Emit block members directly in the IO structs and sort them.
Ensures we can get some kind of stable order between stages.
To complete the story, we'll need to be able to inject unused inputs /
builtins, or eliminate unused outputs (probably easiest solution).
Some fallout where internal functions are using stronger types.
Overkill to move everything over to strong types right now, but perhaps
move over to it slowly over time.
This change introduces functions and in one case, a class, to support
the `VK_KHR_sampler_ycbcr_conversion` extension. Except in the case of
GBGR8 and BGRG8 formats, for which Metal natively supports implicit
chroma reconstruction, we're on our own here. We have to do everything
ourselves. Much of the complexity comes from the need to support
multiple planes, which must now be passed to functions that use the
corresponding combined image-samplers. The rest is from the actual
Y'CbCr conversion itself, which requires additional post-processing of
the sample retrieved from the image.
Passing sampled images to a function was a particular problem. To
support this, I've added a new class which is emitted to MSL shaders
that pass sampled images with Y'CbCr conversions attached around. It
can handle sampled images with or without Y'CbCr conversion. This is an
awful abomination that should not exist, but I'm worried that there's
some shader out there which does this. This support requires Metal 2.0
to work properly, because it uses default-constructed texture objects,
which were only added in MSL 2. I'm not even going to get into arrays of
combined image-samplers--that's a whole other can of worms. They are
deliberately unsupported in this change.
I've taken the liberty of refactoring the support for texture swizzling
while I'm at it. It's now treated as a post-processing step similar to
Y'CbCr conversion. I'd like to think this is cleaner than having
everything in `to_function_name()`/`to_function_args()`. It still looks
really hairy, though. I did, however, get rid of the explicit type
arguments to `spvGatherSwizzle()`/`spvGatherCompareSwizzle()`.
Update the C API. In addition to supporting this new functionality, add
some compiler options that I added in previous changes, but for which I
neglected to update the C API.
Make sure to test everything with scalar as well to catch any weird edge
cases.
Not all opcodes are covered here, just the arithmetic ones. FP64 packing
is also ignored.
MSL does not seem to have a qualifier for this, but HLSL SM 5.1 does.
glslangValidator for HLSL does not support this, so skip any validation,
but it passes in FXC.
- Replace ostringstream with custom implementation.
~30% performance uplift on vector-shuffle-oom test.
Allocations are measurably reduced in Valgrind.
- Replace std::vector with SmallVector.
Classic malloc optimization, small vectors are backed by inline data.
~ 7-8% gain on vector-shuffle-oom on GCC 8 on Linux.
- Use an object pool for IVariant type.
We generally allocate a lot of SPIR* objects. We can amortize these
allocations neatly by pooling them.
- ~15% overall uplift on ./test_shaders.py --iterations 10000 shaders/.
This is a pragmatic trick to avoid symbol collision where a project
links against SPIRV-Cross statically, while linking to other projects
which also use SPIRV-Cross statically. We can end up with very awkward
symbol collisions which can resolve themselves silently because
SPIRV-Cross is pulled in as necessary. To fix this, we must use
different symbols and embed two copies of SPIRV-Cross in this scenario,
now with different namespaces, which in turn leads to different symbols.
This adds a new C API for SPIRV-Cross which is intended to be stable,
both API and ABI wise.
The C++ API has been refactored a bit to make the C wrapper easier and
cleaner to write. Especially the vertex attribute / resource interfaces
for MSL has been rewritten to avoid taking mutable pointers into the
interface. This would be very annoying to wrap and it didn't fit well
with the rest of the C++ API to begin with. While doing this, I went
ahead and removed all the old deprecated interfaces.
The CMake build system has also seen an overhaul.
It is now possible to build static/shared/CLI separately with -D
options.
The shared library only exposes the C API, as it is the only ABI-stable
API. pkg-configs as well as CMake modules are exported and installed for
the shared library configuration.
Opt-in, since user need to know about a cbuffer.
Conflicts a bit with the GLSL option for base instance,
since that one is enabled by default, but the HLSL one isn't (because
user needs to know about a magic cbuffer, whereas GLSL can only get
default initialized uniform).
This is a fairly fundamental change on how IDs are handled.
It serves many purposes:
- Improve performance. We only need to iterate over IDs which are
relevant at any one time.
- Makes sure we iterate through IDs in SPIR-V module declaration order
rather than ID space. IDs don't have to be monotonically increasing,
which was an assumption SPIRV-Cross used to have. It has apparently
never been a problem until now.
- Support LUTs of structs. We do this by interleaving declaration of
constants and struct types in SPIR-V module order.
To support this, the ParsedIR interface needed to change slightly.
Before setting any ID with variant_set<T> we let ParsedIR know
that an ID with a specific type has been added. The surface for change
should be minimal.
ParsedIR will maintain a per-type list of IDs which the cross-compiler
will need to consider for later.
Instead of looping over ir.ids[] (which can be extremely large), we loop
over types now, using:
ir.for_each_typed_id<SPIRVariable>([&](uint32_t id, SPIRVariable &var) {
handle_variable(var);
});
Now we make sure that we're never looking at irrelevant types.
This is a large refactor which splits out the SPIR-V parser from
Compiler and moves it into its more appropriately named Parser module.
The Parser is responsible for building a ParsedIR structure which is
then consumed by one or more compilers.
Compiler can take a ParsedIR by value or move reference. This should
allow for optimal case for both multiple compilations and single
compilation scenarios.
- The HLSL compiler now has its own list of keywords in addition to
the ones from GLSL.
- Added "buffer", "precise", and "shared" to the GLSL keywords.
Replace with common/hlsl/msl instead. The old interface had some bad
interaction with overloading which meant you had to up-cast to base
class to be able to use set_options, which was awkward.