To enable the feature, enable the BULLET2_MULTITHREADING option.
Increases the number of rays that can go in a batch request by storing
them in the shared memory stream instead of the shared memory command.
Adds the API b3RaycastBatchSetNumThreads to specify the number of
threads to use for the raycast batch, also adds the argument numThreads
to the pybullet function rayTestBatch.
Rays are distributed among the threads in a greedy fashion there's a shared
queue of work, once a thread finishes its task, it picks the next
available ray from the task. This works better than pre-distributing the
rays among threads, since there's a large variance in computation time per ray.
Some controversial changes:
- Added a pointer to PhysicsClient to the SharedMemoryCommand struct, this
was necessary to keep the C-API the same for b3RaycastBatchAddRay, while
adding the ray to the shared memory stream instead of the command
struct. I think this may be useful to simplify other APIs as well, that
take both a client handle and a command handle.
- Moved #define SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE to
SharedMemoryPublic. This was necessary for the definition of
MAX_RAY_INTERSECTION_BATCH_SIZE.
Extract faces directly from btConvexHullComputer (in initializePolyhedralFeatures), instead of reconstructing them, thanks to Josh Klint in #1654
PyBullet: use initializePolyhedralFeatures for convex hulls and boxes (to allow SAT)
PyBullet: expose setPhysicsEngineParameter(enableSAT=0 or 1) to enable Separating Axis Test based collision detection for convex vs convex/box and convex versus concave triangles (in a triangle mesh).
return Py_None if no user data found, to pass the test.
enable m_deterministicOverlappingPairs by default.
if m_deterministicOverlappingPairs, sort the collision pairs.
Split examples/SharedMemory/b3RobotSimulatorClientAPI_NoGUI.* and move to examples/SharedMemory/b3RobotSimulatorClientAPI_NoGUI.cpp and examples/SharedMemory/b3RobotSimulatorClientAPI_NoDirect.cpp
Adds unit test for the UserData functons.
Changes the char pointer in btHashString to std::string. There were
problems where the object owning the string memory would deallocate the
string, making the btHashString object invalid.
allow to provide current joint positions in IK, overriding the body joint positions, also IK target will be in local coordinates.
expose b3ComputeDofCount in C-API
See https://github.com/erwincoumans/pybullet_robots ANYmal.py for an example.
PyBullet: Expose p.setPhysicsEngineParameter(solverResidualThreshold=1e-2) (b3PhysicsParamSetSolverResidualThreshold), increases solver performance a lot
PyBullet: Expose p.setPhysicsEngineParameter(contactSlop) Set it to zero, to avoid issues with restitution.
PyBullet: Expose isNumpyEnabled, return True is PyBullet was compiled with NUMPY support for 'getCameraImage'.
PyBullet: Expose p.ChangeDynamics(objectUid, linkIndex, contactProcessingThreshold), to avoid issues of speculative/predictive contacts with restitution.
See also http://twvideo01.ubm-us.net/o1/vault/gdc2012/slides/Programming%20Track/Vincent_ROBERT_Track_ADifferentApproach.pdf
use p.JOINT_FEEDBACK_IN_JOINT_FRAME if you want the joint feedback expressed in joint frame (instead of link inertial frame)
use p.JOINT_FEEDBACK_IN_WORLD_SPACE if you want the joint feedback in world space coordinates, instead of local link/joint coordinates.
Example: p.setPhysicsEngineParameter(jointFeedbackMode=p.JOINT_FEEDBACK_IN_WORLD_SPACE+p.JOINT_FEEDBACK_IN_JOINT_FRAME)