SPIRV-Cross/reference/shaders-msl/vert/functions.vert
Bill Hollings ec054dad7f MSL: Support synthetic functions in function constants.
Emit synthetic functions before function constants.
Support use of spvQuantizeToF16() in function constants for numerical
behavior consistency with the op code.
Ensure subnormal results from OpQuantizeToF16 are flushed to zero per SPIR-V spec.

Adjust SPIRV-Cross unit test reference shaders to accommodate these changes.
Any MSL reference shader that inclues a synthetic function is affected,
since the location it is emitted has changed.
2021-09-28 19:10:16 -04:00

123 lines
4.5 KiB
GLSL

#pragma clang diagnostic ignored "-Wmissing-prototypes"
#include <metal_stdlib>
#include <simd/simd.h>
using namespace metal;
// Implementation of the GLSL radians() function
template<typename T>
inline T radians(T d)
{
return d * T(0.01745329251);
}
// Implementation of the GLSL degrees() function
template<typename T>
inline T degrees(T r)
{
return r * T(57.2957795131);
}
// Implementation of the GLSL findLSB() function
template<typename T>
inline T spvFindLSB(T x)
{
return select(ctz(x), T(-1), x == T(0));
}
// Implementation of the signed GLSL findMSB() function
template<typename T>
inline T spvFindSMSB(T x)
{
T v = select(x, T(-1) - x, x < T(0));
return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));
}
// Returns the determinant of a 2x2 matrix.
static inline __attribute__((always_inline))
float spvDet2x2(float a1, float a2, float b1, float b2)
{
return a1 * b2 - b1 * a2;
}
// Returns the determinant of a 3x3 matrix.
static inline __attribute__((always_inline))
float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3)
{
return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, b2, b3);
}
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
// adjoint and dividing by the determinant. The contents of the matrix are changed.
static inline __attribute__((always_inline))
float4x4 spvInverse4x4(float4x4 m)
{
float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], m[3][3]);
adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3]);
adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], m[3][3]);
adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3]);
adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], m[3][3]);
adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3]);
adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], m[3][2]);
adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2]);
// Calculate the determinant as a combination of the cofactors of the first row.
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] * m[3][0]);
// Divide the classical adjoint matrix by the determinant.
// If determinant is zero, matrix is not invertable, so leave it unchanged.
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
}
struct UBO
{
float4x4 uMVP;
float3 rotDeg;
float3 rotRad;
int2 bits;
};
struct main0_out
{
float3 vNormal [[user(locn0)]];
float3 vRotDeg [[user(locn1)]];
float3 vRotRad [[user(locn2)]];
int2 vLSB [[user(locn3)]];
int2 vMSB [[user(locn4)]];
float4 gl_Position [[position]];
};
struct main0_in
{
float4 aVertex [[attribute(0)]];
float3 aNormal [[attribute(1)]];
};
vertex main0_out main0(main0_in in [[stage_in]], constant UBO& _18 [[buffer(0)]])
{
main0_out out = {};
out.gl_Position = spvInverse4x4(_18.uMVP) * in.aVertex;
out.vNormal = in.aNormal;
out.vRotDeg = degrees(_18.rotRad);
out.vRotRad = radians(_18.rotDeg);
out.vLSB = spvFindLSB(_18.bits);
out.vMSB = spvFindSMSB(_18.bits);
return out;
}