This allows two variables of the same struct type to be flattened
into the same interface struct without a member name conflict.
Add shaders-msl/frag/in_block_with_multiple_structs_of_same_type.frag
unit test shader to demonstrate this.
Fixes numerous CTS tests of types
dEQP-VK.pipeline.interface_matching.vector_length.member_of_*,
passing complex nested structs between stages as stage I/O.
- Make add_composite_member_variable_to_interface_block() recursive to allow
struct members to contain nested structs, building up member names and access
chains recursively, and only add the resulting flattened leaf members to the
synthetic input and output interface blocks.
- Recursively generate individual location numbers for the flattened members
of the input/output block.
- Replace to_qualified_member_name() with append_member_name().
- Update add_variable_to_interface_block() to support arrays as struct members,
adding a member to input and output interface blocks for each element of the array.
- Pass name qualifiers to add_plain_member_variable_to_interface_block() to allow
struct members to be arrays of structs, building up member names and access chains,
and adding multiple distinct flattened leaf members to the synthetic input and
output interface blocks.
- Generate individual location numbers for the individual array members
of the input/output block.
- SPIRVCrossDecorationInterfaceMemberIndex references the index of a member
of a variable that is a struct type. The value is relative to the variable,
and for structs nested within that top-level struct, the index value needs
to take into consideration the members within those nested structs.
- Pass var_mbr_idx to add_plain_member_variable_to_interface_block() and
add_composite_member_variable_to_interface_block(), start at zero for each
variable, and increment for each member or nested member within that variable.
- Add unit test shaders-msl/vert/out-block-with-nested-struct-array.vert
- Add unit test shaders-msl/vert/out-block-with-struct-array.vert
- Add unit test shaders-msl/tese/in-block-with-nested-struct.tese
We were passing arrays by value which the compiler fails to optimize,
causing abyssal performance. To fix this, we need to consider that
descriptors can be in constant or const device address spaces.
Also, lone descriptors are passed by value, so we explicitly remove address
space qualifiers.
One failure case is when shader passes a texture/sampler array as an
argument. It's all UniformConstant in SPIR-V, but in MSL it might be
thread, const device or constant, so that won't work ...
Global variable use works fine though, and that should cover 99.9999999%
of use cases.
Previous test for SPIRVCrossDecorationPhysicalTypePacked on parent struct
when unpacking member struct was too restrictive, and not needed as long
as padding compensates.
Populate member_type_index_redirection as reverse lookup, not forward lookup.
Move use of member_type_index_redirection from CompilerMSL::to_member_reference()
to CompilerGLSL::access_chain_internal() to access all redirected type info,
not just name.
Emit synthetic functions before function constants.
Support use of spvQuantizeToF16() in function constants for numerical
behavior consistency with the op code.
Ensure subnormal results from OpQuantizeToF16 are flushed to zero per SPIR-V spec.
Adjust SPIRV-Cross unit test reference shaders to accommodate these changes.
Any MSL reference shader that inclues a synthetic function is affected,
since the location it is emitted has changed.
Add [[clang::optnone]] attribute to spvF*() functions used for handling
floating point operations decorated with DecorationNoContraction.
Just using precise::fma() did not work.
Adjust SPIRV-Cross unit test reference shaders to accommodate these changes.
Based on CTS testing, math optimizations between MSL and Vulkan are inconsistent.
In some cases, enabling MSL's fast-math compilation option matches Vulkan's math
results. In other cases, disabling it does. Broadly enabling or disabling fast-math
across all shaders results in some CTS test failures either way.
To fix this, selectively enable/disable fast-math optimizations in the MSL code,
using metal::fast and metal::precise function namespaces, where supported, and
the [[clang::optnone]] function attribute otherwise.
Adjust SPIRV-Cross unit test reference shaders to accommodate these changes.
When gl_Position is defined by SPIR-V, but neither used nor initialized,
it appeared twice in the MSL output, as gl_Position and glPosition_1.
The existing tests for whether an output is active check only that it is
used by an op, or initialized. Adding the implicit gl_Position also marked
the existing gl_Position as active, duplicating the output variable.
Fix is that when checking for the need to add an implicit gl_Position
output, also check if the var is already defined in the shader,
and just needs to be marked as active.
Add test shader.
We'll need to force a temporary and mark it as precise.
MSL is a little weird here, but we can piggyback on top of the invariant
float math option here to force fma() operations everywhere.
We have been interchanging spv and SPIRV_Cross_ for a while, which
causes weirdness since we don't explicitly ban SPIRV_Cross identifiers,
as these identifiers are generally used for interface variable
workarounds.
- Do not silently drop reserved identifiers in the parser. This makes it
possible to reflect identifiers which are reserved by the
cross-compiler module.
- Instead of dropping the name, emit _RESERVED_IDENTIFIER_FIXUP in the
source to make it clear that a name has been rewritten.
- Document what is reserved and not.
This should hopefully reduce underutilization of the GPU, especially on
GPUs where the thread execution width is greater than the number of
control points.
This also simplifies initialization by reading the buffer directly
instead of using Metal's vertex-attribute-in-compute support. It turns
out the only way in which shader stages are allowed to differ in their
interfaces is in the number of components per vector; the base type must
be the same. Since we are using the raw buffer instead of attributes, we
can now also emit arrays and matrices directly into the buffer, instead
of flattening them and then unpacking them. Structs are still flattened,
however; this is due to the need to handle vectors with fewer components
than were output, and I think handling this while also directly emitting
structs could get ugly.
Another advantage of this scheme is that the extra invocations needed to
read the attributes when there were more input than output points are
now no more. The number of threads per workgroup is now lcm(SIMD-size,
output control points). This should ensure we always process a whole
number of patches per workgroup.
To avoid complexity handling indices in the tessellation control shader,
I've also changed the way vertex shaders for tessellation are handled.
They are now compute kernels using Metal's support for vertex-style
stage input. This lets us always emit vertices into the buffer in order
of vertex shader execution. Now we no longer have to deal with indexing
in the tessellation control shader. This also fixes a long-standing
issue where if an index were greater than the number of vertices to
draw, the vertex shader would wind up writing outside the buffer, and
the vertex would be lost.
This is a breaking change, and I know SPIRV-Cross has other clients, so
I've hidden this behind an option for now. In the future, I want to
remove this option and make it the default.
Metal is picky about interface matching. If the types don't match
exactly, down to the number of vector components, Metal fails pipline
compilation. To support pipelines where the number of components
consumed by the fragment shader is less than that produced by the vertex
shader, we have to fix up the fragment shader to accept all the
components produced.
MSL does not support this, so we have to emulate it by passing it around
as a varying between stages. We use a special "user(clipN)" attribute
for this rather than locN which is used for user varyings.
This avoids a lot of huge code changes.
Arrays generally cannot be copied in and out of buffers, at least no
compiler frontend seems to do it.
Also avoids a lot of issues surrounding packed vectors and matrices.
This maps them to their MSL equivalents. I've mapped `Coherent` to
`volatile` since MSL doesn't have anything weaker than `volatile` but
stronger than nothing.
As part of this, I had to remove the implicit `volatile` added for
atomic operation casts. If the buffer is already `coherent` or
`volatile`, then we would add a second `volatile`, which would be
redundant. I think this is OK even when the buffer *doesn't* have
`coherent`: `T *` is implicitly convertible to `volatile T *`, but not
vice-versa. It seems to compile OK at any rate. (Note that the
non-`volatile` overloads of the atomic functions documented in the spec
aren't present in the MSL 2.2 stdlib headers.)
`restrict` is tricky, because in MSL, as in C++, it needs to go *after*
the asterisk or ampersand for the pointer type it's modifying.
Another issue is that, in the `Simple`, `GLSL450`, and `Vulkan` memory
models, `Restrict` is the default (i.e. does not need to be specified);
but MSL likely follows the `OpenCL` model where `Aliased` is the
default. We probably need to implicitly set either `Restrict` or
`Aliased` depending on the module's declared memory model.
The old method of using a different unpacked matrix type doesn't work
for scalar alignment. It certainly wouldn't have any effect for a square
matrix, since the number of columns and rows are the same. So now we'll
store them as arrays of packed vectors.
We used to use the Binding decoration for this, but this method is
hopelessly broken. If no explicit MSL resource remapping exists, we
remap automatically in a manner which should always "just work".