010-11-21 10:51:18 +00:00
2012-09-16 08:35:16 +00:00
SetMixerFPUMode(&oldMode);
2010-11-21 10:51:18 +00:00
while(size > 0)
{
ALuint outchanoffset = 0;
ALuint outchancount = device->NumChannels;
IncrementRef(&device->MixCount);
SamplesToDo = minu(size, BUFFERSIZE);
2014-11-21 21:45:57 +00:00
for(c = 0;c < device->NumChannels;c++)
2012-09-11 13:32:42 +00:00
memset(device->DryBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
if(device->Hrtf)
{
outchanoffset = device->NumChannels;
outchancount = 2;
for(c = 0;c < outchancount;c++)
memset(device->DryBuffer[outchanoffset+c], 0, SamplesToDo*sizeof(ALfloat));
}
2010-11-21 10:51:18 +00:00
V0(device->Backend,lock)();
V(device->Synth,process)(SamplesToDo, &device->DryBuffer[outchanoffset]);
ctx = ATOMIC_LOAD(&device->ContextList);
while(ctx)
2010-11-21 10:51:18 +00:00
{
ALenum DeferUpdates = ctx->DeferUpdates;
ALenum UpdateSources = AL_FALSE;
if(!DeferUpdates)
UpdateSources = ATOMIC_EXCHANGE(ALenum, &ctx->UpdateSources, AL_FALSE);
2012-10-09 13:19:36 +00:00
if(UpdateSources)
CalcListenerParams(ctx->Listener);
2012-10-09 13:19:36 +00:00
2012-04-26 07:59:17 +00:00
/* source processing */
2014-08-21 10:24:48 +00:00
voice = ctx->Voices;
voice_end = voice + ctx->VoiceCount;
while(voice != voice_end)
2010-11-21 10:51:18 +00:00
{
2014-08-21 10:24:48 +00:00
ALsource *source = voice->Source;
if(!source) goto next;
if(source->state != AL_PLAYING && source->state != AL_PAUSED)
2010-11-21 10:51:18 +00:00
{
2014-08-21 10:24:48 +00:00
voice->Source = NULL;
goto next;
2010-11-21 10:51:18 +00:00
}
if(!DeferUpdates && (ATOMIC_EXCHANGE(ALenum, &source->NeedsUpdate, AL_FALSE) ||
UpdateSources))
2014-08-21 10:24:48 +00:00
voice->Update(voice, source, ctx);
2010-11-21 10:51:18 +00:00
if(source->state != AL_PAUSED)
2014-08-21 10:24:48 +00:00
MixSource(voice, source, device, SamplesToDo);
next:
2014-08-21 10:24:48 +00:00
voice++;
2010-11-21 10:51:18 +00:00
}
/* effect slot processing */
slot = VECTOR_ITER_BEGIN(ctx->ActiveAuxSlots);
slot_end = VECTOR_ITER_END(ctx->ActiveAuxSlots);
while(slot != slot_end)
2010-11-21 10:51:18 +00:00
{
if(!DeferUpdates && ATOMIC_EXCHANGE(ALenum, &(*slot)->NeedsUpdate, AL_FALSE))
2013-11-03 00:30:28 +00:00
V((*slot)->EffectState,update)(device, *slot);
2013-11-03 00:30:28 +00:00
V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
device->DryBuffer, device->NumChannels);
2010-11-21 10:51:18 +00:00
for(i = 0;i < SamplesToDo;i++)
(*slot)->WetBuffer[0][i] = 0.0f;
slot++;
2010-11-21 10:51:18 +00:00
}
ctx = ctx->next;
2010-11-21 10:51:18 +00:00
}
slot = &device->DefaultSlot;
if(*slot != NULL)
{
if(ATOMIC_EXCHANGE(ALenum, &(*slot)->NeedsUpdate, AL_FALSE))
2013-11-03 00:30:28 +00:00
V((*slot)->EffectState,update)(device, *slot);
2013-11-03 00:30:28 +00:00
V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
device->DryBuffer, device->NumChannels);
for(i = 0;i < SamplesToDo;i++)
(*slot)->WetBuffer[0][i] = 0.0f;
}
/* Increment the clock time. Every second's worth of samples is
* converted and added to clock base so that large sample counts don't
* overflow during conversion. This also guarantees an exact, stable
* conversion. */
device->SamplesDone += SamplesToDo;
device->ClockBase += (device->SamplesDone/device->Frequency) * DEVICE_CLOCK_RES;
device->SamplesDone %= device->Frequency;
V0(device->Backend,unlock)();
2010-11-21 10:51:18 +00:00
if(device->Hrtf)
{
HrtfMixerFunc HrtfMix = SelectHrtfMixer();
ALuint irsize = GetHrtfIrSize(device->Hrtf);
for(c = 0;c < device->NumChannels;c++)
HrtfMix(&device->DryBuffer[outchanoffset], device->DryBuffer[c], device->Hrtf_Offset, irsize,
&device->Hrtf_Params[c], &device->Hrtf_State[c], SamplesToDo);
device->Hrtf_Offset += SamplesToDo;
}
else if(device->Bs2b)
2010-11-21 10:51:18 +00:00
{
/* Apply binaural/crossfeed filter */
for(i = 0;i < SamplesToDo;i++)
{
2012-09-11 13:32:42 +00:00
float samples[2];
samples[0] = device->DryBuffer[0][i];
samples[1] = device->DryBuffer[1][i];
bs2b_cross_feed(device->Bs2b, samples);
device->DryBuffer[0][i] = samples[0];
device->DryBuffer[1][i] = samples[1];
}
2010-11-21 10:51:18 +00:00
}
if(buffer)
2010-11-21 10:51:18 +00:00
{
switch(device->FmtType)
{
case DevFmtByte:
Write_ALbyte(&device->DryBuffer[outchanoffset], buffer, SamplesToDo, outchancount);
buffer = (char*)buffer + SamplesToDo*outchancount*sizeof(ALbyte);
break;
case DevFmtUByte:
Write_ALubyte(&device->DryBuffer[outchanoffset], buffer, SamplesToDo, outchancount);
buffer = (char*)buffer + SamplesToDo*outchancount*sizeof(ALubyte);
break;
case DevFmtShort:
Write_ALshort(&device->DryBuffer[outchanoffset], buffer, SamplesToDo, outchancount);
buffer = (char*)buffer + SamplesToDo*outchancount*sizeof(ALshort);
break;
case DevFmtUShort:
Write_ALushort(&device->DryBuffer[outchanoffset], buffer, SamplesToDo, outchancount);
buffer = (char*)buffer + SamplesToDo*outchancount*sizeof(ALushort);
break;
case DevFmtInt:
Write_ALint(&device->DryBuffer[outchanoffset], buffer, SamplesToDo, outchancount);
buffer = (char*)buffer + SamplesToDo*outchancount*sizeof(ALint);
break;
case DevFmtUInt:
Write_ALuint(&device->DryBuffer[outchanoffset], buffer, SamplesToDo, outchancount);
buffer = (char*)buffer + SamplesToDo*outchancount*sizeof(ALuint);
break;
case DevFmtFloat:
Write_ALfloat(&device->DryBuffer[outchanoffset], buffer, SamplesToDo, outchancount);
buffer = (char*)buffer + SamplesToDo*outchancount*sizeof(ALfloat);
break;
}
2010-11-21 10:51:18 +00:00
}
size -= SamplesToDo;
IncrementRef(&device->MixCount);
2010-11-21 10:51:18 +00:00
}
2012-09-16 08:35:16 +00:00
RestoreFPUMode(&oldMode);
2010-11-21 10:51:18 +00:00
}
ALvoid aluHandleDisconnect(ALCdevice *device)
{
ALCcontext *Context;
device->Connected = ALC_FALSE;
Context = ATOMIC_LOAD(&device->ContextList);
while(Context)
{
2014-08-21 10:24:48 +00:00
ALvoice *voice, *voice_end;
2014-08-21 10:24:48 +00:00
voice = Context->Voices;
voice_end = voice + Context->VoiceCount;
while(voice != voice_end)
{
2014-08-21 10:24:48 +00:00
ALsource *source = voice->Source;
voice->Source = NULL;
if(source && source->state == AL_PLAYING)
{
source->state = AL_STOPPED;
ATOMIC_STORE(&source->current_buffer, NULL);
source->position = 0;
source->position_fraction = 0;
}
2014-08-21 10:24:48 +00:00
voice++;
}
2014-08-21 10:24:48 +00:00
Context->VoiceCount = 0;
Context = Context->next;
}
}