- removed all of the multi-level Interpolate...() methods taking T*, U*
- made all single-level methods consistent wrt usage of T&, U&
- replaced usage in regressions, tutorials and examples
- additional minor improvements to far/tutorials
To encapsulate endcap functions from public API, add methods to
tell the number of patch points needed (GetNumLocalPoints()) and
to compute those patch points as a result of change of basis from
the refined vertices (ComputeLocalPointValues()).
ComputeLocalPointValues takes contiguous source data of all levels
including level0 control vertices.
- removed AddVaryingWithWeight from Far::PrimvarRefiner interpolation
- removed Far::StencilBuilder dependencies on varying
- updated Far::StencilTableFactory use of StencilBuilder constructor
- updated far/tutorial_2 to use vertex colors vs varying (for now)
- added TopologyRefiner base level modifiers to TopologyRefinerFactoryBase
- removed old modifiers from TopologyRefiner (unused by anything else)
- updated existing Factory<MESH> definitions to use new methods
- updated PrimvarRefiner to make use of now-local Mask class
- renamed vtr/maskInterfaces.h to vtr/componentInterfaces.h
- updated usage of renamed header file and CMakeLists.txt
- removed TopologyRefiner options to propagate base face in Refinememt
- removed all Vtr storage and management of base face
- added PrimvarRefiner methods to "interpolate" per-face primvar data
* Added stencilTable.cpp
* Fixed the "off" variable shadow warning
* Moved constructors to cpp file
* Made LimitStencilTable constructor private
* other minor clean up.
- created new class Far::PrimvarRefiner with interpolation methods
- removed interpolation and limit methods from Far::TopologyRefiner
- replaced internal usage in Far::StencilTableFactory
- replaced usage in regressions, tutorials and examples
This is a new implementation of the stencil table construction algorithm found
in protoStencil.h. In local tests with production assets, the new algorithm is
~25% faster and significantly more stable, in terms of average performance
In one asset test, generating stencils for level 10 adaptive refinement of
BuzzLightyear was reduced from 18s to 13s.
this change fixes a crash when selecting catmark_hole_test1
in glStencilViewer. If there's a hole limit stencils may not
be found for given limit location, resulting invalid stencil
entries.
PatchTables no longer needs to friend EndCapLegacyGregoryPatchFactory.
Instead we now make the patch table factory pass in the data that needs
to be updated directly to EndCapLegacyGregoryPatchFactory.
- changes completely deprecate AddWithWeight(T, float, float, float)
- added new EvaluateBasis() method to PatchTables
- replaced usage of old Evaluate...<T,U>() methods with EvaluateBasis()
- removed old Evaluate...<T,U>() methods
- removed now unused Interpolate...<T,U>() functions in far/interpolate.h
- moved low-level basis code from far/interpolate.* to patchBasis.*
While this may be worth revisiting, we should first quantify the benefits and
identify the compilers that support it. Ultimately, we may never use pragma
once in favor of strictly using standard C++.
- added new class to far/topologyLevel.h
- updated TopologyRefiner to manage set of TopologyLevels internally
- added TopologyRefiner method to retrieve TopologyLevel
- redefined obsolete TopologyRefiner methods in terms of TopologyLevel
These are now redundant since all bspline patches are encoded in
the patch tables consistently using 16 point indices with boundary
and corner edges indicated in the boundary mask of the patch params.
My earlier change which simplified the categorization of
patch types broke evaluation for boundary and corner patches.
Previously, boundary and corner patches were always rotated
into a canoncial orientation by permuting the point indices
of the patch. This was convenient in some cases, but generally
made things unecessarily complicated, since the parameterization
of the patch had to be counter-rotated to compensate.
Now patches always remain correctly oriented with respect
to the underlying surface topology and evaluation of boundary
and corner patches is accommodated by simply adjusting the
spline weights to account for the missing/invalid patch
points along boundary and corner edges.
There is more to clean up and optimize, but this restores
correct behavior.
- added Far::GetGregoryWeights() to work directly with 20 weights
- simplified tensor-product evaluation of Bezier and BSpline (will more
readily support higher order derivatives in near future)
- fixed Bezier derivative scaling issue (off by factor of 3.0)
* noted incorrectness of Gregory derivatives (correction will accompany
support for higher order derivatives in near future)
The previous change to the gathering of patch points went
a bit too far. Near non-manifold features it is important
to be careful when traversing the faces in a level to avoid
assumptions that are valid only for manifold topology.
Also, removed Vtr::Level::gatherQuadRegularPatchPoints().
This method was added in my previous change, but it is
unsafe to use in the presence of non-manifold topology.
Now a boundary and corner patch remains
aligned with its underlying parametric
orientation. This simplifies both the
gathering of patch vertices and downstream
evaluation of patches.
Added a method to Vtr::Level which gathers
the 16 patch points for a B-spline patch
even if the patch has boundary or corner
edges. The undefined patch vertex index
values along boundary and corner edges are
assigned Vtr::INDEX_INVALID.
In order to simplifiy the process of drawing
B-spline patches with boundary or corner
edges, the Far::PatchTablesFactory will
replace any invalid vertex indices with
a known good value, i.e. the index of the
first patch face vertex.
Single-crease patches are still a slightly
special case, which will be resolved later.
- rename "Regular end cap" to "BSplineBasis end cap"
- revert templating and add EndCapType into PatchTablesFactory::Options.
- make EndCapFactories internal in PatchTablesFactory.
- move end cap stencils into PatchTables, keep them relative to the max level.
- add a utility StencilTablesFactory::AppendEndCapStencilTables to splice and factorize endcap stencil tables.
Remove the ptex-specific code from the Far::TopologyRefiner and instead provide it in a separate class Far::PtexIndices. Clients who need to use the Ptex API need to first build a Far::PtexIndices object by providing it with a refiner.
This has the advantage of keeping the API on the TopologyRefiner a little cleaner. The ptex methods were const but were mutating state with const_casts. The new mechanism still achieves the same lazy initialization behavior by forcing clients to instantiate them exactly when needed.
A disadvantage of this approach is that the PatchTablesFactory creates its own PtexIndices and throws it out after the patch tables are created. This is great if you're never going to need the ptex indices again, but not so great if you will need them again.
This change moves all gregory patch generation from Far::PatchTablesFactory
so that we can construct patch tables without stencil tables as well as client
can chose any end patch strategies (we have 3 options for now: legacy 2.x style
gregory patch, gregory basis patch and experimental regular patch approximation).
Also Far::EndCapGregoryBasisPatchFactory provides index mapping from patch index
to vtr face index, which can be used for single gregory patch evaluation on top
of refined points, without involving heavier stencil tables generation.
- modified main LimitMask queries to include subdivision Rule
- split internal mask assignments into corner, crease and smooth cases
- adapted all three schemes to the new structure
- completed limit tangents for Loop
- update TopologyRefiner Limit methods to pass newly required Rule
This is the first step to tease off Osd compute controller/contexts
from Far API.
Currently FarStencilTable only creates a kernelbatch for the entire range,
so we can use [0, numStencils) for all cases instead of KernelBatch.
This might not be true if we apply non-factorized level-wise stencils,
then we'll add another modular utility to serve those cases.
PatchTablesFactory fills 20 indices topology into patchtable, and use it for eval and draw.
note: currently screen-space adaptive tessellation of gregory basis patches is
broken and cracks appear around them.
- new Options for Refine() methods for base face and vertex ordering
- removed ignored/unused "full topology" choice from AdaptiveOptions
- added base face and vertex ordering logic to Refinement
- addition of TopologyRefiner members for component counts and max valence
- refactoring of Level additions to update all new member totals
- addition of GetMaxValence() to TopologyRefiner
- updated PatchTablesFactory to user new GetMaxValence() method
- renaming of "Hole" methods for TopologyRefiner and Vtr::Level
- regular patches now generated for faces with non-manifold vertices
- non-manifold features treated as boundary edges and vertices
- other minor cleanup/improvement in patch identification method
- commented on approx of smooth x-ordinary corner with regular sharp patch
- added edge-face local-indices to Vtr::Level members
- added internal and public access to edge-face local-indices
- updated refinement methods to use and populate edge-face local-indices
- updated refinement methods to be sensitive to degenerate edges
- added Vtr::VALENCE_LIMIT constant for internal use
- updated Vtr::Level topology completion to fail on valence overflow
- simplfied non-manifold edge handling in Vtr::Level topology completion
- updated warnings for all topology construction failures
- added detection and warning when passing non-triangles for Loop
- changed return type of Vtr array empty() to bool
- renamed and adjusted arguments to Vtr gather methods for consistency
- removed lone Vtr gather method that took an explicit offset
- updated usage of revised Vtr gather methods in Far
- fixed warnings redeclaring names of local variables already in use