hlslPatchGregoryBasis.hlsl is an equivalent to glslPatchGregoryBasis.
Update dxViewer to be able to switch among bspline, gregorybasis, legacy
end capping.
also fixes a bug of GLSL legacy gregory shader which had an inconsistent
resource naming with example codes.
It looks like there's still an issue of D3D11 patchParam data fetching.
we'll come back to that bug.
As a preparation for retiring DrawContext, move SupportsAdaptiveTessellation
method to examples/common/glUtils, which is renamed and namespaced
from gl_common.{cpp,h} to be consistent to other files.
Same renamings applied to other example files.
Remove DrawRegistry from osd layer and put a simple shader caching
utility into examples/common. osd layer only provides patch shader
snippet and let client configure and compile the code. Clients also
maintain the lifetime of shader object, which is preferable for the
actual application integration.
update all examples to use the new scheme.
Since unified shading work already removed subPatch info from
Osd::PatchDescriptor, the difference between Far::PatchDescriptor and
Osd::PatchDescriptor is just maxValence and numElements. They are used
for legacy gregory patch drawing.
Both maxValence and numElements are actually constant within a topology
(drawContext). This change move maxValence to DrawContext and let client
manage numElements, then we can eliminate Osd::PatchDescriptor and simply
use Far::PatchDescritor instead.
This is still an intermediate step toward further DrawRegistry refactoring.
For the time being, adding EffectDesc struct to include maxValence and
numValence to be maintained by the clients. They will be cleaned up later.
The side benefit of this change is we no longer need to recompile regular b-spline
shaders for the different max-valences.
- Remove MeshPtexData bit from Osd::MeshBits. It's not used any more
- Rename ptexIndexBuffer in D3D11DrawContext to paramParamBuffer
- Remove Is/SetPtexEnabled from D3D11DrawRegistry
In OpenSubdiv 2.x, we encapsulated subdivision tables into
compute context in osd layer since those tables are order-dependent
and have to be applied in a certain manner. In 3.0, we adopted stencil
table based refinement. It's more simple and such an encapsulation is
no longer needed. Also 2.0 API has several ownership issues of GPU
kernel caching, and forces unnecessary instantiation of controllers
even though the cpu kernels typically don't need instances unlike GPU ones.
This change completely revisit osd client facing APIs. All contexts and
controllers were replaced with device-specific tables and evaluators.
While we can still use consistent API across various device backends,
unnecessary complexities have been removed. For example, cpu evaluator
is just a set of static functions and also there's no need to replicate
FarStencilTables to ComputeContext.
Also the new API delegates the ownership of compiled GPU kernels
to clients, for the better management of resources especially in multiple
GPU environment.
In addition to integrating ComputeController and EvalStencilController into
a single function Evaluator::EvalStencils(), EvalLimit API is also added
into Evaluator. This is working but still in progress, and we'll make a followup
change for the complete implementation.
-some naming convention changes:
GLSLTransformFeedback to GLXFBEvaluator
GLSLCompute to GLComputeEvaluator
-move LimitLocation struct into examples/glEvalLimit.
We're still discussing patch evaluation interface. Basically we'd like
to tease all ptex-specific parametrization out of far/osd layer.
TODO:
-implments EvalPatches() in the right way
-derivative evaluation API is still interim.
-VertexBufferDescriptor needs a better API to advance its location
-synchronization mechanism is not ideal (too global).
-OsdMesh class is hacky. need to fix it.
we're teasing out ptex specific data from core osd entities,
so there's no reason to keep ptex texturing utilities in core osd.
move them into example libs and let clients assemble shader snippets
as needed.
Also removing older ptex texturing code (without mipmap)
- resolves DX-CL interop functions in Osd::ClD3D11VertexBuffer.
- enable CL kernels in DX build.
- more cleanup in test harnesses, adding D3D11 initializations into DeviceContext.
- add new defines OPENSUBDIV_HAS_OPENGL and OPENSUBDIV_HAS_DX for convenience.
Removed OpenCL/D3D11 specialization and add DEVICE_CONTEXT as a template
parameter. For the kernels which don't need a context object (e.g.
CPU, OpenGL, cuda) just ignore the context, and for the kernels which
use a context (e.g. OpenCL, DirectX) takes a context or a user-defined
class as which encapsulates device contexts. Note that OpenCL requires
two objects, cl_context and cl_command_queue. The user-defined
class must provide GetContext() and GetCommandQueue() for strongly typed
binding to osd VertexBuffers and ComputeContexts.
Osd::Mesh and MeshInterface have been used as a handy harness to host
multiple GPU kernels and graphics APIs. However it has CL/DirectX
specializations and duplicates large amount of plubming code. With this
change, glMesh.h and d3d11Mesh.h become just typedefs and all logic is
put into mesh.h without specializations.
Also cleaned up unused header files and code formatting.
- changed ptex layout data types in shaders to match srv format
- changed ptex srv type to unorm format for uchar data
- fixed hlsl compiler warning: initialized edgeDistance of OutputVertex struct in domain shader even if we are not in wireframe mode
- added directx debug device and enabled automatic break points to easily spot dx errors
- renamed Sdc::Type to SchemeType and TypeTraits to SchemeTypeTraits
- renamed TYPE_ prefix to SCHEME_
- updated all usage within core library
- updated all usage in examples, tutorials, etc.
Const' declared instances of Vtr::Array do not protect the pointer held
privately by the class properly. In order to force the compiler to
protect this pointer, we removed all non-const accessors from Vtr::Array
(now renamed Vtr::ConstArray) and moved them to a child class (Vtr::Array),
which requires const_cast<> operators internally to allow access.
The change & renaming is then propagated to all internal dependencies.
- change error codes from situational to general (fatal / coding / run-time...)
- pull error functions from Osd into Far
- add a templated topology validation reporting system to Far::TopologyRefinerFactory
- fix fallout on rest of code-base
Sync'ing the 'dev' branch with the 'feature_3.0dev' branch at commit 68c6d11fc36761ae1a5e6cdc3457be16f2e9704a
The branch 'feature_3.0dev' is now locked and preserved for historical purposes.
If the system has CLEW installed (which is detected by recently
added FindCLEW routines) then OpenSubduv would be compiled against
this library.
It makes binaries and libraries more portable across the systems,
so it's possible to run the same binary on systems with and without
OpenCL SDK installed.
The most annoying part of the change is updating examples to load
OpenCL libraries, but ideally code around controllers and interface
creation is to be de-duplicated anyway.
Based on the pull request #303 from Martijn Berger
- added a _stringify function to top CMakeLists
- switched all stringification tasks to use the macro
- all suffixes are now .gen.h instead of .inc (to help cmake track dependencies)
Important notice: all client shader code must have following functions and compose them to osd intrinsic shaders (vertex/tessEval/tessControl)
mat4 OsdModelViewMatrix()
mat4 OsdProjectionMatrix()
mat4 OsdModelViewProjectionMatrix()
float OsdTessLevel()
int OsdGreogryQuadOffsetBase()
int OsdPrimitiveIdBase()
We probably should write a utility class for basic binding of them, to make client code simpler.
Moving Takahito's implementation into the core API:
- added <gl/d3d11>PtexCommon.<glsl/hlsl> shader code
- added control to enable Ptex common trunk in <gl/d3d11>DrawRegistryBase classes
- fixed GL & D3D11 ptexViewer examples to use the new API