bullet3/test/OpenCL/AllBullet3Kernels/testExecuteBullet3NarrowphaseKernels.cpp
erwincoumans 794c8ec064 add BspDemo.bsp data file
add sphere2.urdf
move btSpatialAlgebra into LinearMath
remove some warnings, introduce BT_ZERO, BT_ONE, BT_HALF as defines for 0.f/0., 1.f/1., 0.5f/0.5 respectively
2015-04-16 10:17:35 -07:00

440 lines
13 KiB
C++

#include <gtest/gtest.h>
#include "Bullet3Common/b3Logging.h"
#include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h"
#include "Bullet3Common/b3CommandLineArgs.h"
#include "Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h"
#include "Bullet3OpenCL/NarrowphaseCollision/kernels/mprKernels.h"
#include "Bullet3OpenCL/NarrowphaseCollision/kernels/satConcaveKernels.h"
#include "Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.h"
#include "Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.h"
#include "Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.h"
#ifdef B3_USE_ZLIB
#include "minizip/unzip.h"
#endif
#include "Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h"
extern int gArgc;
extern char** gArgv;
namespace
{
struct ExecuteBullet3NarrowphaseKernels : public ::testing::Test
{
cl_context m_clContext;
cl_device_id m_clDevice;
cl_command_queue m_clQueue;
char* m_clDeviceName;
cl_platform_id m_platformId;
ExecuteBullet3NarrowphaseKernels()
:m_clDeviceName(0),
m_clContext(0),
m_clDevice(0),
m_clQueue(0),
m_platformId(0)
{
// You can do set-up work for each test here.
initCL();
}
virtual ~ExecuteBullet3NarrowphaseKernels()
{
// You can do clean-up work that doesn't throw exceptions here.
exitCL();
}
// If the constructor and destructor are not enough for setting up
// and cleaning up each test, you can define the following methods:
#include "initCL.h"
virtual void SetUp()
{
// Code here will be called immediately after the constructor (right
// before each test).
}
virtual void TearDown()
{
// Code here will be called immediately after each test (right
// before the destructor).
}
};
#if 0
TEST_F(ExecuteBullet3NarrowphaseKernels,satKernelsCL)
{
cl_int errNum=0;
char flags[1024]={0};
cl_program satProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext,m_clDevice,satKernelsCL,&errNum,flags,0,true);
ASSERT_EQ(CL_SUCCESS,errNum);
{
cl_kernel m_findSeparatingAxisKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satKernelsCL, "findSeparatingAxisKernel",&errNum,satProg );
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(m_findSeparatingAxisKernel );
}
{
cl_kernel m_findSeparatingAxisVertexFaceKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satKernelsCL, "findSeparatingAxisVertexFaceKernel",&errNum,satProg );
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(m_findSeparatingAxisVertexFaceKernel);
}
{
cl_kernel m_findSeparatingAxisEdgeEdgeKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satKernelsCL, "findSeparatingAxisEdgeEdgeKernel",&errNum,satProg );
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(m_findSeparatingAxisEdgeEdgeKernel);
}
{
cl_kernel m_findConcaveSeparatingAxisKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satKernelsCL, "findConcaveSeparatingAxisKernel",&errNum,satProg );
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(m_findConcaveSeparatingAxisKernel );
}
{
cl_kernel m_findCompoundPairsKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satKernelsCL, "findCompoundPairsKernel",&errNum,satProg );
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(m_findCompoundPairsKernel);
}
{
cl_kernel m_processCompoundPairsKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satKernelsCL, "processCompoundPairsKernel",&errNum,satProg );
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(m_processCompoundPairsKernel);
}
clReleaseProgram(satProg);
}
TEST_F(ExecuteBullet3NarrowphaseKernels,satConcaveKernelsCL)
{
cl_int errNum=0;
char flags[1024]={0};
cl_program satConcaveProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext,m_clDevice,satConcaveKernelsCL,&errNum,flags,0,true);
ASSERT_EQ(CL_SUCCESS,errNum);
{
cl_kernel m_findConcaveSeparatingAxisVertexFaceKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satConcaveKernelsCL, "findConcaveSeparatingAxisVertexFaceKernel",&errNum,satConcaveProg );
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(m_findConcaveSeparatingAxisVertexFaceKernel);
}
{
cl_kernel m_findConcaveSeparatingAxisEdgeEdgeKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satConcaveKernelsCL, "findConcaveSeparatingAxisEdgeEdgeKernel",&errNum,satConcaveProg );
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(m_findConcaveSeparatingAxisEdgeEdgeKernel);
}
clReleaseProgram(satConcaveProg);
}
TEST_F(ExecuteBullet3NarrowphaseKernels,satClipKernelsCL)
{
char flags[1024]={0};
cl_int errNum=0;
//#ifdef CL_PLATFORM_INTEL
// sprintf(flags,"-g -s \"%s\"","C:/develop/bullet3_experiments2/opencl/gpu_narrowphase/kernels/satClipHullContacts.cl");
//#endif
cl_program satClipContactsProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext,m_clDevice,satClipKernelsCL,&errNum,flags,0,true);
ASSERT_EQ(CL_SUCCESS,errNum);
{
cl_kernel m_clipHullHullKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satClipKernelsCL, "clipHullHullKernel",&errNum,satClipContactsProg);
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(m_clipHullHullKernel);
}
{
cl_kernel m_clipCompoundsHullHullKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satClipKernelsCL, "clipCompoundsHullHullKernel",&errNum,satClipContactsProg);
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(m_clipCompoundsHullHullKernel);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satClipKernelsCL, "findClippingFacesKernel",&errNum,satClipContactsProg);
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satClipKernelsCL, "clipFacesAndFindContactsKernel",&errNum,satClipContactsProg);
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satClipKernelsCL, "clipHullHullConcaveConvexKernel",&errNum,satClipContactsProg);
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satClipKernelsCL,
"newContactReductionKernel",&errNum,satClipContactsProg);
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(k);
}
clReleaseProgram(satClipContactsProg);
}
TEST_F(ExecuteBullet3NarrowphaseKernels,bvhTraversalKernels)
{
cl_int errNum=0;
cl_program bvhTraversalProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext,m_clDevice,bvhTraversalKernelCL,&errNum,"",0,true);
ASSERT_EQ(CL_SUCCESS,errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,bvhTraversalKernelCL, "bvhTraversalKernel",&errNum,bvhTraversalProg,"");
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(k);
}
clReleaseProgram(bvhTraversalProg);
}
TEST_F(ExecuteBullet3NarrowphaseKernels,primitiveContactsKernelsCL)
{
cl_int errNum=0;
cl_program primitiveContactsProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext,m_clDevice,primitiveContactsKernelsCL,&errNum,"",0,true);
ASSERT_EQ(CL_SUCCESS,errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,primitiveContactsKernelsCL, "primitiveContactsKernel",&errNum,primitiveContactsProg,"");
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,primitiveContactsKernelsCL, "findConcaveSphereContactsKernel",&errNum,primitiveContactsProg );
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,primitiveContactsKernelsCL, "processCompoundPairsPrimitivesKernel",&errNum,primitiveContactsProg,"");
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(k);
}
clReleaseProgram(primitiveContactsProg);
}
#endif
unsigned char* openFile(const char* fileName, int* sizeInBytesPtr)
{
*sizeInBytesPtr=0;
unsigned char* buffer = 0;
const char* prefix[]={"./","./data/","../data/","../../data/","../../../data/","../../../../data/"};
int numPrefixes = sizeof(prefix)/sizeof(const char*);
char relativeFileName[1024];
#ifdef B3_USE_ZLIB
{
FILE* f=0;
int result = 0;
for (int i=0;!f && i<numPrefixes;i++)
{
sprintf(relativeFileName,"%s%s",prefix[i],"unittest_data.zip");
f = fopen(relativeFileName,"rb");
}
if (f)
{
fclose(f);
unzFile zipfile = unzOpen( relativeFileName);
if ( zipfile == NULL )
{
printf( "%s: not found\n" ,relativeFileName);
}
// Get info about the zip file
unz_global_info global_info;
result = unzGetGlobalInfo( zipfile, &global_info ) ;
if (result != UNZ_OK )
{
b3Printf( "could not read file global info\n" );
unzClose( zipfile );
} else
{
result = unzLocateFile(zipfile, fileName, 0);
if (result == UNZ_OK)
{
unz_file_info info;
result = unzGetCurrentFileInfo( zipfile, &info, NULL, 0, NULL, 0, NULL, 0 );
if ( result != UNZ_OK )
{
b3Printf("unzGetCurrentFileInfo() != UNZ_OK (%d)\n", result);
} else
{
result = unzOpenCurrentFile(zipfile);
if (result == UNZ_OK)
{
buffer = (unsigned char*)malloc(info.uncompressed_size);
result = unzReadCurrentFile(zipfile,buffer,info.uncompressed_size);
if (result <0)
{
free(buffer);
buffer=0;
} else
{
*sizeInBytesPtr= info.uncompressed_size;
}
unzCloseCurrentFile(zipfile);
} else
{
b3Printf("cannot open file %s!\n", fileName);
}
}
} else
{
b3Printf("cannot find file %s\n", fileName);
}
unzClose( zipfile );
}
}
}
#endif//B3_USE_ZLIB
if (!buffer)
{
FILE* f=0;
int result = 0;
for (int i=0;!f && i<numPrefixes;i++)
{
sprintf(relativeFileName,"%s%s",prefix[i],fileName);
f = fopen(relativeFileName,"rb");
}
//first try from data.zip, otherwise directly load the file from disk
if (f)
{
int sizeInBytes=0;
if (fseek(f, 0, SEEK_END) || (sizeInBytes = ftell(f)) == EOF || fseek(f, 0, SEEK_SET))
{
b3Printf("error, cannot get file size\n");
}
buffer = (unsigned char*) malloc(sizeInBytes);
int actualRead = fread(buffer,sizeInBytes,1,f);
if (actualRead != 1)
{
free(buffer);
buffer=0;
} else
{
*sizeInBytesPtr = sizeInBytes;
}
fclose(f);
}
}
return buffer;
}
void testLauncher(const char* fileName2, b3LauncherCL& launcher, cl_context ctx)
{
int sizeInBytes=0;
unsigned char* buf = openFile(fileName2,&sizeInBytes);
ASSERT_FALSE(buf==NULL);
if (buf)
{
int serializedBytes = launcher.deserializeArgs(buf, sizeInBytes,ctx);
int num = *(int*)&buf[serializedBytes];
launcher.launch1D( num);
free(buf);
//this clFinish is for testing on errors
}
}
TEST_F(ExecuteBullet3NarrowphaseKernels,mprKernelsCL)
{
cl_int errNum=0;
const char* srcConcave = satConcaveKernelsCL;
char flags[1024]={0};
cl_program mprProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext,m_clDevice,mprKernelsCL,&errNum,flags,0,true);
ASSERT_EQ(CL_SUCCESS,errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,mprKernelsCL, "mprPenetrationKernel",&errNum,mprProg );
ASSERT_EQ(CL_SUCCESS,errNum);
if (1)
{
const char* fileNames[]={"mprPenetrationKernel60.bin","mprPenetrationKernel61.bin","mprPenetrationKernel70.bin","mprPenetrationKernel128.bin"};
int results[] = {0,1,46,98};
int numTests = sizeof(fileNames)/sizeof(const char*);
for (int i=0;i<numTests;i++)
{
b3LauncherCL launcher(m_clQueue, k,fileNames[i]);
testLauncher(fileNames[i],launcher, m_clContext);
clFinish(m_clQueue);
ASSERT_EQ(launcher.getNumArguments(),11);
b3KernelArgData data = launcher.getArgument(8);
ASSERT_TRUE(data.m_isBuffer);
b3OpenCLArray<int> totalContactsOut(this->m_clContext,this->m_clQueue);
totalContactsOut.setFromOpenCLBuffer(data.m_clBuffer,1);
int numContacts = totalContactsOut.at(0);
ASSERT_EQ(results[i],numContacts);
}
//printf("numContacts = %d\n",numContacts);
//nContacts = m_totalContactsOut.at(0);
}
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,mprKernelsCL, "findSeparatingAxisUnitSphereKernel",&errNum,mprProg );
ASSERT_EQ(CL_SUCCESS,errNum);
clReleaseKernel(k);
}
clReleaseProgram(mprProg);
}
};