Removed the check that result type of OpImageRead should be a vector4.
Will reenable/adapt once the spec is clarified on what the right
dimension should be.
These instructions compute their value based the value of the immediate
neighbours of the current fragment. This means the result is not
defined purely by the operands of the instruction.
Replaced representation of uses
* Changed uses from unordered_map<uint32_t, UseList> to
set<pairInstruction*, Instruction*>>
* Replaced GetUses with ForEachUser and ForEachUse functions
* updated passes to use new functions
* partially updated tests
* lots of cleanup still todo
Adding an unique id to Instruction generated by IRContext
Each instruction is given an unique id that can be used for ordering
purposes. The ids are generated via the IRContext.
Major changes:
* Instructions now contain a uint32_t for unique id and a cached context
pointer
* Most constructors have been modified to take a context as input
* unfortunately I cannot remove the default and copy constructors, but
developers should avoid these
* Added accessors to parents of basic block and function
* Removed the copy constructors for BasicBlock and Function and replaced
them with Clone functions
* Reworked BuildModule to return an IRContext owning the built module
* Since all instructions require a context, the context now becomes the
basic unit for IR
* Added a constructor to context to create an owned module internally
* Replaced uses of Instruction's copy constructor with Clone whereever I
found them
* Reworked the linker functionality to perform clones into a different
context instead of moves
* Updated many tests to be consistent with the above changes
* Still need to add new tests to cover added functionality
* Added comparison operators to Instruction
Adding tests for Instruction, IRContext and IR loading
Fixed some header comments for BuildModule
Fixes to get tests passing again
* Reordered two linker steps to avoid use/def problems
* Fixed def/use manager uses in merge return pass
* Added early return for GetAnnotations
* Changed uses of Instruction::ToNop in passes to IRContext::KillInst
Simplifying the uses for some contexts in passes
Creates a pass that removes redundant instructions within the same basic
block. This will be implemented using a hash based value numbering
algorithm.
Added a number of functions that check for the Vulkan descriptor types.
These are used to determine if we are variables are read-only or not.
Implemented a function to check if loads and variables are read-only.
Implemented kernel specific and shader specific versions.
A big change is that the Combinator analysis in ADCE is factored out
into the IRContext as an analysis. This was done because it is being
reused in the value number table.
Add new "short descriptor" algorithm to MARK-V codec.
Add three shader compression models:
lite - fast, poor compression
mid - balanced
max - best compression
Each instruction is given an unique id that can be used for ordering
purposes. The ids are generated via the IRContext.
Major changes:
* Instructions now contain a uint32_t for unique id and a cached context
pointer
* Most constructors have been modified to take a context as input
* unfortunately I cannot remove the default and copy constructors, but
developers should avoid these
* Added accessors to parents of basic block and function
* Removed the copy constructors for BasicBlock and Function and replaced
them with Clone functions
* Reworked BuildModule to return an IRContext owning the built module
* Since all instructions require a context, the context now becomes the
basic unit for IR
* Added a constructor to context to create an owned module internally
* Replaced uses of Instruction's copy constructor with Clone whereever I
found them
* Reworked the linker functionality to perform clones into a different
context instead of moves
* Updated many tests to be consistent with the above changes
* Still need to add new tests to cover added functionality
* Added comparison operators to Instruction
* Added an internal option to LinkerOptions to verify merged ids are
unique
* Added a test for the linker to verify merged ids are unique
* Updated MergeReturnPass to supply a context
* Updated DecorationManager to supply a context for cloned decorations
* Reworked several portions of the def use tests in anticipation of next
set of changes
To make the decoration manger available everywhere, and to reduce the
number of times it needs to be build, I add one the IRContext.
As the same time, I move code that modifies decoration instruction into
the IRContext from mempass and the decoration manager. This will make
it easier to keep everything up to date.
This should take care of issue #928.
Works with current DefUseManager infrastructure.
Added merge return to the standard opts.
Added validation to passes.
Disabled pass for shader capabilty.
This analysis builds a map from instructions to the basic block that
contains them. It is accessed via get_instr_block(). Once built, it is kept
up-to-date by the IRContext, as long as instructions are removed via
KillInst.
I have not yet marked passes that preserve this analysis. I will do it
in a separate change.
Other changes:
- Add documentation about analysis values requirement to be powers of 2.
- Force a re-build of the def-use manager in tests.
- Fix AllPreserveFirstOnlyAfterPassWithChange to use the
DummyPassPreservesFirst pass.
- Fix sentinel value for IRContext::Analysis enum.
- Fix logic for checking if the instr<->block mapping is valid in KillInst.
Fixes issue #728. Currently the inliner is not generating decorations for
inlined code which corresponds to function code which has decorations. An
example of decorations that are relevant: RelaxedPrecision, NoContraction.
The solution is to replicate the decoration during inlining.
Originally the passes that extended from MemPass were those that are
of the def-use manager. I am assuming they would be able to preserve
it because of that.
Added a check to verify consistency of the IRContext. The IRContext
relies on the pass to tell it if something is invalidated.
It is possible that the pass lied. To help identify those situations,
we will check if the valid analyses are correct after each pass.
This will be enabled by default for the debug build, and disabled in the
production build. It can be disabled in the debug build by adding
"-DSPIRV_CHECK_CONTEXT=OFF" to the cmake command.
NFC. This just makes sure every file is formatted following the
formatting definition in .clang-format.
Re-formatted with:
$ clang-format -i $(find source tools include -name '*.cpp')
$ clang-format -i $(find source tools include -name '*.h')
This change will move the instances of the def-use manager to the
IRContext. This allows it to persists across optimization, and does
not have to be rebuilt multiple times.
Added test to ensure that the IRContext is validating and invalidating
the analyses correctly.
This class moves some of the CFG-related functionality into a new
class opt::CFG. There is some other code related to the CFG in the
inliner and in opt::LocalSingleStoreElimPass that should also be moved,
but that require more changes than this pure restructuring.
I will move those bits in a follow-up PR.
Currently, the CFG is computed every time a pass is instantiated, but
this should be later moved to the new IRContext class that @s-perron is
working on.
Other re-factoring:
- Add BasicBlock::ContinueBlockIdIfAny. Re-factored out of MergeBlockIdIfAny
- Rewrite IsLoopHeader in terms of GetLoopMergeInst.
- Run clang-format on some files.
This is the first part of adding the IRContext. This class is meant to
hold the extra data that is build on top of the module that it
owns.
The first part will simply create the IRContext class and get it passed
to the passes in place of the module. For now it does not have any
functionality of its own, but it acts more as a wrapper for the module.
The functions that I added to the IRContext are those that either
traverse the headers or add to them. I did this because we may decide
to have other ways of dealing with these sections (for example adding a
type pool, or use the decoration manager).
I also added the function that add to the header because the IRContext
needs to know when an instruction is added to update other data
structures appropriately.
Note that there is still lots of work that needs to be done. There are
still many places that change the module, and do not inform the context.
That will be the next step.
Mark structured conditional branches live only if one or more instructions
in their associated construct is marked live. After closure, replace dead
structured conditional branches with a branch to its merge and remove
dead blocks.
ADCE: Dead If Elim: Remove duplicate StructuredOrder code
Also generalize ComputeStructuredOrder so that the caller can specify the
root block for the order. Phi insertion uses pseudo_entry_block and adce and
dead branch elim use the first block of the function.
ADCE: Dead If Elim: Pull redundant code out of InsertPhiInstructions
ADCE: Dead If Elim: Encapsulate CFG Cleanup Initialization
ADCE: Dead If Elim: Remove redundant code from ADCE initialization
ADCE: Dead If: Use CFGCleanup to eliminate newly dead blocks
Moved bulk of CFG Cleanup code into MemPass.
This implements two cleanups suggested by @s-perron
(https://github.com/KhronosGroup/SPIRV-Tools/pull/921):
- Move FindNamedOrDecoratedIds() into MemPass::InitializeProcessing().
- Remove FinalizeNextId(). Always call SetIdBound() from
Pass::TakeNextId().
There are a number of users of spriv-opt that are hitting errors
because of stores with different types. In general, this is wrong, but,
in these cases, the types are the exact same except for decorations.
The options is "--relax-store-struct", and it can be used with the
validator or the optimizer.
We assume that if layout information is missing it is consistent. For
example if one struct has a offset of one of its members, and the other
one does not, we will still consider them as being layout compatible.
The problem will be if both struct has and offset decoration for
corresponding members, and the offset are different.
The feature used to improve compression of const integers which were
presumed to be indices. Now obsolete as descriptor-based compression
does this in a more generalized way.
Including a re-factor of common behaviour into class Pass:
The following functions are now in class Pass:
- IsLoopHeader.
- ComputeStructuredOrder
- ComputeStructuredSuccessors (annoyingly, I could not re-factor all
instances of this function, the copy in common_uniform_elim_pass.cpp
is slightly different and fails with the common implementation).
- GetPointeeTypeId
- TakeNextId
- FinalizeNextId
- MergeBlockIdIfAny
This is a NFC (non-functional change)
This change will replace a number of the
std::vector<std::unique_ptr<Instruction>> member of the module to
InstructionList. This is for consistency and to make it easier to
delete instructions that are no longer needed.
Function static non-POD data causes problems with DLL lifetime.
This pull request turns all static info tables into strict POD
tables. Specifically, the capabilities/extensions field of
opcode/operand/extended-instruction table are turned into two
fields, one for the count and the other a pointer to an array of
capabilities/extensions. CapabilitySet/EnumSet are not used in
the static table anymore, but they are still used for checking
inclusion by constructing on the fly, which should be cheap for
the majority cases.
Also moves all these tables into the global namespace to avoid
C++11 function static thread-safe initialization overhead.
Markv codec now receives two optional callbacks:
LogConsumer for internal codec logging
DebugConsumer for testing if encoding->decoding produces the original
results.
We want to run the optimization when using -O and -Os, but it was not
added at part of https://github.com/KhronosGroup/SPIRV-Tools/pull/905.
This change will add that a well as some minor formatting changes
requested in that same pull request.
The previous algorithm would leave invalid code in the case of unreachable
blocks pointing into a dead branch. It would leave the unreachable blocks
branching to labels that no longer exist. The previous algorithm also left
unreachable blocks in some cases (a loop following an orphaned merge block).
This fix also addresses that.
This code will soon be replaced with the coming CFG cleanup.
There does not seem to be any pass that remove global variables. I
think we could use one. This pass will look specifically for global
variables that are not referenced and are not exported. Any decoration
associated with the variable will also be removed. However, this could
cause types or constants to become unreferenced. They will not be
removed. Another pass will have to be called to remove those.
The pass checks correctness of operands of instruction in opcode range
OpConvertFToU - OpBitset.
Disabled invalid tests
Disabled UConvert validation until Vulkan CTS can catch up.
Add validate_conversion to Android.mk
Also remove duplicate entry in CMakeLists.txt.
This is the first step in replacing the std::vector of Instruction
pointers to using and intrusive linked list.
To this end, we created the InstructionList class. It inherites from
the IntrusiveList class, but add the extra concept of ownership. An
InstructionList owns the instruction that are in it. This is to be
consistent with the current ownership rules where the vector owns the
instruction that are in it.
The other larger change is that the inst_ member of the BasicBlock class
was changed to using the InstructionList class.
Added test for the InsertBefore functions, and making sure that the
InstructionList destructor will delete the elements that it contains.
I've also add extra comments to explain ownership a little better.
- Adds a new pass CFGCleanupPass. This serves as an umbrella pass to
remove unnecessary cruft from a CFG.
- Currently, the only cleanup operation done is the removal of
unreachable basic blocks.
- Adds unit tests.
- Adds a flag to spirvopt to execute the pass (--cfg-cleanup).
There are no functional changes in this patch. The generic folding
routines in FoldSpecConstantOpAndCompositePass are now inside opt/fold.{cpp,h}.
This code will be used by the upcoming constant propagation pass. In
time, we'll add more expression folding and simplification into these
two files.
- switched from C to C++
- moved MARK-V model creation from backend to frontend
- The same MARK-V model object can be used to encode/decode multiple
files
- Added MARK-V model factory (currently only one option)
- Added --validate option to spirv-markv (run validation while
encoding/decoding)
This commit is the initial implementation of the intrusive linked list
class. It includes the implementation in the header files, and unit
test.
The iterators are circular: incrementing end() gives begin() and
decrementing begin() gives end(). Also made it valid to
decrement end().
Expliticly defines move constructor and move assignment
- Visual Studio 2013 does not implicitly generate the move constructor or
move assignments. So they need to be explicit, otherwise it will try to
use the copy constructor, which we explicitly deleted.
- Can't use "= default" either.
Seems like VS2013 does not support explicitly using the default move
constructors and move assignments, so I wrote them out.
Expands dead branch elimination to eliminate dead switch cases. It also
changes dbe to eliminate orphaned merge blocks and recursively eliminate
any blocks thereby orphaned.
These flags are expanded to a series of spirv-opt flags with the
following semantics:
-O: expands to passes that attempt to improve the performance of the
generated code.
-Os: expands to passes that attempt to reduce the size of the generated
code.
-Oconfig=<file> expands to the sequence of passes determined by the
flags specified in the user-provided file.
Add extra iterators for ir::Module's sections
Add extra getters to ir::Function
Add a const version of BasicBlock::GetLabelInst()
Use the max of all inputs' version as version
Split debug in debug1 and debug2
- Debug1 instructions have to be placed before debug2 instructions.
Error out if different addressing or memory models are found
Exit early if no binaries were given
Error out if entry points are redeclared
Implement copy ctors for Function and BasicBlock
- Visual Studio ends up generating copy constructors that call deleted
functions while compiling the linker code, while GCC and clang do not.
So explicitly write those functions to avoid Visual Studio messing up.
Move removing duplicate capabilities to its own pass
Add functions running on all IDs present in an instruction
Remove duplicate SpvOpExtInstImport
Give default options value for link functions
Remove linkage capability if not making a library
Check types before allowing to link
Detect if two types/variables/functions have different decorations
Remove decorations of imported variables/functions and their types
Add a DecorationManager
Add a method for removing all decorations of id
Add methods for removing operands from instructions
Error out if one of the modules has a non-zero schema
Update README.md to talk about the linker
Do not freak out if an imported built-in variable has no export
This keeps the previous behavior for other compilers that will
throw warnings on a negative shift operation, but works around
the internal compiler error in GCC.
Creates a pass called eliminate dead functions that looks for functions
that could never be called, and deletes them from the module.
To support this change a new function was added to the Pass class to
traverse the call trees from diffent starting points.
Includes a test to ensure that annotations are removed when deleting a
dead function. They were not, so fixed that up as well.
Did some cleanup of the assembly for the test in pass_test.cpp. Trying
to make them smaller and easier to read.
MARK-V codec was previously dependent on the validation state.
Now it doesn't need the validator to function, but can still optionally
create it and validate every instruction once it's decoded.
Previously we have several grammar tables defined as global static
variables and these grammar table entries contains non-POD struct
fields (CapabilitySet/ExtensionSet). The initialization of these
non-POD struct fields may require calling operator new. If used
as a library and the caller defines its own operator new, things
can screw up.
This pull request changes all global static variables into
function static variables, which is lazy evaluated in a thread
safe way as guaranteed by C++11.
- now includes a table of all descriptors with coding scheme
(improves performance by 5% by allowing to avoid creation of
move-to-front sequences which will never be used)
- increased the size of markv_autogen.inc, clang doesn't seem
to have the long compilation time problem now
(probably was inadvertently fixed by using Huffman codec
serialization)
Create a new optimization pass, strength reduction, which will replace
integer multiplication by a constant power of 2 with an equivalent bit
shift. More changes could be added later.
- Does not duplicate constants
- Adds vector |Concat| utility function to a common test header.
This optimizes a single index extract whose composite value terminates with a
CompositeConstruct (or ConstantComposite) by evaluating to the correct
component. This was needed for opaque legalization.
This highlights the need/opportunity to improve this optimization to deal
with more complex composite expressions including currently handled ops
plus Null ops and special vector composition. A TODO has been added.
Includes:
- Multi-sequence move-to-front
- Coding by id descriptor
- Statistical coding of non-id words
- Joint coding of opcode and num_operands
Removed explicit form Huffman codec constructor
- The standard use case for it is to be constructed from initializer list.
Using serialization for Huffman codecs
This adapts the fix for the single-block loop. Split the loop like
before. But when we move the OpLoopMerge back to the loop header,
redirect the continue target only when the original loop was a single
block loop.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/800
If the caller block is a single-block loop and inlining will
replace the caller block by several blocks, then:
- The original OpLoopMerge instruction will end up in the *last*
such block. That's the wrong place to put it.
- Move it back to the end of the first block.
- Update its Continue Target ID to point to the last block
We also have to take care of cases where the inlined code
begins with a structured header block. In this case
we need to ensure the restored OpLoopMerge does not appear
in the same block as the merge instruction from the callee's
first block.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/787