Fixes#1120
Checks that all static uses of the Input and Output variables are listed
as interfaces in each corresponding entry point declaration.
* Changed validation state to track interface lists
* updated many tests
* Modified validation state to store entry point names
* Combined with interface list and called EntryPointDescription
* Updated uses
* Changed interface validation error messages to output entry point name
in addtion to ID
We replace the std::vector in the Operand class by a new class that does
a small size optimization. This helps improve compile time on Windows.
Tested on three sets of shaders. Trying various values for the small
vector. The optimal value for the operand class was 2. However, for
the Instruction class, using an std::vector was optimal. Size of "0"
means that an std::vector was used.
Instruction size
0 4 8
Operand Size
0 489 544 684
1 593 487
2 469 570
4 473
8 505
This is a single thread run of ~120 shaders. For the multithreaded run
the results were the similar. The basline time was ~62sec. The
optimal configuration was an 2 for the OperandData and an
std::vector for the OperandList with a compile time of ~38sec. Similar
expiriments were done with other sets of shaders. The compile time still
improved, but not as much.
Contributes to https://github.com/KhronosGroup/SPIRV-Tools/issues/1609.
* Adds new pass for validating non-uniform group instructions
* Currently on checks execution scope for Vulkan 1.1 and SPIR-V 1.3
* Added test framework
The unordered_set in ADCE that holds all of the live instructions takes
a very long time to be destroyed. In some shaders, it takes over 40% of
the time.
If we look at the unique ids of the live instructions, I believe they
are dense enough make a simple bit vector a good choice for to hold that
data. When I check the density of the bit vector for larger shaders, we
are usually using less than 4 bytes per element in the vector, and
almost always less than 16.
So, in this commit, I introduce a simple bit vector class, and
use it in ADCE.
This help improve the compile time for some shaders on windows by the
40% mentioned above.
Contributes to https://github.com/KhronosGroup/SPIRV-Tools/issues/1328.
Added a framework for validation of BuiltIn variables. The framework
allows implementation of flexible abstract rules which are required for
built-ins as the information (decoration, definition, reference) is not
in one place, but is scattered all over the module.
Validation rules are implemented as a map
id -> list<functor(instrution)>
Ids which are dependent on built-in types or objects receive a task
list, such as "this id cannot be referenced from function which is
called from entry point with execution model X; propagate this rule
to your descendants in the global scope".
Also refactored test/val/val_fixtures.
All built-ins covered by tests
This patch adds a new option --time-report to spirv-opt. For each pass
executed by spirv-opt, the flag prints resource utilization for the pass
(CPU time, wall time, RSS and page faults)
This fixes issue #1378
Previously we keep a separate static grammar table for opcodes/
operands per SPIR-V version. This commit changes that to use a
single unified static grammar table for opcodes/operands.
This essentially changes how grammar facts are queried against
a certain target environment. There are only limited filtering
according to the desired target environment; a symbol is
considered as available as long as:
1. The target environment satisfies the minimal requirement of
the symbol; or
2. There is at least one extension enabling this symbol.
Note that the second rule assumes the extension enabling the
symbol is indeed requested in the SPIR-V code; checking that
should be the validator's work.
Also fixed a few grammar related issues:
* Rounding mode capability requirements are moved to client APIs.
* Reserved symbols not available in any extension is no longer
recognized by assembler.
The default target is SPIR-V 1.3.
For example, spirv-as will generate a SPIR-V 1.3 binary by default.
Use command line option "--target-env spv1.0" if you want to make a SPIR-V
1.0 binary or validate against SPIR-V 1.0 rules.
Example:
# Generate a SPIR-V 1.0 binary instead of SPIR-V 1.3
spirv-as --target-env spv1.0 a.spvasm -o a.spv
spirv-as --target-env vulkan1.0 a.spvasm -o a.spv
# Validate as SPIR-V 1.0.
spirv-val --target-env spv1.0 a.spv
# Validate as Vulkan 1.0
spirv-val --target-env vulkan1.0 a.spv
Use indirection through latest_version_spirv.h
Also, when generating enum tables, use the unified1 JSON grammar since
it now has FragmentFullyCoveredEXT but the other JSON grammars don't.
They are starting to fall behind.
Add pkg-config file for shared libraries
Properly build SPIRV-Tools DLL
Test C interface with shared library
Set PATH to shared library file for c_interface_shared test
Otherwise, the test won't find SPIRV-Tools-shared.dll.
Do not use private functions when testing with shared library
Make all symbols hidden by default for shared library target
* Added for Instruction, BasicBlock, Function and Module
* Uses new disassembly functionality that can disassemble individual
instructions
* For debug use only (no caching is done)
* Each output converts module to binary, parses and outputs an
individual instruction
* Added a test for whole module output
* Disabling Microsoft checked iterator warnings
* Updated check_copyright.py to accept 2018
Add grammar file for DebugInfo extended instruction set
- Each new operand enum kind in extinst.debuginfo.grammar.json maps
to a new value in spv_operand_type_t.
- Add new concrete enum operand types for DebugInfo
Generate a C header for the DebugInfo extended instruction set
Add table lookup of DebugInfo extended instrutions
Handle the debug info operand types in binary parser,
disassembler, and assembler.
Add DebugInfo round trip tests for assembler, disassembler
Android.mk: Support DebugInfo extended instruction set
The extinst.debuginfo.grammar.json file is currently part of
SPIRV-Tools source.
It contributes operand type enums, so it has to be processed
along with the core grammar files.
We also generate a C header DebugInfo.h.
Add necessary grammar file processing to Android.mk.
The pass checks correctness of operands of instruction in opcode range
OpConvertFToU - OpBitset.
Disabled invalid tests
Disabled UConvert validation until Vulkan CTS can catch up.
Add validate_conversion to Android.mk
Also remove duplicate entry in CMakeLists.txt.
Add extra iterators for ir::Module's sections
Add extra getters to ir::Function
Add a const version of BasicBlock::GetLabelInst()
Use the max of all inputs' version as version
Split debug in debug1 and debug2
- Debug1 instructions have to be placed before debug2 instructions.
Error out if different addressing or memory models are found
Exit early if no binaries were given
Error out if entry points are redeclared
Implement copy ctors for Function and BasicBlock
- Visual Studio ends up generating copy constructors that call deleted
functions while compiling the linker code, while GCC and clang do not.
So explicitly write those functions to avoid Visual Studio messing up.
Move removing duplicate capabilities to its own pass
Add functions running on all IDs present in an instruction
Remove duplicate SpvOpExtInstImport
Give default options value for link functions
Remove linkage capability if not making a library
Check types before allowing to link
Detect if two types/variables/functions have different decorations
Remove decorations of imported variables/functions and their types
Add a DecorationManager
Add a method for removing all decorations of id
Add methods for removing operands from instructions
Error out if one of the modules has a non-zero schema
Update README.md to talk about the linker
Do not freak out if an imported built-in variable has no export
Id descriptors are computed as a recursive hash of all instructions used
to define an id. Descriptors are invarint of actual id values and
the similar code in different files would produce the same descriptors.
Multiple ids can have the same descriptor. For example
%1 = OpConstant %u32 1
%2 = OpConstant %u32 1
would produce two ids with the same descriptor. But
%3 = OpConstant %s32 1
%4 = OpConstant %u32 2
would have descriptors different from %1 and %2.
Descriptors will be used as handles of move-to-front sequences in SPIR-V
compression.
If this is used as a static library in another project, this does not
need to be installed, and otherwise will just clutter the application's install.
To use, define SKIP_SPIRV_TOOLS_INSTALL which internally defines
ENABLE_SPIRV_TOOLS_INSTALL to control installation.
Also include GNUInstallDirs to get standard output 'lib' directory which is sometimes 'lib64' and not 'lib'
Command line application is located at tools/spirv-markv
API at include/spirv-tools/markv.h
At the moment only very basic compression is implemented, mostly varint.
Scope of supported SPIR-V opcodes is also limited.
Using a simple move-to-front implementation instead of encoding mapped
ids.
Work in progress:
- Does not cover all of SPIR-V
- Does not promise compatibility of compression/decompression across
different versions of the code.
Create class to encapsulate control flow analysis and share across
validator and optimizer. A WIP. Start with DepthFirstTraversal. Next
pull in CalculateDominators.
Supported in assembler, disassembler, and binary parser.
The validator does not check SPV_AMD_gcn_shader validation rules
beyond parsing the extension.
Adds generic support for generating instruction tables for vendor
extensions.
Adds generic support for extensions the validator should recognize
(but not check) but which aren't derived from the SPIR-V core
grammar file.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/594
Autogenerating the following code:
- extension enum
- extension-to-string
- string-to-extension
- capability-to-string
Capability mapping table will not compile if incomplete.
TODO: Use "spirv-latest-version.h" instead of 1.1.
Added function to generate capability tables for tests.
Known extensions are saved in validation state. Unknown extension
produce a dignostic message, but do not fail the validation.
Moved extension definitions to their own file.
The limit for the number of struct members is parameterized using
command line options.
Add --max-struct-depth command line option.
Add --max-switch-branches command line option.
Add --max-function-args command line option.
Add --max-control-flow-nesting-depth option.
Add --max-access-chain-indexes option.
Added a new file where all the decoration validation can be performed.
In this change the SPIRV Spec Section 2.16.1 is implemented:
"It is illegal to initialize an imported variable. This means
that a module-scope OpVariable with initialization value cannot be
marked with the Import Linkage Type."
Also added unit tests.
* Added the decoration class as well as the code that registers the
decorations for each <id> and also decorations for struct members.
* Added unit tests for decorations in ValidationState as well as
decoration id tests.
Generate a vim syntax file for SPIR-V assembly.
Copy the resulting spvasm.vim into your $HOME/.vim/syntax directory
to get syntax highlighting in Vim.
Also, suggest that the grammar file include information
about what opcodes can be used in OpSpecConstantOp.