bullet3/examples/pybullet/gym/pybullet_envs/bullet/racecarZEDGymEnv.py
Erwin Coumans 3891602784 enable continuous action space for racecarZEDGymEnv
disable SHARED_MEMORY connection (it was just some debug test)
2017-09-11 17:34:06 -07:00

170 lines
5.8 KiB
Python

import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet
from . import bullet_client
from . import racecar
import random
import pybullet_data
class RacecarZEDGymEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self,
urdfRoot=pybullet_data.getDataPath(),
actionRepeat=10,
isEnableSelfCollision=True,
isDiscrete=False,
renders=True):
print("init")
self._timeStep = 0.01
self._urdfRoot = urdfRoot
self._actionRepeat = actionRepeat
self._isEnableSelfCollision = isEnableSelfCollision
self._ballUniqueId = -1
self._envStepCounter = 0
self._renders = renders
self._width = 100
self._height = 10
self._isDiscrete = isDiscrete
if self._renders:
self._p = bullet_client.BulletClient(
connection_mode=pybullet.GUI)
else:
self._p = bullet_client.BulletClient()
self._seed()
self.reset()
observationDim = len(self.getExtendedObservation())
#print("observationDim")
#print(observationDim)
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
if (isDiscrete):
self.action_space = spaces.Discrete(9)
else:
action_dim = 2
self._action_bound = 1
action_high = np.array([self._action_bound] * action_dim)
self.action_space = spaces.Box(-action_high, action_high)
self.observation_space = spaces.Box(low=0, high=255, shape=(self._height, self._width, 4))
self.viewer = None
def _reset(self):
self._p.resetSimulation()
#p.setPhysicsEngineParameter(numSolverIterations=300)
self._p.setTimeStep(self._timeStep)
#self._p.loadURDF(os.path.join(os.path.dirname(__file__),"../data","plane.urdf"))
stadiumobjects = self._p.loadSDF(os.path.join(self._urdfRoot,"stadium.sdf"))
#move the stadium objects slightly above 0
for i in stadiumobjects:
pos,orn = self._p.getBasePositionAndOrientation(i)
newpos = [pos[0],pos[1],pos[2]+0.1]
self._p.resetBasePositionAndOrientation(i,newpos,orn)
dist = 5 +2.*random.random()
ang = 2.*3.1415925438*random.random()
ballx = dist * math.sin(ang)
bally = dist * math.cos(ang)
ballz = 1
self._ballUniqueId = self._p.loadURDF(os.path.join(self._urdfRoot,"sphere2red.urdf"),[ballx,bally,ballz])
self._p.setGravity(0,0,-10)
self._racecar = racecar.Racecar(self._p,urdfRootPath=self._urdfRoot, timeStep=self._timeStep)
self._envStepCounter = 0
for i in range(100):
self._p.stepSimulation()
self._observation = self.getExtendedObservation()
return np.array(self._observation)
def __del__(self):
self._p = 0
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def getExtendedObservation(self):
carpos,carorn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
carmat = self._p.getMatrixFromQuaternion(carorn)
ballpos,ballorn = self._p.getBasePositionAndOrientation(self._ballUniqueId)
invCarPos,invCarOrn = self._p.invertTransform(carpos,carorn)
ballPosInCar,ballOrnInCar = self._p.multiplyTransforms(invCarPos,invCarOrn,ballpos,ballorn)
dist0 = 0.3
dist1 = 1.
eyePos = [carpos[0]+dist0*carmat[0],carpos[1]+dist0*carmat[3],carpos[2]+dist0*carmat[6]+0.3]
targetPos = [carpos[0]+dist1*carmat[0],carpos[1]+dist1*carmat[3],carpos[2]+dist1*carmat[6]+0.3]
up = [carmat[2],carmat[5],carmat[8]]
viewMat = self._p.computeViewMatrix(eyePos,targetPos,up)
#viewMat = self._p.computeViewMatrixFromYawPitchRoll(carpos,1,0,0,0,2)
#print("projectionMatrix:")
#print(self._p.getDebugVisualizerCamera()[3])
projMatrix = [0.7499999403953552, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0000200271606445, -1.0, 0.0, 0.0, -0.02000020071864128, 0.0]
img_arr = self._p.getCameraImage(width=self._width,height=self._height,viewMatrix=viewMat,projectionMatrix=projMatrix)
rgb=img_arr[2]
np_img_arr = np.reshape(rgb, (self._height, self._width, 4))
self._observation = np_img_arr
return self._observation
def _step(self, action):
if (self._renders):
basePos,orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
#self._p.resetDebugVisualizerCamera(1, 30, -40, basePos)
if (self._isDiscrete):
fwd = [-1,-1,-1,0,0,0,1,1,1]
steerings = [-0.6,0,0.6,-0.6,0,0.6,-0.6,0,0.6]
forward = fwd[action]
steer = steerings[action]
realaction = [forward,steer]
else:
realaction = action
self._racecar.applyAction(realaction)
for i in range(self._actionRepeat):
self._p.stepSimulation()
if self._renders:
time.sleep(self._timeStep)
self._observation = self.getExtendedObservation()
if self._termination():
break
self._envStepCounter += 1
reward = self._reward()
done = self._termination()
#print("len=%r" % len(self._observation))
return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False):
return
def _termination(self):
return self._envStepCounter>1000
def _reward(self):
closestPoints = self._p.getClosestPoints(self._racecar.racecarUniqueId,self._ballUniqueId,10000)
numPt = len(closestPoints)
reward=-1000
#print(numPt)
if (numPt>0):
#print("reward:")
reward = -closestPoints[0][8]
#print(reward)
return reward