2017-02-09 22:43:40 +00:00
|
|
|
from minitaur import Minitaur
|
|
|
|
import pybullet as p
|
2017-02-16 23:23:46 +00:00
|
|
|
import numpy as np
|
|
|
|
import time
|
2017-02-09 22:43:40 +00:00
|
|
|
import sys
|
2017-02-16 23:23:46 +00:00
|
|
|
import math
|
2017-02-09 22:43:40 +00:00
|
|
|
|
|
|
|
minitaur = None
|
|
|
|
|
2017-02-16 23:23:46 +00:00
|
|
|
evaluate_func_map = dict()
|
|
|
|
|
|
|
|
|
2017-02-09 22:43:40 +00:00
|
|
|
def current_position():
|
|
|
|
global minitaur
|
|
|
|
position = minitaur.getBasePosition()
|
|
|
|
return np.asarray(position)
|
|
|
|
|
|
|
|
def is_fallen():
|
|
|
|
global minitaur
|
|
|
|
orientation = minitaur.getBaseOrientation()
|
2017-03-04 20:59:21 +00:00
|
|
|
rotMat = p.getMatrixFromQuaternion(orientation)
|
2017-02-09 22:43:40 +00:00
|
|
|
localUp = rotMat[6:]
|
|
|
|
return np.dot(np.asarray([0, 0, 1]), np.asarray(localUp)) < 0
|
|
|
|
|
2017-02-16 23:23:46 +00:00
|
|
|
def evaluate_desired_motorAngle_8Amplitude8Phase(i, params):
|
|
|
|
nMotors = 8
|
|
|
|
speed = 0.35
|
|
|
|
for jthMotor in range(nMotors):
|
|
|
|
joint_values[jthMotor] = math.sin(i*speed + params[nMotors + jthMotor])*params[jthMotor]*+1.57
|
|
|
|
return joint_values
|
|
|
|
|
|
|
|
def evaluate_desired_motorAngle_2Amplitude4Phase(i, params):
|
|
|
|
speed = 0.35
|
|
|
|
phaseDiff = params[2]
|
|
|
|
a0 = math.sin(i * speed) * params[0] + 1.57
|
|
|
|
a1 = math.sin(i * speed + phaseDiff) * params[1] + 1.57
|
|
|
|
a2 = math.sin(i * speed + params[3]) * params[0] + 1.57
|
|
|
|
a3 = math.sin(i * speed + params[3] + phaseDiff) * params[1] + 1.57
|
|
|
|
a4 = math.sin(i * speed + params[4] + phaseDiff) * params[1] + 1.57
|
|
|
|
a5 = math.sin(i * speed + params[4]) * params[0] + 1.57
|
|
|
|
a6 = math.sin(i * speed + params[5] + phaseDiff) * params[1] + 1.57
|
|
|
|
a7 = math.sin(i * speed + params[5]) * params[0] + 1.57
|
|
|
|
joint_values = [a0, a1, a2, a3, a4, a5, a6, a7]
|
|
|
|
return joint_values
|
|
|
|
|
|
|
|
def evaluate_desired_motorAngle_hop(i, params):
|
|
|
|
amplitude = params[0]
|
|
|
|
speed = params[1]
|
|
|
|
a1 = math.sin(i*speed)*amplitude+1.57
|
|
|
|
a2 = math.sin(i*speed+3.14)*amplitude+1.57
|
|
|
|
joint_values = [a1, 1.57, a2, 1.57, 1.57, a1, 1.57, a2]
|
|
|
|
return joint_values
|
|
|
|
|
|
|
|
|
|
|
|
evaluate_func_map['evaluate_desired_motorAngle_8Amplitude8Phase'] = evaluate_desired_motorAngle_8Amplitude8Phase
|
|
|
|
evaluate_func_map['evaluate_desired_motorAngle_2Amplitude4Phase'] = evaluate_desired_motorAngle_2Amplitude4Phase
|
|
|
|
evaluate_func_map['evaluate_desired_motorAngle_hop'] = evaluate_desired_motorAngle_hop
|
|
|
|
|
2017-02-09 22:43:40 +00:00
|
|
|
|
2017-02-16 23:23:46 +00:00
|
|
|
|
2017-03-15 22:38:50 +00:00
|
|
|
def evaluate_params(evaluateFunc, params, objectiveParams, urdfRoot='', timeStep=0.01, maxNumSteps=10000, sleepTime=0):
|
2017-02-09 22:43:40 +00:00
|
|
|
print('start evaluation')
|
|
|
|
beforeTime = time.time()
|
|
|
|
p.resetSimulation()
|
|
|
|
|
|
|
|
p.setTimeStep(timeStep)
|
|
|
|
p.loadURDF("%s/plane.urdf" % urdfRoot)
|
|
|
|
p.setGravity(0,0,-10)
|
|
|
|
|
|
|
|
global minitaur
|
|
|
|
minitaur = Minitaur(urdfRoot)
|
|
|
|
start_position = current_position()
|
|
|
|
last_position = None # for tracing line
|
2017-02-16 23:23:46 +00:00
|
|
|
total_energy = 0
|
2017-02-09 22:43:40 +00:00
|
|
|
|
|
|
|
for i in range(maxNumSteps):
|
2017-02-16 23:23:46 +00:00
|
|
|
torques = minitaur.getMotorTorques()
|
|
|
|
velocities = minitaur.getMotorVelocities()
|
|
|
|
total_energy += np.dot(np.fabs(torques), np.fabs(velocities)) * timeStep
|
|
|
|
|
|
|
|
joint_values = evaluate_func_map[evaluateFunc](i, params)
|
2017-02-09 22:43:40 +00:00
|
|
|
minitaur.applyAction(joint_values)
|
|
|
|
p.stepSimulation()
|
|
|
|
if (is_fallen()):
|
|
|
|
break
|
|
|
|
|
|
|
|
if i % 100 == 0:
|
|
|
|
sys.stdout.write('.')
|
|
|
|
sys.stdout.flush()
|
|
|
|
time.sleep(sleepTime)
|
|
|
|
|
|
|
|
print(' ')
|
|
|
|
|
2017-02-16 23:23:46 +00:00
|
|
|
alpha = objectiveParams[0]
|
2017-02-09 22:43:40 +00:00
|
|
|
final_distance = np.linalg.norm(start_position - current_position())
|
2017-02-16 23:23:46 +00:00
|
|
|
finalReturn = final_distance - alpha * total_energy
|
2017-02-09 22:43:40 +00:00
|
|
|
elapsedTime = time.time() - beforeTime
|
2017-02-16 23:23:46 +00:00
|
|
|
print ("trial for ", params, " final_distance", final_distance, "total_energy", total_energy, "finalReturn", finalReturn, "elapsed_time", elapsedTime)
|
|
|
|
return finalReturn
|