Check forbidden Annotation instructions for WebGPU env
From the WebGPU SPIR-V Execution Enviroment spec:
OpDecorationGroup, OpGroupDecorate, OpGroupMemberDecorate are not
allowed.
Fixes#2062
Validate that debugging instructions are not present for WebGPU
For WebGPU execution environments, check that all of the debug
instructions have already been stripped before validation.
Fixes#2063
We had a test that checks that a spirv binary where the depth of the
deepest nested construct is just below the default limit. This test
would take a long time causing a timeout in some builds. We are
questioning the value of the test since we already have a test that can
tell us if we are within a custom limit. We will remove the test.
Add tests for matrix type data rule validation
This covers the data rules for matrix types specified in the SPIR-V
spec, section 2.16.1, and the WebGPU SPIR-V Execution Environment
spec.
Fixes#2065Fixes#2080
Ban sequentially consistent with VulkanKHR
* Added validation check that SequentiallyConsistent memory semantics
are not used if the memory model is VulkanKHR
* Added tests
* Fixed a bug in evaluating constant 32-bit integers and updated some
handling to avoid inferring a value from a spec constant default
Remaining memory semantics validation
* Adds checks that OutputMemoryKHR, MakeAvailableKHR and MakeVisibleKHR
are only used if the VulkanMemoryModelKHR capabailty is present
* Added checks that MakeAvailableKHR requires release semantics
* Added checks that MakeVisibleKHR requires acquire semantics
* Added checks that MakeAvailableKHR and MakeVisibleKHR require a
storage class
Adds validator option to specify scalar block layout rules.
Both VK_KHR_relax_block_layout and VK_EXT_scalar_block_layout can be
enabled at the same time. But scalar block layout is as permissive
as relax block layout.
Also, scalar block layout does not require padding at the end of a
struct.
Add test for scalar layout testing ArrayStride 12 on array of vec3s
Cleanup: The internal getSize method does not need a round-up argument,
so remove it.
These are bookend passes designed to help preserve line information
across passes which delete, move and clone instructions. The propagation
pass attaches a debug line instruction to every instruction based on
SPIR-V line propagation rules. It should be performed before optimization.
The redundant line elimination pass eliminates all line instructions
which match the previous line instruction. This pass should be performed
at the end of optimization to reduce physical SPIR-V file size.
Fixes#2027.
From the Vulkan 1.1 spec 14.5.2:
Variables identified with the Uniform storage class are used to access
transparent buffer backed resources. Such variables must be typed as
OpTypeStruct, or an array of this type.
Fixes#1949
Validate variable types for UniformConstant storage in Vulkan (#2008)
From the Vulkan 1.1 spec 14.5.2:
Variables identified with the UniformConstant storage class are used
only as handles to refer to opaque resources. Such variables must be
typed as OpTypeImage, OpTypeSampler, OpTypeSampledImage, or an array
of one of these types.
Fixes#2008
That function currently only handled OpPtrAccessChain if it was in the
middle of the chain, but not at the start. Fixing that up.
Fixes crbug.com/905271.
The Vulkan specification does not permit use of the VertexId and
InstanceId BuiltIn decorations, so add a check to ensure they are not
being used when the target environment is Vulkan.
* Add base and core bindless validation instrumentation classes
* Fix formatting.
* Few more formatting fixes
* Fix build failure
* More build fixes
* Need to call non-const functions in order.
Specifically, these are functions which call TakeNextId(). These need to
be called in a specific order to guarantee that tests which do exact
compares will work across all platforms. c++ pretty much does not
guarantee order of evaluation of operands, so any such functions need to
be called separately in individual statements to guarantee order.
* More ordering.
* And more ordering.
* And more formatting.
* Attempt to fix NDK build
* Another attempt to address NDK build problem.
* One more attempt at NDK build failure
* Add instrument.hpp to BUILD.gn
* Some name improvement in instrument.hpp
* Change all types in instrument.hpp to int.
* Improve documentation in instrument.hpp
* Format fixes
* Comment clean up in instrument.hpp
* imageInst -> image_inst
* Fix GetLabel() issue.
If there is only 1 return and it is in a loop, then the function cannot be inlined.
Fix condition when inlined code needs one-trip loop wrapper. The dummy loop is needed when there is a return inside a selection construct. Even if there is only 1 return.
* Validate the id bound.
Validates that the id bound for the module is not larger than the max id
bound. Also adds an option to set the max id bound. Allows the
optimizer option to set the max id bound to also set the id bound for
the validation run done by the optimizer.
Fixes#2030.
This CL takes the various opt unit tests and makes a single executable
instead of one per test. This reduces the number of build targets by
~125 when building with ninja.
When looking for a break from a selection construct, we do not realize
that a jump to the continue target of a loop containing the selection
is a break. This causes and infinit loop, or possibly other failures.
Fixes#2004.
When looking for a break from a selection construct, we do not need to
look inside nested constructs. However, if a loop header has an
unconditional branch, then we enter the loop. Entering the loop causes
an infinite loop because we keep going through the loop.
The solution is to look for a merge block, if one exsits, even for block
terminated by an OpBranch.
Fixes#1979.
The SPV_KHR_8bit_storage extension does not permit 8-bit integers to be
cast directly to floating point types. We are seeing shaders in the
wild, being produced by toolchains like glslang, that are generating
invalid SPIR-V.
This change adds validation to check for the patterns not permitted, and
some tests that expose the failure.
ADCE liveness algorithm should treat OpUnreachable at least like other
branch instructions. It was being treated as always live which was
preventing useless structured constructs from being eliminated.
OpUnreachable is generated by dead branch elimination which is now
being required by merge return, so this fix should accompany that
change.
We currently run merge-return on all functions, but
dead-branch-elimination only runs on function reachable from an entry
point or exported function. Since dead-branch-elimination is needed for
merge-return, they have to match.
Fixes#1976.
In logical addressing mode, we are not allowed to generate variables
pointers. There is already a check for OpSelect. However, OpPhi
and OpPtrAccessChain are not checked to make sure it does not
generate an variable pointer. I've added those checks.
Fixes#1957.
Was removing control structures which didn't have data dependency
with enclosed live loop and otherwise did not contain live code.
An example is a counting loop around a live loop.
Fixes#1967.
* MakePointerVisibleKHR cannot be used with OpStore
* MakePointerAvailableKHR cannot be used with OpLoad
* MakePointerAvailableKHR and MakePointerVisibleKHR both require
NonPrivatePointerKHR
* NonPrivatePointerKHR is limited to a subset of storage classes
* many tests
* Validation checks for new image operands MakeTexelAvailableKHR and
MakeTexelVisibleKHR
* added tests
* Tests that NonPrivateTexelKHR is accepted for all image operands
Updating test environments
* fixed build errors
* changed image types for *FetchSuccess tests to use a type defined in
1.3 shader body
Merge return assumes that the only unreachable blocks are those needed
to keep the structured cfg valid. Even those must be essentially empty
blocks.
If this is not the case, we get unpredictable behaviour. This commit
add a check in merge return, and emits an error if it is not the case.
Added a pass of dead branch elimination before merge return in both the
performance and size passes. It is a precondition of merge return.
Fixes#1962.
The current implementation in the folder when seeing a division by zero
is to assert. In the release build, the compiler will attempt to
compute the value, which causes its own problems.
The solution I will go with is to fold the division, and just give it
the value of 0. The same goes for remainder and mod operations.
Fixes#1961.
This commit checks the following when Shader capability exists:
"The FPRoundingMode decoration can be applied only to a width-only
conversion instruction that is used as the Object operand of an
OpStore storing through a pointer to a 16-bit floating-point object
in the StorageBuffer, Uniform, PushConstant, Input, or Output
Storage Classes.".
The HlslCounterBufferGOOGLE that was introduced changed the OpDecorateId
so that is can now reference an id other than the target. If that other
id is used only in the decoration, then the definition of the id will be
removed because decoration do not count as real uses.
However, if the target of the decoration is still live the decoration
will not be removed. This leaves a reference to an id that is not
defined.
There are two solutions to consider. The first is that is the decoration
is kept, then the definition of the id should be kept live. Implementing
this change would be involved because the way ADCE handles decorations
will have to be reimplemented.
The other solution is to remove the decoration the id is otherwise dead.
This works for this specific case. Also this is the more desirable
behaviour in this case. The id will always be the id of a variable that
belongs to a descriptor set. If that variable is not bound and we do
not remove it, the driver will complain.
I chose to implement the second solution. The first will be left to when
a case for it comes up.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/1885.
This commit will change the message for unknown extensions from an error
to a warning.
Code was added to limit the number of warning messages so that consummer
of the messages are not overwhelmed. This is standard practice in
compilers.
Many other issues were found at while looking into this. They have been
documented in #1950.
Fixes http://crbug.com/875547.
* Check rules from Execution Mode tables, 2.16.2 and the Vulkan
environment spec
* Allows MeshNV execution model with the following execution modes
* LocalSize, LocalSizeId, OutputPoints and OutputVertices
* Done to not break their validation
There are a few spots where copy propagate arrays is trying
to go from a Type to an id, but the type is not unique. When generating
code this pass needs specific ids, otherwise we get type mismatches.
However, the ambigous types means we can sometimes get the wrong type
and generate invalid code.
That code has been rewritten to not rely on the type manager, and just
look at the instructions instead.
I have opened https://github.com/KhronosGroup/SPIRV-Tools/issues/1939 to
try to get a way to make this more robust.
In DecorationManager::RemoveDecorationsFrom, we do not remove the id
from a decoration group if the group has no decorations. This causes
problems because KillNamesAndDecorates is suppose to remove all
references to the id, but in this case, there is still a reference.
This is fixed by adding a special case.
Also, there is the possibility of a double free because
RemoveDecorationsFrom will delete the instructions defining |id| when
|id| is a decoration group. Later, KillInst would later write to memory
that has been deleted when trying to turn it into a Nop. To fix this,
we will only remove the decorations that use |id| and not its definition
in RemoveDecorationsFrom.
OpPhi instruction must appear before all non-OpPhi instructions
except for OpLine. Without this commit, Validator does not check
the case that an OpPhi is preceeded by an OpLine and the OpLine is
preceeded by a non-OpPhi instruction that is not OpLine.
Checked all instructions whose object is OpTypeSampledImage or
OpTypeImage as suggested in #487. OpImageTexelPointer instruction
is missing and others look good. This commit adds only
OpImageTexelPointer.
This CL removes the use of SetContextMessageConsumer from the
binary_parse_test tests and creates a Context object and uses
SetMessageConsumer instead.
Instead of using the source/table.h methods, this CL switches the stats
tool to use the spvtools::Context class and assign the message consumer
through the public API.
A limit of 0 for the scalar replacement options it used to indicate that
there is no limit. The current implementation does not allow 0. This
should be fixed.
It seems like the current implementation of KillNameAndDecorates does
not handle group decorations correctly. The id being removed is not
removed from the OpGroupDecorate instructions. Even worst, any
decorations that apply to that group are removed.
The solution is to use the function in the decoration manager that will
remove the decorations and update the instructions instead of doing the
work itself.
Adds unrolling to the legalization passes.
After enabling unrolling I found a bug when there is a self-referencing
phi node. That has been fixed.
The test that checks for that the order of optimizations is correct also
needed to be updated.
The current implementation of merge return can create bad, but correct,
code. When it is not in a loop construct, it will insert a lot of
extra branch around code. The potentially large number of branches are
bad. At the same time, it can separate code store to variables from
its uses hiding the fact that the store dominates the load.
This hurts the later analysis because the compiler thinks that multiple
values can reach a load, when there is really only 1. This poorer
analysis leads to missed optimizations.
The solution is to create a dummy loop around the entire body of the
function, then we can break from that loop with a single branch. Also
only new merge nodes would be those at the end of loops meaning that
most analysies will not be hurt.
Remove dead code for cases that are no longer possible.
It seems like some drivers expect there the be an OpSelectionMerge
before conditional branches, even if they are not strictly needed.
So we add them.
* Create structed cfg analysis.
There are lots of optimization that have to traverse the CFG in a
structured order just because it wants to know which constructs a
basic block in contained in. This adds extra complexity to these
optimizations, for causes too much refactoring of older optimizations.
To help with this problem, I have written an analysis that can give this
information.
* Identify branches breaking from loops.
Dead branch elimination does a search for a conditional branch to the
end of the current selection construct. This search assumes that the
only way to leave the construct is through the merge node. But that is
not true. The code can jump to the merge node of a loop that contains
the construct.
The search needs to take this into consideration.
In merge blocks, we do not allow the merging of two blocks with merge
instructions. This is because if the two block are merged only 1 of
those instructions can exists. However, if the successor block is the
merge block of the predecessor, then we can delete the merge instruction
in the predecessor. In this case, we are able to merge the blocks.
* Create a new entry point for the optimizer
Creates a new struct to hold the options for the optimizer, and creates
an entry point that take the optimizer options as a parameter.
The old entry point that takes validator options are now deprecated.
The validator options will be one of the optimizer options.
Part of the optimizer options will also be the upper bound on the id bound.
* Add a command line option to set the max value for the id bound. The default is 0x3FFFFF.
* Modify `TakeNextIdBound` to return 0 when the limit is reached.
Support collapsed into one commit:
- Asm/Dis support for SPV_KHR_vulkan_memory_model
- Add Vulkan mem model image operands to switch
- Add TODO for source/validate_image.cpp
- val: Image operands NonPrivateTexelKHR, VolatileTexelKHR have no operands
This is required for memory model tests to pass SPIR-V validation.
- Round trip tests: Test new flags on OpCopyMemory*
This splits the spvtools_config into a public and private part to avoid
leaking internal bits to dependents. A new target is added for the
public headers so that "gn check" works for dependents.
Also formats test/fuzzers/BUILD.gn
* Validate all type ids.
The validator does not check if the type of an instruction is actually
a type unless the OpCode has a specific requirement. For example,
OpFAdd is checked, but OpUndef is not.
The commit add a generic check that if there is a type id then the id
defines a type.
http://crbug.com/876694
* Merge other checks for type into new one.
There are a couple check that the type id is a type for specific
opcodes. Those have been mereged into 1.
Small changes to other test cases to make them valid enough for the
purpose of the test.
In the specification of `OpTypeFunction`, it says
> OpFunction is the only valid use of OpTypeFunction.
This commit add a check in the validator for this rule.
A test started to fail because the new check happens before the check
the test case is testing. Updated the test case to still fail the
check it was suppose to fail originally.
http://crbug.com/874571
* Copy decorations when creating new ids.
When creating a new value based on an old value, we need to copy the
decorations to the new id. This change does this in 3 places:
1) The variable holding the return value of the function generated by
merge return should get decorations from the function.
2) The results of the OpPhi instructions should get decorations from the
variable they are replacing in the ssa writer.
3) In local access chain convert the intermediate struct (result of
OpCompositeInsert) generated for the store replacement should get its
decorations from the variable being stored to.
Fixes#1787.
If seems like at least 1 driver does not like a condition jump to the end
of a selection construct. We are generating these in the merge return
pass. This change stops merge return from generating this sequence.
Part of #1861.
When doing predicate blocks, we need to traverse every block in
structured order in order to keep track of which construct a block is
contained in. The standard way of traversing code in structured order
is to create a list with all of the nodes in order. However, when
predicating blocks, new blocks are created, and those blocks are missed.
This causes branches that go too far.
The solution is to update the order as new blocks are created. Since
we are using an std::list, we do not have to worry about invalidation of
iterators when changing the list.
* Split constant opcode validation out of idUsage and into
validate_constants.cpp
* minor style fixes
* reduced duplication
* fixed an issue with array sizing
* Refactor PredicateBlocks
Refactor PredicateBlocks so that we know which constructs a return
is contained in. Will be used later.
* Have PredicateBlocks jump the existing merge blocks.
In PredicateBlocks, we currently skip instructions with side effects,
but it still follows the same control flow (sort-of). This causes a
problem, when we are trying to predicate code in a loop. We skip all
of the code with side effects (IV increment), but still follow the
same control flow (jump back the start of the loop). This creates an
infinite loop because the code will keep jumping back to the start of
the loop without changing the values that effect the exit condition.
This is a large change to merge-return. When predicating a block that
is in a loop or merge construct, it will jump to the merge block of the
construct. Once out of all constructs we will generate code as we did
before.
* Handle breaks from structured-ifs in DCE.
dead code elimination assumes that are conditional branches except for
breaks and continues in loops will have an OpSelectionMerge before them.
That is not true when breaking out of a selection construct.
The fix is to look for breaks in selection constructs in the same place
we look for breaks and continues for loops.
When dead-branch-elim folds a conditional branch, it also deletes the
OpSelectionMerge instruction. If that construct contains a
conditional branch to the merge node, it will not have its own
OpSelectionMerge. When the headers merge instruction is deleted, the
the inner conditional branch will no longer be legal. It will be a
selection to a node that is not a merge node.
We fix this up by moving the OpSelectionMerge to a new location if it is
still needed.
This forks the testing harness from https://github.com/google/shaderc
to allow testing CLI tools.
New features needed for SPIRV-Tools include:
1- A new PlaceHolder subclass for spirv shaders. This place holder
calls spirv-as to convert assembly input into SPIRV bytecode. This is
required for most tools in SPIRV-Tools.
2- A minimal testing file for testing basic functionality of spirv-opt.
Add tests for all flags in spirv-opt.
1. Adds tests to check that known flags match the names that each pass
advertises.
2. Adds tests to check that -O, -Os and --legalize-hlsl schedule the
expected passes.
3. Adds more functionality to Expect classes to support regular
expression matching on stderr.
4. Add checks for integer arguments to optimization flags.
5. Fixes#1817 by modifying the parsing of integer arguments in
flags that take them.
6. Fixes -Oconfig file parsing (#1778). It reads every line of the file
into a string and then parses that string by tokenizing every group of
characters between whitespaces (using the standard cin reading
operator). This mimics shell command-line parsing, but it does not
support quoting (and I'm not planning to).
When doing the validator checks, an instruction is currently registered
at the end of IdPass. This creates an inconsistency. In IdPass, an
instruction that uses its own result will treat that use as a forward
reference. Then in the following passes it will not because the
definition can be found.
It seems best to update the state after all of the check have been done
for the current instruction. This makes it consistent for all of the
passes.
This makes a different when trying to verify OpTypeStruct.
Fixes https://crbug.com/874372.
In local-access-chain-convert, we replace loads by load the entire
variable, then doing the extract. The extract will have the same value
as the load. However, if the load has a decoration on it, the
decoration is lost because we do not copy any them to the new id.
This is fixed by rewritting the load into the extract and keeping the
same result id.
This change has the effect that we do not call DCEInst on the loads
because the load is not being deleted, but replaced. This could leave
OpAccessChain instructions around that are not used. This is not a
problem for -O and -Os. They run local_single_*_elim passes and then
dead code elimination. The dce will remove the unused access chains,
and the load elimination passes work even if there are unused access
chains. I have added test to them to ensure they will not loss
opportunities.
Fixes#1787.
The code in source/message was only used in a single set of tests to
format the output results. This CL changes the test to verify the
message instead of all the error values and removes the source/message
code.
* Moved function opcode validation out of idUsage and into new files
* minor style changes
* General opcode checking is in validate_function.cpp
* Execution limitation checking is in
validate_execution_limitations.cpp
* Execution limitations was split into a new pass as it requires other
validation to register those limitations first.
* Changed entry point validation to check storage class of variable
instead of pointer
* added a test
* Moved several checks after opcode validation
* These checks should be able to guarantee individual instructions are
ok
* Updated tests due to reordered checks
* Moved type instruction validation out of validation idUsage into a new
file
* Consolidate type unique pass into new file
* Removed one bad test
* Reworked validation ordering
* Run the validator in the optimization fuzzers.
The optimizers assumes that the input to the optimizer is valid. Since
the fuzzers do not check that the input is valid before passing the
spir-v to the optimizer, we are getting a few errors.
The solution is to run the validator in the optimizer to validate the
input.
For the legalization passes, we need to add an extra option to the
validator to accept certain types of variable pointers, even if the
capability is not given. At the same time, we changed the option
"--legalize-hlsl" to relax the validator in the same way instead of
turning it off.
Fixes#1800
* Refactored duplication of code between OpCopyMemory and
OpCopyMemorySized validation
* Fixed some bugs in OpCopyMemorySized validation
* Replaced asserts with checks
* Added new tests
* Replaced uses in opcode validation of current_function()
* Added non-const accessor to function lookup in ValidationState_t
* Updated a couple bad tests due to check reordering
1.
BUILD.gn: Don't use the extra Chromium clang warnings
Also removes the unused .gn secondary_sources.
2.
Move fuzzers in test/ instead of testing/
This frees up testing/ to be the git subtree of Chromium's src/testing/
that contains test.gni, gtest, gmock and libfuzzer
3.
DEPS: get the whole testing/ subtree of Chromium
4.
BUILD.gn: Simplify the standalone gtest targets
These targets definitions are inspired from ANGLE's and add a variable
that is the path of the googletest directory so that it can be made
overridable in future commits.
6.
BUILD.gn: Add overridable variables for deps dirs
This avoids hardcoded paths to dependencies that make it hard to
integrate SPIRV-Tools in other GN projects.
When validating a FunctionCall we can trigger an assert if we are not
currently within a function body. This CL adds verification that we are
within a function before attempting to add a function call.
Issue 1789.
In the merge return pass, we will split a block, but not update the phi
instructions that reference the block. Since the branch in the original
block is now part of the block with the new id, the phi nodes must be
updated.
This commit will change this.
I have also considered other places where an id of a basic block could
be referenced, and I don't think any of them need to change.
1) Branch and merge instructions: These jump to the start of the
original block, and so we want them to jump to the block that uses the
original id. Nothing needs to change.
2) Names and decorations: I don't think it matters with block keeps the
name, and there are no decorations that apply to basic blocks.
Fixes#1736.
Many of the files have using std::<foo> statements in them, but then the
use of <foo> will be inconsistently std::<foo> or <foo> scattered
through the file. This CL removes all of the using statements and
updates the code to have the required std:: prefix.
This CL removes the two diag() overloads and leaves only the version
which accepts an Instruction. This is safer as we never use the
implicit location from the validation state.
When creating a new phi for a value in the function, merge return will
rewrite all uses of an id that are no longer dominated by its
definition. Uses that are not in a basic block, like OpName or
decorations, are not dominated, but they should not be replaced.
Fixes#1736.
This CL updates the diag() calls in validate_cfg to provide the
associated instruction. This fixes a couple places where we output the
last line of the file instead of the instruction as the disassembly.
This CL changes validate.cpp to use diag providing an explicit
instruction. This changes the result of the function end checks to not
output a disassembly anymore as printing the last line of the module
didn't seem to make sense.
* Combines OpAccessChain, OpInBoundsAccessChain, OpPtrAccessChain and
OpInBoundsPtrAccessChain
* New folding rule to fold add with 0 for integers
* Converts to a bitcast if the result type does not match the operand
type
V
Currently, some instructions will be missing from the list of
ordered_instructions. This will cause issues due to the debug change
which passed the last instruction into subsequent passes.
This CL moves the addition to the ordered list out of the
RegisterInstruction method into AddOrderedInstruction. This method is
called first in ProcessInstruction and the CapabilitiesPass and IdPass
are updated to take an Instruction parameter.
This CL removes the redundant operator name from the error messages in
validate_composites. The operator will be printed on the next line with
the disassembly.
This CL splits the switch in ImagePass into individual validate
functions. The error messages have been updated to drop the
suffix/prefix of the opcode name since it will be displayed in the
disassembly.
This re-implements the -Oconfig=<file> flag to use a new API that takes
a list of command-line flags representing optimization passes.
This moves the processing of flags that create new optimization passes
out of spirv-opt and into the library API. Useful for other tools that
want to incorporate a facility similar to -Oconfig.
The main changes are:
1- Add a new public function Optimizer::RegisterPassesFromFlags. This
takes a vector of strings. Each string is assumed to have the form
'--pass_name[=pass_args]'. It creates and registers into the pass
manager all the passes specified in the vector. Each pass is
validated internally. Failure to create a pass instance causes the
function to return false and a diagnostic is emitted to the
registered message consumer.
2- Re-implements -Oconfig in spirv-opt to use the new API.
Fixes#1731
* Updated folding rules related to vector shuffle to account for the
undef literal value:
* FoldVectorShuffleFeedingShuffle
* FoldVectorShuffleFeedingExtract
* FoldVectorShuffleWithConstants
* These rules would commit memory violations due to treating the undef
literal value as an accessible composite component
Fixes#1727
* If the pass finds any dead branches it can optimize then at the end of
the pass it reorders basic blocks to ensure they satisfy block ordering
requirements
* Added some new tests
* While investigating this issue, found and fixed a non-deterministic
ordering of dominators
* Now the edges used to construct the dominator tree are sorted
according to posorder traversal indices
This CL updates the code to pull a valid instruction for the line number
when outputting a component error in OpVectorShuffle. The error line
isn't the best at this point as it points at the component, but it's
better then a -1 (turning to max<size_t>) that was being output.
The error messages has been updated to better reflect what the error is
attempting to say.
Issue 1719.
With current implementation, the constant manager does not keep around
two constant with the same value but different types when the types
hash to the same value. So when you start looking for that constant you
will get a constant with the wrong type back.
I've made a few changes to the constant manager to fix this. First off,
I have changed the map from constant to ids to be an std::multimap.
This way a single constant can be mapped to mutiple ids each
representing a different type.
Then when asking for an id of a constant, we can search all of the ids
associated with that constant in order to find the one with the correct
type.
When folding an OpVectorShuffle where the first operand is defined by
an OpVectorShuffle, is unused, and is equal to the second, we end up
with an infinite loop. This is because we think we change the
instruction, but it does not actually change. So we keep trying to
folding the same instruction.
This commit fixes up that specific issue. When the operand is unused,
we replace it with Null.
When folding a vector shuffle that feeds another vector shuffle causes
the size of the first operand to change, when other indices have to be
adjusted reletive to the new size.
The function class provides a {Set|Get}Parent call in order to provide
the context to the LoopDescriptor methods. This CL removes the module
from Function and provides the needed context directly to LoopDescriptor
on creation.
This CL removes the context() method from opt::Function. In the places
where the context() was used we can retrieve, or provide, the context in
another fashion.
Currently the IRContext is passed into the Pass::Process method. It is
then up to the individual pass to store the context into the context_
variable. This CL changes the Run method to store the context before
calling Process which no-longer receives the context as a parameter.