allow to perform a getClosestPoints query with a collisionShape and world transform (position, orientation) that isn't part of the world.
(use createCollisionShape to create it)
Implement collisionFilterPlugin, use setCollisionFilterPair to enable or disable collision detection between specific pairs of objects.
Also, expose setCollisionFilterGroupMask as PyBullet API and in urdf using the tag <collision group="1" mask="2"/>.
See examples/pybullet/examples/collisionFilter.py for an example.
PyBullet default: Lower the warmstarting factor, for maximal coordinates rigid bodies for more stable simulation.
Add btCollisionWorld::refreshBroadphaseProxy to easier recreate the broadphase proxy without adding/removing objects to the world.
Changes the b3GetLinkState function to use numLinks from the
SharedMemoryStatus returned from RequestActualState instead of the
cached number of link value returned by b3GetNumJoints.
The cached value can be outdated when a new body is added and
SyncBodyInfo isn't used, while using the value in the status is always
up-to-date.
add grpcPlugin, it can work in GUI, SHARED_MEMORY_SERVER, DIRECT and other modes.
example script to start server from pybullet:
import pybullet as p
p.connect(p.GUI)
#if statically linked plugin
id = p.loadPlugin("grpcPlugin")
#dynamics loading the plugin
#id = p.loadPlugin("E:/develop/bullet3/bin/pybullet_grpcPlugin_vs2010_x64_debug.dll", postFix="_grpcPlugin")
#start the GRPC server at hostname, port
if (id>=0):
p.executePluginCommand(id, "localhost:1234")
Only in DIRECT mode, since there is no 'ping' you need to call to handle RCPs:
numRPC = 10
while (1):
p.executePluginCommand(id, intArgs=[numRPC])
Will add GRPC client and PyBullet GRPC server plugin.
Will cover most/all SharedMemoryCommand/SharedMemoryStatus messages.
Run the server, then test using the pybullet_client.py
This removes the need to specify the body id/link index when retrieving a user data entry.
Additionally, user data can now optionally be set to visual shapes as well.
The following public pybullet APIs have changed (backwards incompatible)
addUserData and getUserDataId
Makes linkIndex parameter optional (default value is -1)
Adds optional visualShapeIndex parameter (default value is -1)
getUserData and removeUserData
Removes required parameters bodyUniqueId and linkIndex
getNumUserData
Removes required bodyUniqueId parameter
getUserDataInfo
Removes required linkIndex parameter
Changes returned tuple from (userDataId, key) to (userDataId, key, bodyUniqueId, linkIndex, visualShapeIndex)
use b3RaycastBatchAddRays API to enable MAX_RAY_INTERSECTION_BATCH_SIZE_STREAMING num rays.
Old API (b3RaycastBatchAddRay) sticks to 256 rays, MAX_RAY_INTERSECTION_BATCH_SIZE.
reduce 'm_cooldownTime' from 1000 microseconds to 100 microseconds (overhead in raycast is too large)
If needed, we can expose this cooldown time.
Replace malloc by btAlignedObjectArray (going through Bullet's memory allocator)
To enable the feature, enable the BULLET2_MULTITHREADING option.
Increases the number of rays that can go in a batch request by storing
them in the shared memory stream instead of the shared memory command.
Adds the API b3RaycastBatchSetNumThreads to specify the number of
threads to use for the raycast batch, also adds the argument numThreads
to the pybullet function rayTestBatch.
Rays are distributed among the threads in a greedy fashion there's a shared
queue of work, once a thread finishes its task, it picks the next
available ray from the task. This works better than pre-distributing the
rays among threads, since there's a large variance in computation time per ray.
Some controversial changes:
- Added a pointer to PhysicsClient to the SharedMemoryCommand struct, this
was necessary to keep the C-API the same for b3RaycastBatchAddRay, while
adding the ray to the shared memory stream instead of the command
struct. I think this may be useful to simplify other APIs as well, that
take both a client handle and a command handle.
- Moved #define SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE to
SharedMemoryPublic. This was necessary for the definition of
MAX_RAY_INTERSECTION_BATCH_SIZE.
Extract faces directly from btConvexHullComputer (in initializePolyhedralFeatures), instead of reconstructing them, thanks to Josh Klint in #1654
PyBullet: use initializePolyhedralFeatures for convex hulls and boxes (to allow SAT)
PyBullet: expose setPhysicsEngineParameter(enableSAT=0 or 1) to enable Separating Axis Test based collision detection for convex vs convex/box and convex versus concave triangles (in a triangle mesh).
allow to provide current joint positions in IK, overriding the body joint positions, also IK target will be in local coordinates.
expose b3ComputeDofCount in C-API
See https://github.com/erwincoumans/pybullet_robots ANYmal.py for an example.
PyBullet: Expose p.setPhysicsEngineParameter(solverResidualThreshold=1e-2) (b3PhysicsParamSetSolverResidualThreshold), increases solver performance a lot
PyBullet: Expose p.setPhysicsEngineParameter(contactSlop) Set it to zero, to avoid issues with restitution.
PyBullet: Expose isNumpyEnabled, return True is PyBullet was compiled with NUMPY support for 'getCameraImage'.
PyBullet: Expose p.ChangeDynamics(objectUid, linkIndex, contactProcessingThreshold), to avoid issues of speculative/predictive contacts with restitution.
See also http://twvideo01.ubm-us.net/o1/vault/gdc2012/slides/Programming%20Track/Vincent_ROBERT_Track_ADifferentApproach.pdf
use p.JOINT_FEEDBACK_IN_JOINT_FRAME if you want the joint feedback expressed in joint frame (instead of link inertial frame)
use p.JOINT_FEEDBACK_IN_WORLD_SPACE if you want the joint feedback in world space coordinates, instead of local link/joint coordinates.
Example: p.setPhysicsEngineParameter(jointFeedbackMode=p.JOINT_FEEDBACK_IN_WORLD_SPACE+p.JOINT_FEEDBACK_IN_JOINT_FRAME)
(due to local convex-triangle collisions causing opposite contact normals, use the pre-computed edge normal)
PyBullet: expose experimental continuous collision detection for maximal coordinate rigid bodies, to prevent tunneling.
p.loadURDF("r2d2.urdf", flags=p.URDF_USE_IMPLICIT_CYLINDER)
allow to enable/disable deterministicOverlappingPairs through an API
p.setPhysicsEngineParameter(deterministicOverlappingPairs = False)
Use btCylinderShapeZ for URDF cylinder, instead of converting it to a btConvexHullShape.
Implement PyBullet.getCollisionShapeData
Extend PyBullet.getDynamicsInfo / b3GetDynamicsInfo, remove flag (don't rely on API returning a fixed number of elements in a list!)
Extend PyBullet.getJointInfo: add parentIndex
render the inertia boxes in examples/pybullet/examples/quadruped.py and examples/pybullet/examples/reset_dynamic_info.py
fix an issue where the original margin (0.04) was used to compute the inertia, instead of latest margin
example to call b3VisualShapeInformation from C# and marshall b3VisualShapeData (after loadURDF)
See examples\pybullet\unity3d\examples\NewBehaviourScript.cs
pass events (keyboard, mouse, vr controllers etc) to the plugin, and clear them after the tick callback, so that it doesn't interfere with Python 'getEvents'
add option to recompute forward kinematics, to be consistent with link velocities in pybullet.getLinkState (..., computeForwardKinematics=0/1), thanks to Jeff Bingham for bringing up this inconsistency
This is in C++ and the sync runs at the simulation speed (240 Hz), so there is less lag than in Python.
Modify the pybullet/examples/vr_kuka_setup.py at the end to do this:
plugin = p.loadPlugin("e:/develop/bullet3/bin/pybullet_vrSyncPlugin_vs2010_x64_release.dll")
controllerId = 3
p.executePluginCommand(plugin ,"bla", [controllerId,pr2_cid],[50])
* Add the calculateJacobian method to the pybullet API.
* Adjust the shared memory interface to handle fixed/floating bases
in the calculateJacobian method.
* Fix a few comments.
Add preTickPluginCallback/postTickPluginCallback
User pointer for b3PluginContext, to store objects (class/struct instances)
Pass ints and floats as optional argument for plugin executePluginCommand
See quadruped.py for an example:
p.startStateLogging(p.STATE_LOGGING_GENERIC_ROBOT, "genericlogdata.bin", maxLogDof = 16, logFlags = p.STATE_LOG_JOINT_TORQUES)
Thanks to JulianYG, in pull request https://github.com/bulletphysics/bullet3/pull/1273
pybullet/C-API, expose linear/angular damping
fix some warnings (param name needs to be same in .h and .cpp)
fix potential startup threading issue (args were deleted in main thread while still possibly use in child thread)
fix for spinning/rolling friction in case of mixing maximal and reduced coordinate btMultiBody+btRigidBody
pybullet.changeVisualShape(obUid,linkIndex,specularColor=[R,G,B]) and Bullet C-API b3UpdateVisualShapeSpecularColor
Bug fixes in b3ResourcePath::findResourcePath resolution.
add stadium.sdf and roboschool/models_outdoor/stadium assets https://github.com/openai/roboschool/tree/master/roboschool/models_outdoor/stadium
minor fixes to obj2sdf
Bullet C-API b3ChangeDynamicsInfoSetSpinningFriction/RollingFriction/Resitution
b3PhysicsParamSetRestitutionVelocityThreshold, / pybullet.setPhysicsEngineParameter restitutionVelocityThreshold:
if the velocity is below this threshhold, the restitution is zero (this prevents energy buildup at near-resting state)
pybullet restitution.py example.
example:
kuka = p.loadURDF("kuka_iiwa/model.urdf")
p.getNumJoints(kuka)
pybullet.addUserDebugLine([0,0,0],[0,0,0.1],[0,0,1],trackObjectUniqueId=2,trackLinkIndex=6)
pybullet.addUserDebugText("tip", [0,0,0.1],textColorRGB=[1,0,0],trackObjectUniqueId=2,trackLinkIndex=6)
Also allow to render text using a given orientation (instead of pointing to the camera), example:
pybullet.addUserDebugText("tip", [0,0,0.1],textColorRGB=[1,0,0],textOrientation=[0,0,0,1], trackObjectUniqueId=2,trackLinkIndex=6)
Add drawTexturedTriangleMesh, for drawing 3d text.
Expose readSingleInstanceTransformToCPU, to extract position/orientation from graphics index.
updateTexture: allow to not flip texels around up axis
pybullet.setPhysicsEngineParameter(enableFileCaching=0)
Allow VR camera tracking only using position tracking, no orientation tracking (use
pybullet.setVRCamera([posX,posY,posZ],trackObjectFlag=0 or pybullet.VR_CAMERA_TRACK_OBJECT_ORIENTATION)