bullet3/examples/ExampleBrowser/OpenGLGuiHelper.cpp
2015-05-13 16:27:58 -07:00

559 lines
16 KiB
C++

#include "OpenGLGuiHelper.h"
#include "btBulletDynamicsCommon.h"
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "Bullet3Common/b3Scalar.h"
#include "BulletCollision/CollisionShapes/btShapeHull.h"//to create a tesselation of a generic btConvexShape
#include "../OpenGLWindow/GLInstanceGraphicsShape.h"
//backwards compatibility
#include "GL_ShapeDrawer.h"
#define BT_LINE_BATCH_SIZE 512
struct MyDebugVec3
{
MyDebugVec3(const btVector3& org)
:x(org.x()),
y(org.y()),
z(org.z())
{
}
float x;
float y;
float z;
};
class MyDebugDrawer : public btIDebugDraw
{
CommonGraphicsApp* m_glApp;
int m_debugMode;
btAlignedObjectArray<MyDebugVec3> m_linePoints;
btAlignedObjectArray<unsigned int> m_lineIndices;
btVector3 m_currentLineColor;
public:
MyDebugDrawer(CommonGraphicsApp* app)
: m_glApp(app)
,m_debugMode(btIDebugDraw::DBG_DrawWireframe|btIDebugDraw::DBG_DrawAabb),
m_currentLineColor(-1,-1,-1)
{
}
virtual void drawLine(const btVector3& from1,const btVector3& to1,const btVector3& color1)
{
//float from[4] = {from1[0],from1[1],from1[2],from1[3]};
//float to[4] = {to1[0],to1[1],to1[2],to1[3]};
//float color[4] = {color1[0],color1[1],color1[2],color1[3]};
//m_glApp->m_instancingRenderer->drawLine(from,to,color);
if (m_currentLineColor!=color1 || m_linePoints.size() >= BT_LINE_BATCH_SIZE)
{
flushLines();
m_currentLineColor = color1;
}
MyDebugVec3 from(from1);
MyDebugVec3 to(to1);
m_linePoints.push_back(from);
m_linePoints.push_back(to);
m_lineIndices.push_back(m_lineIndices.size());
m_lineIndices.push_back(m_lineIndices.size());
}
virtual void drawContactPoint(const btVector3& PointOnB,const btVector3& normalOnB,btScalar distance,int lifeTime,const btVector3& color)
{
drawLine(PointOnB,PointOnB+normalOnB,color);
}
virtual void reportErrorWarning(const char* warningString)
{
}
virtual void draw3dText(const btVector3& location,const char* textString)
{
}
virtual void setDebugMode(int debugMode)
{
m_debugMode = debugMode;
}
virtual int getDebugMode() const
{
return m_debugMode;
}
virtual void flushLines()
{
int sz = m_linePoints.size();
if (sz)
{
float debugColor[4];
debugColor[0] = m_currentLineColor.x();
debugColor[1] = m_currentLineColor.y();
debugColor[2] = m_currentLineColor.z();
debugColor[3] = 1.f;
m_glApp->m_renderer->drawLines(&m_linePoints[0].x,debugColor,
m_linePoints.size(),sizeof(MyDebugVec3),
&m_lineIndices[0],
m_lineIndices.size(),
1);
m_linePoints.clear();
m_lineIndices.clear();
}
}
};
static btVector4 sColors[4] =
{
btVector4(0.3,0.3,1,1),
btVector4(0.6,0.6,1,1),
btVector4(0,1,0,1),
btVector4(0,1,1,1),
//btVector4(1,1,0,1),
};
struct OpenGLGuiHelperInternalData
{
struct CommonGraphicsApp* m_glApp;
class MyDebugDrawer* m_debugDraw;
GL_ShapeDrawer* m_gl2ShapeDrawer;
};
OpenGLGuiHelper::OpenGLGuiHelper(CommonGraphicsApp* glApp, bool useOpenGL2)
{
m_data = new OpenGLGuiHelperInternalData;
m_data->m_glApp = glApp;
m_data->m_debugDraw = 0;
m_data->m_gl2ShapeDrawer = 0;
if (useOpenGL2)
{
m_data->m_gl2ShapeDrawer = new GL_ShapeDrawer();
}
}
OpenGLGuiHelper::~OpenGLGuiHelper()
{
delete m_data->m_gl2ShapeDrawer;
delete m_data;
}
struct CommonRenderInterface* OpenGLGuiHelper::getRenderInterface()
{
return m_data->m_glApp->m_renderer;
}
void OpenGLGuiHelper::createRigidBodyGraphicsObject(btRigidBody* body, const btVector3& color)
{
createCollisionObjectGraphicsObject(body,color);
}
void OpenGLGuiHelper::createCollisionObjectGraphicsObject(btCollisionObject* body, const btVector3& color)
{
if (body->getUserIndex()<0)
{
btCollisionShape* shape = body->getCollisionShape();
btTransform startTransform = body->getWorldTransform();
int graphicsShapeId = shape->getUserIndex();
if (graphicsShapeId>=0)
{
// btAssert(graphicsShapeId >= 0);
btVector3 localScaling = shape->getLocalScaling();
int graphicsInstanceId = m_data->m_glApp->m_renderer->registerGraphicsInstance(graphicsShapeId, startTransform.getOrigin(), startTransform.getRotation(), color, localScaling);
body->setUserIndex(graphicsInstanceId);
}
}
}
int OpenGLGuiHelper::registerGraphicsShape(const float* vertices, int numvertices, const int* indices, int numIndices)
{
int shapeId = m_data->m_glApp->m_renderer->registerShape(vertices, numvertices,indices,numIndices);
return shapeId;
}
int OpenGLGuiHelper::registerGraphicsInstance(int shapeIndex, const float* position, const float* quaternion, const float* color, const float* scaling)
{
return m_data->m_glApp->m_renderer->registerGraphicsInstance(shapeIndex,position,quaternion,color,scaling);
}
static void createCollisionShapeGraphicsObjectInternal(btCollisionShape* collisionShape, const btTransform& parentTransform, btAlignedObjectArray<GLInstanceVertex>& verticesOut, btAlignedObjectArray<int>& indicesOut)
{
//todo: support all collision shape types
switch (collisionShape->getShapeType())
{
case SOFTBODY_SHAPE_PROXYTYPE:
{
//skip the soft body collision shape for now
break;
}
case STATIC_PLANE_PROXYTYPE:
{
//draw a box, oriented along the plane normal
const btStaticPlaneShape* staticPlaneShape = static_cast<const btStaticPlaneShape*>(collisionShape);
btScalar planeConst = staticPlaneShape->getPlaneConstant();
const btVector3& planeNormal = staticPlaneShape->getPlaneNormal();
btVector3 planeOrigin = planeNormal * planeConst;
btVector3 vec0,vec1;
btPlaneSpace1(planeNormal,vec0,vec1);
btScalar vecLen = 100.f;
btVector3 verts[4];
verts[0] = planeOrigin + vec0*vecLen + vec1*vecLen;
verts[1] = planeOrigin - vec0*vecLen + vec1*vecLen;
verts[2] = planeOrigin - vec0*vecLen - vec1*vecLen;
verts[3] = planeOrigin + vec0*vecLen - vec1*vecLen;
int startIndex = verticesOut.size();
indicesOut.push_back(startIndex+0);
indicesOut.push_back(startIndex+1);
indicesOut.push_back(startIndex+2);
indicesOut.push_back(startIndex+0);
indicesOut.push_back(startIndex+2);
indicesOut.push_back(startIndex+3);
btVector3 triNormal = parentTransform.getBasis()*planeNormal;
for (int i=0;i<4;i++)
{
GLInstanceVertex vtx;
btVector3 pos =parentTransform*verts[i];
vtx.xyzw[0] = pos.x();
vtx.xyzw[1] = pos.y();
vtx.xyzw[2] = pos.z();
vtx.xyzw[3] = 0.f;
vtx.normal[0] =triNormal.x();
vtx.normal[1] =triNormal.y();
vtx.normal[2] =triNormal.z();
vtx.uv[0] = 0.5f;
vtx.uv[1] = 0.5f;
verticesOut.push_back(vtx);
}
break;
}
case TRIANGLE_MESH_SHAPE_PROXYTYPE:
{
btBvhTriangleMeshShape* trimesh = (btBvhTriangleMeshShape*) collisionShape;
btVector3 trimeshScaling = trimesh->getLocalScaling();
btStridingMeshInterface* meshInterface = trimesh->getMeshInterface();
btAlignedObjectArray<btVector3> vertices;
btAlignedObjectArray<int> indices;
for (int partId=0;partId<meshInterface->getNumSubParts();partId++)
{
const unsigned char *vertexbase = 0;
int numverts = 0;
PHY_ScalarType type = PHY_INTEGER;
int stride = 0;
const unsigned char *indexbase = 0;
int indexstride = 0;
int numfaces = 0;
PHY_ScalarType indicestype = PHY_INTEGER;
//PHY_ScalarType indexType=0;
btVector3 triangleVerts[3];
meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts, type,stride,&indexbase,indexstride,numfaces,indicestype,partId);
btVector3 aabbMin,aabbMax;
for (int triangleIndex = 0 ; triangleIndex < numfaces;triangleIndex++)
{
unsigned int* gfxbase = (unsigned int*)(indexbase+triangleIndex*indexstride);
for (int j=2;j>=0;j--)
{
int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
if (type == PHY_FLOAT)
{
float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
triangleVerts[j] = btVector3(
graphicsbase[0]*trimeshScaling.getX(),
graphicsbase[1]*trimeshScaling.getY(),
graphicsbase[2]*trimeshScaling.getZ());
}
else
{
double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
triangleVerts[j] = btVector3( btScalar(graphicsbase[0]*trimeshScaling.getX()),
btScalar(graphicsbase[1]*trimeshScaling.getY()),
btScalar(graphicsbase[2]*trimeshScaling.getZ()));
}
}
indices.push_back(vertices.size());
vertices.push_back(triangleVerts[0]);
indices.push_back(vertices.size());
vertices.push_back(triangleVerts[1]);
indices.push_back(vertices.size());
vertices.push_back(triangleVerts[2]);
btVector3 triNormal = (triangleVerts[1]-triangleVerts[0]).cross(triangleVerts[2]-triangleVerts[0]);
triNormal.normalize();
for (int v=0;v<3;v++)
{
GLInstanceVertex vtx;
btVector3 pos =parentTransform*triangleVerts[v];
vtx.xyzw[0] = pos.x();
vtx.xyzw[1] = pos.y();
vtx.xyzw[2] = pos.z();
vtx.xyzw[3] = 0.f;
vtx.normal[0] =triNormal.x();
vtx.normal[1] =triNormal.y();
vtx.normal[2] =triNormal.z();
vtx.uv[0] = 0.5f;
vtx.uv[1] = 0.5f;
indicesOut.push_back(verticesOut.size());
verticesOut.push_back(vtx);
}
}
}
break;
}
default:
{
if (collisionShape->isConvex())
{
btConvexShape* convex = (btConvexShape*)collisionShape;
{
btShapeHull* hull = new btShapeHull(convex);
hull->buildHull(0.0);
{
//int strideInBytes = 9*sizeof(float);
//int numVertices = hull->numVertices();
//int numIndices =hull->numIndices();
for (int t=0;t<hull->numTriangles();t++)
{
btVector3 triNormal;
int index0 = hull->getIndexPointer()[t*3+0];
int index1 = hull->getIndexPointer()[t*3+1];
int index2 = hull->getIndexPointer()[t*3+2];
btVector3 pos0 =parentTransform*hull->getVertexPointer()[index0];
btVector3 pos1 =parentTransform*hull->getVertexPointer()[index1];
btVector3 pos2 =parentTransform*hull->getVertexPointer()[index2];
triNormal = (pos1-pos0).cross(pos2-pos0);
triNormal.normalize();
for (int v=0;v<3;v++)
{
int index = hull->getIndexPointer()[t*3+v];
GLInstanceVertex vtx;
btVector3 pos =parentTransform*hull->getVertexPointer()[index];
vtx.xyzw[0] = pos.x();
vtx.xyzw[1] = pos.y();
vtx.xyzw[2] = pos.z();
vtx.xyzw[3] = 0.f;
vtx.normal[0] =triNormal.x();
vtx.normal[1] =triNormal.y();
vtx.normal[2] =triNormal.z();
vtx.uv[0] = 0.5f;
vtx.uv[1] = 0.5f;
indicesOut.push_back(verticesOut.size());
verticesOut.push_back(vtx);
}
}
}
}
} else
{
if (collisionShape->isCompound())
{
btCompoundShape* compound = (btCompoundShape*) collisionShape;
for (int i=0;i<compound->getNumChildShapes();i++)
{
btTransform childWorldTrans = parentTransform * compound->getChildTransform(i);
createCollisionShapeGraphicsObjectInternal(compound->getChildShape(i),childWorldTrans,verticesOut,indicesOut);
}
} else
{
btAssert(0);
}
}
}
};
}
void OpenGLGuiHelper::createCollisionShapeGraphicsObject(btCollisionShape* collisionShape)
{
//already has a graphics object?
if (collisionShape->getUserIndex()>=0)
return;
btAlignedObjectArray<GLInstanceVertex> vertices;
btAlignedObjectArray<int> indices;
btTransform startTrans;startTrans.setIdentity();
createCollisionShapeGraphicsObjectInternal(collisionShape,startTrans,vertices,indices);
if (vertices.size() && indices.size())
{
int shapeId = m_data->m_glApp->m_renderer->registerShape(&vertices[0].xyzw[0],vertices.size(),&indices[0],indices.size());
collisionShape->setUserIndex(shapeId);
}
}
void OpenGLGuiHelper::syncPhysicsToGraphics(const btDiscreteDynamicsWorld* rbWorld)
{
int numCollisionObjects = rbWorld->getNumCollisionObjects();
for (int i = 0; i<numCollisionObjects; i++)
{
btCollisionObject* colObj = rbWorld->getCollisionObjectArray()[i];
btVector3 pos = colObj->getWorldTransform().getOrigin();
btQuaternion orn = colObj->getWorldTransform().getRotation();
int index = colObj->getUserIndex();
if (index >= 0)
{
m_data->m_glApp->m_renderer->writeSingleInstanceTransformToCPU(pos, orn, index);
}
}
m_data->m_glApp->m_renderer->writeTransforms();
}
void OpenGLGuiHelper::render(const btDiscreteDynamicsWorld* rbWorld)
{
m_data->m_glApp->m_renderer->renderScene();
//backwards compatible OpenGL2 rendering
if (m_data->m_gl2ShapeDrawer && rbWorld)
{
m_data->m_gl2ShapeDrawer->enableTexture(true);
m_data->m_gl2ShapeDrawer->drawScene(rbWorld,true);
}
}
void OpenGLGuiHelper::createPhysicsDebugDrawer(btDiscreteDynamicsWorld* rbWorld)
{
btAssert(rbWorld);
m_data->m_debugDraw = new MyDebugDrawer(m_data->m_glApp);
rbWorld->setDebugDrawer(m_data->m_debugDraw );
m_data->m_debugDraw->setDebugMode(
btIDebugDraw::DBG_DrawWireframe
+btIDebugDraw::DBG_DrawAabb
//btIDebugDraw::DBG_DrawContactPoints
);
}
struct Common2dCanvasInterface* OpenGLGuiHelper::get2dCanvasInterface()
{
return m_data->m_glApp->m_2dCanvasInterface;
}
CommonParameterInterface* OpenGLGuiHelper::getParameterInterface()
{
return m_data->m_glApp->m_parameterInterface;
}
void OpenGLGuiHelper::setUpAxis(int axis)
{
m_data->m_glApp->setUpAxis(axis);
}
void OpenGLGuiHelper::resetCamera(float camDist, float pitch, float yaw, float camPosX,float camPosY, float camPosZ)
{
if (getRenderInterface() && getRenderInterface()->getActiveCamera())
{
getRenderInterface()->getActiveCamera()->setCameraDistance(camDist);
getRenderInterface()->getActiveCamera()->setCameraPitch(pitch);
getRenderInterface()->getActiveCamera()->setCameraYaw(yaw);
getRenderInterface()->getActiveCamera()->setCameraTargetPosition(camPosX,camPosY,camPosZ);
}
}
struct MyConvertPointerSizeT
{
union
{
const void* m_ptr;
size_t m_int;
};
};
bool shapePointerCompareFunc(const btCollisionObject* colA, const btCollisionObject* colB)
{
MyConvertPointerSizeT a,b;
a.m_ptr = colA->getCollisionShape();
b.m_ptr = colB->getCollisionShape();
return (a.m_int<b.m_int);
}
void OpenGLGuiHelper::autogenerateGraphicsObjects(btDiscreteDynamicsWorld* rbWorld)
{
//sort the collision objects based on collision shape, the gfx library requires instances that re-use a shape to be added after eachother
btAlignedObjectArray<btCollisionObject*> sortedObjects;
sortedObjects.reserve(rbWorld->getNumCollisionObjects());
for (int i=0;i<rbWorld->getNumCollisionObjects();i++)
{
btCollisionObject* colObj = rbWorld->getCollisionObjectArray()[i];
sortedObjects.push_back(colObj);
}
sortedObjects.quickSort(shapePointerCompareFunc);
for (int i=0;i<sortedObjects.size();i++)
{
btCollisionObject* colObj = sortedObjects[i];
//btRigidBody* body = btRigidBody::upcast(colObj);
//does this also work for btMultiBody/btMultiBodyLinkCollider?
createCollisionShapeGraphicsObject(colObj->getCollisionShape());
int colorIndex = colObj->getBroadphaseHandle()->getUid() & 3;
btVector3 color= sColors[colorIndex];
createCollisionObjectGraphicsObject(colObj,color);
}
}
void OpenGLGuiHelper::drawText3D( const char* txt, float posX, float posY, float posZ, float size)
{
btAssert(m_data->m_glApp);
m_data->m_glApp->drawText3D(txt,posX,posY,posZ,size);
}
struct CommonGraphicsApp* OpenGLGuiHelper::getAppInterface()
{
return m_data->m_glApp;
}