include: Add target environment enums for OpenCL 1.2 and 2.0
Validator: Validate OpenCL capabilities
Update validate capabilities to handle embedded profiles
Add test for OpenCL capabilities validation
Update messages to mention the OpenCL profile used
Re-format val_capability_test.cpp
Adds a scalar replacement pass. The pass considers all function scope
variables of composite type. If there are accesses to individual
elements (and it is legal) the pass replaces the variable with a
variable for each composite element and updates all the uses.
Added the pass to -O
Added NumUses and NumUsers to DefUseManager
Added some helper methods for the inst to block mapping in context
Added some helper methods for specific constant types
No longer generate duplicate pointer types.
* Now searches for an existing pointer of the appropriate type instead
of failing validation
* Fixed spec constant extracts
* Addressed changes for review
* Changed RunSinglePassAndMatch to be able to run validation
* current users do not enable it
Added handling of acceptable decorations.
* Decorations are also transfered where appropriate
Refactored extension checking into FeatureManager
* Context now owns a feature manager
* consciously NOT an analysis
* added some test
* fixed some minor issues related to decorates
* added some decorate related tests for scalar replacement
Adds a pass that looks for redundant instruction in a function, and
removes them. The algorithm is a hash table based value numbering
algorithm that traverses the dominator tree.
This pass removes completely redundant instructions, not partially
redundant ones.
Creates a pass that removes redundant instructions within the same basic
block. This will be implemented using a hash based value numbering
algorithm.
Added a number of functions that check for the Vulkan descriptor types.
These are used to determine if we are variables are read-only or not.
Implemented a function to check if loads and variables are read-only.
Implemented kernel specific and shader specific versions.
A big change is that the Combinator analysis in ADCE is factored out
into the IRContext as an analysis. This was done because it is being
reused in the value number table.
Each instruction is given an unique id that can be used for ordering
purposes. The ids are generated via the IRContext.
Major changes:
* Instructions now contain a uint32_t for unique id and a cached context
pointer
* Most constructors have been modified to take a context as input
* unfortunately I cannot remove the default and copy constructors, but
developers should avoid these
* Added accessors to parents of basic block and function
* Removed the copy constructors for BasicBlock and Function and replaced
them with Clone functions
* Reworked BuildModule to return an IRContext owning the built module
* Since all instructions require a context, the context now becomes the
basic unit for IR
* Added a constructor to context to create an owned module internally
* Replaced uses of Instruction's copy constructor with Clone whereever I
found them
* Reworked the linker functionality to perform clones into a different
context instead of moves
* Updated many tests to be consistent with the above changes
* Still need to add new tests to cover added functionality
* Added comparison operators to Instruction
* Added an internal option to LinkerOptions to verify merged ids are
unique
* Added a test for the linker to verify merged ids are unique
* Updated MergeReturnPass to supply a context
* Updated DecorationManager to supply a context for cloned decorations
* Reworked several portions of the def use tests in anticipation of next
set of changes
Works with current DefUseManager infrastructure.
Added merge return to the standard opts.
Added validation to passes.
Disabled pass for shader capabilty.
There are a number of users of spriv-opt that are hitting errors
because of stores with different types. In general, this is wrong, but,
in these cases, the types are the exact same except for decorations.
The options is "--relax-store-struct", and it can be used with the
validator or the optimizer.
We assume that if layout information is missing it is consistent. For
example if one struct has a offset of one of its members, and the other
one does not, we will still consider them as being layout compatible.
The problem will be if both struct has and offset decoration for
corresponding members, and the offset are different.
There does not seem to be any pass that remove global variables. I
think we could use one. This pass will look specifically for global
variables that are not referenced and are not exported. Any decoration
associated with the variable will also be removed. However, this could
cause types or constants to become unreferenced. They will not be
removed. Another pass will have to be called to remove those.
- Adds a new pass CFGCleanupPass. This serves as an umbrella pass to
remove unnecessary cruft from a CFG.
- Currently, the only cleanup operation done is the removal of
unreachable basic blocks.
- Adds unit tests.
- Adds a flag to spirvopt to execute the pass (--cfg-cleanup).
- switched from C to C++
- moved MARK-V model creation from backend to frontend
- The same MARK-V model object can be used to encode/decode multiple
files
- Added MARK-V model factory (currently only one option)
- Added --validate option to spirv-markv (run validation while
encoding/decoding)
These flags are expanded to a series of spirv-opt flags with the
following semantics:
-O: expands to passes that attempt to improve the performance of the
generated code.
-Os: expands to passes that attempt to reduce the size of the generated
code.
-Oconfig=<file> expands to the sequence of passes determined by the
flags specified in the user-provided file.
Add extra iterators for ir::Module's sections
Add extra getters to ir::Function
Add a const version of BasicBlock::GetLabelInst()
Use the max of all inputs' version as version
Split debug in debug1 and debug2
- Debug1 instructions have to be placed before debug2 instructions.
Error out if different addressing or memory models are found
Exit early if no binaries were given
Error out if entry points are redeclared
Implement copy ctors for Function and BasicBlock
- Visual Studio ends up generating copy constructors that call deleted
functions while compiling the linker code, while GCC and clang do not.
So explicitly write those functions to avoid Visual Studio messing up.
Move removing duplicate capabilities to its own pass
Add functions running on all IDs present in an instruction
Remove duplicate SpvOpExtInstImport
Give default options value for link functions
Remove linkage capability if not making a library
Check types before allowing to link
Detect if two types/variables/functions have different decorations
Remove decorations of imported variables/functions and their types
Add a DecorationManager
Add a method for removing all decorations of id
Add methods for removing operands from instructions
Error out if one of the modules has a non-zero schema
Update README.md to talk about the linker
Do not freak out if an imported built-in variable has no export
Creates a pass called eliminate dead functions that looks for functions
that could never be called, and deletes them from the module.
To support this change a new function was added to the Pass class to
traverse the call trees from diffent starting points.
Includes a test to ensure that annotations are removed when deleting a
dead function. They were not, so fixed that up as well.
Did some cleanup of the assembly for the test in pass_test.cpp. Trying
to make them smaller and easier to read.
Create a new optimization pass, strength reduction, which will replace
integer multiplication by a constant power of 2 with an equivalent bit
shift. More changes could be added later.
- Does not duplicate constants
- Adds vector |Concat| utility function to a common test header.
Only inline calls to functions with opaque params or return
TODO: Handle parameter type or return type where the opqaue
type is buried within an array.
ADCE will now generate correct code in the presence of function calls.
This is needed for opaque type optimization needed by glslang. Currently
all function calls are marked as live. TODO: mark calls live only if they
write a non-local.
- UniformElim: Only process reachable blocks
- UniformElim: Don't reuse loads of samplers and images across blocks.
Added a second phase which only reuses loads within a block for samplers
and images.
- UniformElim: Upgrade CopyObject skipping in GetPtr
- UniformElim: Add extensions whitelist
Currently disallowing SPV_KHR_variable_pointers because it doesn't
handle extended pointer forms.
- UniformElim: Do not process shaders with GroupDecorate
- UniformElim: Bail on shaders with non-32-bit ints.
- UniformElim: Document support for only single index and add TODO.
Create aggressive dead code elimination pass
This pass eliminates unused code from functions. In addition,
it detects and eliminates code which may have spurious uses but which do
not contribute to the output of the function. The most common cause of
such code sequences is summations in loops whose result is no longer used
due to dead code elimination. This optimization has additional compile
time cost over standard dead code elimination.
This pass only processes entry point functions. It also only processes
shaders with logical addressing. It currently will not process functions
with function calls. It currently only supports the GLSL.std.450 extended
instruction set. It currently does not support any extensions.
This pass will be made more effective by first running passes that remove
dead control flow and inlines function calls.
This pass can be especially useful after running Local Access Chain
Conversion, which tends to cause cycles of dead code to be left after
Store/Load elimination passes are completed. These cycles cannot be
eliminated with standard dead code elimination.
Additionally: This transform uses a whitelist of instructions that it
knows do have side effects, (a.k.a. combinators). It assumes other
instructions have side effects: it will not remove them, and assumes
they have side effects via their ID operands.
A SSA local variable load/store elimination pass.
For every entry point function, eliminate all loads and stores of function
scope variables only referenced with non-access-chain loads and stores.
Eliminate the variables as well.
The presence of access chain references and function calls can inhibit
the above optimization.
Only shader modules with logical addressing are currently processed.
Currently modules with any extensions enabled are not processed. This
is left for future work.
This pass is most effective if preceeded by Inlining and
LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim
will reduce the work that this pass has to do.
Command line application is located at tools/spirv-markv
API at include/spirv-tools/markv.h
At the moment only very basic compression is implemented, mostly varint.
Scope of supported SPIR-V opcodes is also limited.
Using a simple move-to-front implementation instead of encoding mapped
ids.
Work in progress:
- Does not cover all of SPIR-V
- Does not promise compatibility of compression/decompression across
different versions of the code.
Add --flatten-decorations to spirv-opt
Flattens decoration groups. That is, replace OpDecorationGroup
and its uses in OpGroupDecorate and OpGroupMemberDecorate with
ordinary OpDecorate and OpMemberDecorate instructions.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/602
Supported in assembler, disassembler, and binary parser.
The validator does not check SPV_AMD_gcn_shader validation rules
beyond parsing the extension.
Adds generic support for generating instruction tables for vendor
extensions.
Adds generic support for extensions the validator should recognize
(but not check) but which aren't derived from the SPIR-V core
grammar file.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/594
The limit for the number of struct members is parameterized using
command line options.
Add --max-struct-depth command line option.
Add --max-switch-branches command line option.
Add --max-function-args command line option.
Add --max-control-flow-nesting-depth option.
Add --max-access-chain-indexes option.
Number of components in a vector can be 2 or 3 or 4. If Vector16
capability is used, 8 and 16 components are also allowed.
Also added unit tests for vector data rule.
Every time an event happens in the library that the user should be
aware of, the callback will be invoked.
The existing diagnostic mechanism is hijacked internally by a
callback that creates an diagnostic object each time an event
happens.
Add a high level version number for SPIRV-Tools, beginning
with v2016.0-dev. The README describes the format of the
version number.
The high level version number is extracted from the CHANGES
file. That works around:
- stale-bait for when we don't add tags to the repository
- our inability to add tags to the repository
Option --version causes spirv-as, spirv-dis, and spirv-val to
show the high level version number.
Add spvSoftwareVersionString to return the C-string for
the high level version number.
Add spvSoftwareVersionDetailsString() so that clients can get
more information if they want to.
Also allows us to clean up the uses in the tool executables files,
so now only one file includes build-version.inc.
Move the update-build-version logic to the only
CMakeLists file that needs it.
The update build version script takes a new argument
to name the output file.
Add test for named-barrier instructions and capability.
Add spv_target_env as an optional argument to CompileSuccessfully() and
CompileFailure(). Currently defaults to UNIVERSAL_1_0, though that
could change in the future.
Make spv_context a local variable in test methods instead of a
TextToBinaryTestBase member. Introduce ScopedContext to make temp
contexts easier.
For fulfilling this purpose, the |opcode| field in the
|spv_parsed_instruction_t| struct is changed to of type uint16_t.
Also add functions to query the information of a given SPIR-V
target environment.
Previously, the grammar allowed many execution modes for a single
OpExecutionMode instruction.
Removes the variable- and optional- execution mode operand type
enum values.
Issue found by antiagainst@
Users always want to run all the checks. The spv_validate_options_t
mechanism, which provides little benefits to users, complicates the
internal implementation and also makes the tests exercise different
paths as users do.
Right now the tests are more like integration tests instead of
unit tests, which should be our next refactoring aim.
Now we have public headers arranged as follows:
$SPIRV_TOOLS_ROOT/include/spirv-tools/libspirv.h
$SPIRV_TOOLS_ROOT/include/spirv/spirv.h
$SPIRV_TOOLS_ROOT/include/spirv/GLSL.std.450.h
$SPIRV_TOOLS_ROOT/include/spirv/OpenCL.std.h
A project should use -I$SPIRV_TOOLS_ROOT/include
and then #include "spirv-tools/libspirv.h"
The headers from the SPIR-V Registry can be accessed as "spirv/spirv."
for example.
The install target should also install the headers from the SPIR-V
Registry. The libspirv.h header is broken otherwise.
The SPIRV-Tools library depends on the headers from the SPIR-V Registry.
The util/bitutils.h and util/hex_float.h are pulled into the internal
source tree. Those are not part of the public API to SPIRV-Tools.
- The SPIR-V spec generator has changed how it represents optional
operands. Now it tracks a separate boolean flag indicating optionality.
However, SPIRV-Tools still wants to represent both operand class
and optionality in the same enums space (SPV_OPERAND_TYPE_*).
So there's extra work in the patch.
- In the spec generator, OperandImage is now OperandImageOperands.
This affects enum translation in opcode.cpp.
- In the spec generator, image operands are explicitly followed by
Id, and VariableIds. However, SPIRV-Tools uses the bits set
in the image operand bitmask to control the number and meaning
of the Ids that follow. So in writing the opcode.inc syntax
table, drop all operands after OperandImageOperands.
- Some enums are now more explicitly represented in the generated
opcode.inc:
- AccessQualifier (e.g. on OpTypeImage), in both required and
optional flavours.
- MemoryAccess (e.g. on loads and stores)
- Add SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER
- Add tests for the optional AccessQualifier operand on OpTypeImage.
- Update the AccessQualifier test for OpTypeImage so it's a round
trip test through the disassembler as well.
- For 32- and 64-bit floats, overflow is a parse error
This works around a difference between Xcode's istringstream
and other platforms. Xcode's runtime library will happlily
"round up" overflow values to infinity. We want to make it fail.
- When parsing a float fails due to bad syntax, follow C++11
behaviour for operator>> and set the value to zero.
- When parsing a 32-bit or 64-bit float overflows, follow C++11
behaviour for operator>> and set the value to the nearest
normal value: either max or lowest finite value for the type.
- Add FloatProxy<T>::max() and ::lowest()
- Make 16-bit overflow behaviour more consistent: we always get a
16-bit infinity of the right sign, whether the original string
is a normal value for 32-bit or an overflow value for 32-bit.
That matches our earlier intent.
Added TODO's to make 16-bit overflow always an error, just like
for 32-bit and 64-bit.
- Simplify normal parsing of Float16 values by delegating to
normal parsing of 32-bit floats.
Added additional compilation flags to gcc and clang builds.
Adds -Wall -Wextra -Wno-long-long -Wshadow -Wundef -Wconversion
-WNo-sign-conversion and -Wno-missing-field-initializers
where appropriate.
Does not add -Wundef to tests, because GTEST tests undefined
macros all over the place.
This adds half-precision constants to spirv-tools.
16-bit floats are always disassembled into hex-float format,
but can be assembled from floating point or hex-float inputs.
* Validates module level instructions for logical layout
conformance
* Does not validate:
1. Function logical layout
2. Minor cases with OpVariable
3. Missing MemoryModel instruction in module
4. Order of function definition and function declaration
* 782 unit tests for logical layout
Addressed feedback
Most uses of an ID must occur after the definition
of the ID. Forward references are allowed for
things like OpName, OpDecorate, and various cases
of control-flow instructions such as OpBranch, OpPhi,
and OpFunctionCall.
TODO: Use CFG analysis for SSA checks. In particular,
an ID defined inside a function body is only usable inside
that function body. Also, use dominator info to catch
some failing cases.
Also:
* Validator test cases use (standard) assignment form.
* Update style to more closely follow the Google C++ style guide
* Remove color-diagnostics flag.
This is enabled by default on terminals with color. Prints
hidden ASCII for terminals that can't handle color(Emacs)
* Pass functors to SSAPass to check if the
operand can be forward referenced based on its index value
* Return SPV_ERROR_INVALID_ID for ID related errors
spvBinaryParse returned SPV_ERROR_INVALID_BINARY for all types of
errors. Since spvBinaryParse does some ID validation, this was
returning inappropriate error codes for some tests.
* Common fixture for validation tests.
It only runs certian validation passes.
* Add a SPV_VALIDATE_SSA_BIT for testing purposes
* Fixtures now return error codes
* Add OpName support in diag message and unit tests
* Binary parsing can fail with invalid ID or invalid binary error code
Tests include:
* OpDecorate
* OpName
* OpMemberName
* OpBranchConditional
* OpSelectionMerge
* OpMemberDecorate
* OpGroupDecorate
* OpDeviceEnqueue
* Enable several tests failing in ID validation.
Add unit tests for all diagnostics issued by spvBinaryParse.
Handle image format operands in the binary parser and the
disassembler.
Document that the callback function pointers can be null,
in which case they are ignored.
Detect exhaustion of input when parsing an operand,
to avoid buffer overruns on some invalid input cases.
Fix the description strings for some operand types.
Make the diagnostic messages for those operand types
consistent between the assembler and binary parser.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/29
When a callback returns something other than SPV_SUCCESS,
then no futher callbacks are issued (parsing terminates early),
and no additional diagnostics are emitted.
The unit tests already check this behaviour.
Add a non-zero spv_result_t value SPV_REQUESTED_TERMINATION
which should be used to signal an ok result, but signals
early termination for a process, such as binary parsing.
Tests include:
- correct contents sent to header and instruction callbacks
- non-zero status from a callback should terminate parsing,
but the parser should not generate its own diagnostic.
TODO: Check diagnostics generated by the parser itself.
Add members:
- words: a pointer to an array of words in the instruction,
in host native endianness.
- num_words: sizes the words member
Remove member:
- offset
This simplifies clients of spvBinaryParse, because they don't
have to handle endianness translation.
Also, it makes the binary parse API more composable, allowing
for easy chaining of binary parse clients. A binary parse client
is handed the array of words directly instead of having to reference
some external array of all the words in the SPIR-V binary. It also
allows a binary parse client to mutate the instruction stream before
handing off to a downstream consumer.
TODO(dneto): Still need to write the unit tests for spvBinaryParse
Fixes: https://github.com/KhronosGroup/SPIRV-Tools/issues/1
Fixing some C++ conversion errors.
* Implicit conversion from int to bool.
* Implicit conversion from size_t to uint32_t.
* Implicit conversion from char* to uint8_t.
Adding no-op color operators so unhandled platforms can still link.
- Removed dead configuration in CMakeLists.txt.
- Used target_compile_options() instead of CMAKE_{C|CXX}_FLAGS.
- Turned on warnings on tests.
- Fixed various warnings for comparing signed with unsigned values.
- Removed dead code exposed by compiler warnings.
Don't use SYSTEM attribute on include_directories directive
for the SPIR-V standard header files. When you do, object files
are not considered dependent on those headers.
Checked by looking at the dependency file source/disassemble.cpp.o.d,
and by trying to compile after a trivial edit to spirv.h
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/7
Also, use "" inclusion instead of <> inclusion for standard SPIR-V
headers.
Bits 24-31: 0
Bits 16-23: SPIR-V major number (1)
Bits 8-15: SPIR-V minor number (0)
Bits 0-7: SPIR-V minor number (2)
The assembler will construct the word appropriately,
and the disassemble will print it in major.minor.revision form.
Previously the opcode table is declared as an global array and we
have spvOpcodeTableInitialize() modifying it. That can result in
race condition. Now spvOpcodeTabelGet() copies the whole underlying
array.
Replaced uint64_t with size_t in the places that make sense and
added spv_const_binary{,_t} to allow the interface to accept non
modifiable spirv where appropriate.
Zero and normal floating point values are printed with enough
enough digits to reproduce all the bits exactly.
Other float values (subnormal, infinity, and NaN) are printed
as hex floats.
Fix a binary parse bug: Count partially filled words in a
typed literal number operand.
TODO: Assembler support for hex numbers, and therefore reading
infinities and NaNs.
- Concrete operand types are never optional.
Split them to make this so, e.g. add SPV_OPERAND_TYPE_IMAGE
since there was SPV_OPERAND_TYPE_OPTIONAL_IMAGE.
Similarly for SPV_OPERAND_TYPE_MEMORY_ACCESS.
This entails duplicating two operand table entries.
- The above, plus some rearranging of enums, allows us to define
first and last optional operand types, and first and last
variable operand types.
This lets us simplify the code for spvOperandIsOptional, and
spvOperandIsVariable.
- Replace SPV_OPERAND_TYPE_MULTIWORD_LITERAL_NUMBER with the
more accurately named SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER.
Its special characteristic is that the type of the literal
number is determined by some previous operand in the instruction.
This is used for literals in OpSwitch, OpConstant, and OpSpecConstant.
This lets us refactor operand parsing cases in the assembler.
- Remove the special required-thing-in-optional-tuple in favour of
the corresponding concrete operand type:
SPV_OPERAND_TYPE_ID_IN_OPTIONAL_TUPLE
--> SPV_OPERAND_TYPE_ID
SPV_OPERAND_TYPE_INTEGER_LITERAL_IN_OPTIONAL_TUPLE
--> SPV_OPERAND_TYPE_INTEGER_LITERAL
- Constrain spvOpeandTypeStr to only have to work for non-variable
operand types. Add a test for this.
The binary parser has a C API, described in binary.h.
Eventually we will make it public in libspirv.h.
The API is event-driven in the sense that a callback is called
when a valid header is parsed, and for each parsed instruction.
Classify some operand types as "concrete". The binary parser uses
only concrete operand types to describe parsed instructions.
The old disassembler APIs are moved into disassemble.cpp
TODO: Add unit tests for spvBinaryParse.
Note that we are more strict than Google style for one aspect:
pointer/reference indicators are adjacent to their types, not
their variables.
find . -name "*.h" -exec clang-format -i {} \;
find . -name "*.cpp" -exec clang-format -i {} \;
It is valid for float values to be modified on copy if they are NaN,
so long as they remain the correct NaN. What this means is that
we can not rely on the float data-type for storing float values
if we want to retain bit patterns.
Added FloatProxy which stores data in an unsigned integer, and updated
the HexFloat template to deal with FloatProxy values instead.
This is required to support extended instructions that
have literal numbers as operands. An example is OpenCL's
vloadn.
The previous code in the assembler assumed that *any* literal
number argument in any part of an OpExtInst must be the name
of the extended instruction. That's true only for the first
literal number argument.
Versions 1.2, 2.0, and 2.1 all use the same
extended instruction list.
Updated the source code patch for the SPIR-V doc generator,
so it can both generate the core syntax table, and also the
OpenCL extended instructions table.
Tested the Math and Common functions.
TODO: test the remaining entries.
Except for OpConstant and OpSpecConstant, all other literal number
operands are indeed unsigned integers. So,
* Rename all *LITERAL_NUMBER* operand types to *LITERAL_INTEGER*.
* Expect unsigned integers for *LITERAL_INTEGER* operands.
* Keep MULITPLE_WORD_LITERAL untouched since it is only used by
OpConstant and OpSpecConstant.
And we want to provide the capability to specify floating-point
numbers after !<integer> in the alternate parsing mode. So,
OPTIONAL_LITERAL_NUMBER is reserved for OPTIONAL_CIV.
We need to know how to generate correct SPIRV for cases like
OpConstant %int64 42 since the current parser will encode the 42 as a
32-bit value incorrectly.
This change is the first of a pair. This one tracks types, and makes
sure that OpConstant and OpSpecConstant are only ever called with
Integer or Float types, and OpSwitch is only called with integer
generating values.
Move the definition of spv_instruction_t to an internal
header file, since it now depends on C++ and is not
used by the external interface.
Use a std::vector<uint32_t> in spv_instruction_t
instead of a fixed size array.
Fixes dependencies among capabilities. (The table should store
the mask of capabilites, not the capability enum.)
Remove the old spot check test for capabilities of enums.
All uses of OptionalLiteral by the SPIR-V spec are used
for literal numbers.
Also rename:
- SPV_OPERAND_TYPE_OPTIONAL_LITERAL to
SPV_OPERAND_TYPE_OPTIONAL_LITERAL_NUMBER.
- SPV_OPERAND_TYPE_VARIABLE_LITERAL to
SPV_OPERAND_TYPE_VARIABLE_LITERAL_NUMBER.
- SPV_OPERAND_TYPE_VARIABLE_LITERAL_ID to
SPV_OPERAND_TYPE_VARIABLE_LITERAL_NUMBER_ID.
- SPV_OPERAND_TYPE_VARIABLE_ID_LITERAL to
SPV_OPERAND_TYPE_VARIABLE_ID_LITERAL_NUMBER.
- SPV_OPERAND_TYPE_LITERAL_IN_OPTIONAL_TUPLE to
SPV_OPERAND_TYPE_LITERAL_NUMBER_IN_OPTIONAL_TUPLE.