mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-03 00:10:10 +00:00
Update.
1998-08-09 Geoff Keating <geoffk@ozemail.com.au> * sysdeps/powerpc/Makefile [subdir=elf]: Add new files split out of dl-machine.h. * sysdeps/powerpc/dl-machine.c: New file. * sysdeps/powerpc/dl-machine.h: Move much stuff into separate files. Revise ELF_PREFERRED_ADDRESS to take account of the new mapping information (fixes bug involving huge bloated web browser). Set ELF_MACHINE_PLTREL_OVERLAP. * sysdeps/powerpc/dl-start.S: New file. * elf/dl-load.c (_dl_map_object_from_fd): Initialise l_map_start, l_map_end. * elf/do-rel.h: Call elf_machine_rel only once (to save space). * elf/dynamic-link.h: Allow PLT relocs to be in the middle of the others. Call elf_dynamic_do_##reloc only once (to save even more space). * elf/link.h: Add new members l_map_start and l_map_end to keep track of the memory map. * elf/rtld.c (_dl_start): Initialise l_map_start for ld.so and the executable. 1998-09-01 11:53 Ulrich Drepper <drepper@cygnus.com> * debug/Makefile (catchsegv): We need not rewrite SOVER anymore. Reported by Andreas Jaeger. * posix/glob.h: Use __size_t instead of size_t in definitions and make sure this is defined. * manual/locale.texi: Almost complete rewrite. Document more functions
This commit is contained in:
parent
85c165befc
commit
052b6a6c94
32
ChangeLog
32
ChangeLog
@ -1,6 +1,36 @@
|
||||
1998-08-09 Geoff Keating <geoffk@ozemail.com.au>
|
||||
|
||||
* sysdeps/powerpc/Makefile [subdir=elf]: Add new files split out of
|
||||
dl-machine.h.
|
||||
* sysdeps/powerpc/dl-machine.c: New file.
|
||||
* sysdeps/powerpc/dl-machine.h: Move much stuff into separate
|
||||
files. Revise ELF_PREFERRED_ADDRESS to take account of
|
||||
the new mapping information (fixes bug involving huge bloated
|
||||
web browser). Set ELF_MACHINE_PLTREL_OVERLAP.
|
||||
* sysdeps/powerpc/dl-start.S: New file.
|
||||
|
||||
* elf/dl-load.c (_dl_map_object_from_fd): Initialise l_map_start,
|
||||
l_map_end.
|
||||
* elf/do-rel.h: Call elf_machine_rel only once (to save space).
|
||||
* elf/dynamic-link.h: Allow PLT relocs to be in the middle of the
|
||||
others. Call elf_dynamic_do_##reloc only once (to save even more
|
||||
space).
|
||||
* elf/link.h: Add new members l_map_start and l_map_end to keep
|
||||
track of the memory map.
|
||||
* elf/rtld.c (_dl_start): Initialise l_map_start for ld.so and
|
||||
the executable.
|
||||
|
||||
1998-09-01 11:53 Ulrich Drepper <drepper@cygnus.com>
|
||||
|
||||
* debug/Makefile (catchsegv): We need not rewrite SOVER anymore.
|
||||
Reported by Andreas Jaeger.
|
||||
|
||||
* posix/glob.h: Use __size_t instead of size_t in definitions and
|
||||
make sure this is defined.
|
||||
|
||||
1998-09-01 10:34 Ulrich Drepper <drepper@cygnus.com>
|
||||
|
||||
* manual/locale.texi: Almost compelte rewrite. Document more functions
|
||||
* manual/locale.texi: Almost complete rewrite. Document more functions
|
||||
and functionality.
|
||||
* manual/arith.texi: Correct reference.
|
||||
* manual/string.texi: Pretty printing.
|
||||
|
@ -44,8 +44,7 @@ include ../Rules
|
||||
|
||||
$(objpfx)catchsegv: catchsegv.sh $(common-objpfx)soversions.mk \
|
||||
$(common-objpfx)config.make
|
||||
sed -e 's|@VERSION@|$(version)|' -e 's|@SLIB@|$(slibdir)|' \
|
||||
-e 's|@SOVER@|$(libSegFault.so-version)|' $< > $@.new
|
||||
sed -e 's|@VERSION@|$(version)|' -e 's|@SLIB@|$(slibdir)|' $< > $@.new
|
||||
chmod 555 $@.new
|
||||
mv -f $@.new $@
|
||||
|
||||
|
@ -848,6 +848,11 @@ _dl_map_object_from_fd (char *name, int fd, char *realname,
|
||||
__mprotect ((caddr_t) (l->l_addr + c->mapend),
|
||||
loadcmds[nloadcmds - 1].allocend - c->mapend,
|
||||
0);
|
||||
|
||||
/* Remember which part of the address space this object uses. */
|
||||
l->l_map_start = c->mapstart + l->l_addr;
|
||||
l->l_map_end = l->l_map_start + maplength;
|
||||
|
||||
goto postmap;
|
||||
}
|
||||
else
|
||||
@ -857,6 +862,10 @@ _dl_map_object_from_fd (char *name, int fd, char *realname,
|
||||
ELF_FIXED_ADDRESS (loader, c->mapstart);
|
||||
}
|
||||
|
||||
/* Remember which part of the address space this object uses. */
|
||||
l->l_map_start = c->mapstart + l->l_addr;
|
||||
l->l_map_end = l->l_map_start + maplength;
|
||||
|
||||
while (c < &loadcmds[nloadcmds])
|
||||
{
|
||||
if (c->mapend > c->mapstart)
|
||||
|
@ -83,60 +83,75 @@ elf_get_dynamic_info (ElfW(Dyn) *dyn,
|
||||
#ifdef ELF_MACHINE_PLTREL_OVERLAP
|
||||
#define _ELF_DYNAMIC_DO_RELOC(RELOC, reloc, map, lazy) \
|
||||
do { \
|
||||
ElfW(Addr) r_addr, r_size, p_addr, p_size; \
|
||||
struct { ElfW(Addr) start, size; int lazy; } ranges[3]; \
|
||||
int ranges_index; \
|
||||
\
|
||||
ranges[0].lazy = ranges[2].lazy = 0; \
|
||||
ranges[1].lazy = 1; \
|
||||
ranges[0].size = ranges[1].size = ranges[2].size = 0; \
|
||||
\
|
||||
if ((map)->l_info[DT_##RELOC]) \
|
||||
{ \
|
||||
r_addr = (map)->l_info[DT_##RELOC]->d_un.d_ptr; \
|
||||
r_size = (map)->l_info[DT_##RELOC##SZ]->d_un.d_val; \
|
||||
if ((map)->l_info[DT_PLTREL] && \
|
||||
(map)->l_info[DT_PLTREL]->d_un.d_val == DT_##RELOC) \
|
||||
{ \
|
||||
p_addr = (map)->l_info[DT_JMPREL]->d_un.d_ptr; \
|
||||
p_size = (map)->l_info[DT_PLTRELSZ]->d_un.d_val; \
|
||||
if (r_addr <= p_addr && r_addr+r_size > p_addr) \
|
||||
{ \
|
||||
ElfW(Addr) r2_addr, r2_size; \
|
||||
r2_addr = p_addr + p_size; \
|
||||
if (r2_addr < r_addr + r_size) \
|
||||
{ \
|
||||
r2_size = r_addr + r_size - r2_addr; \
|
||||
elf_dynamic_do_##reloc ((map), r2_addr, r2_size, 0); \
|
||||
} \
|
||||
r_size = p_addr - r_addr; \
|
||||
} \
|
||||
ranges[0].start = (map)->l_info[DT_##RELOC]->d_un.d_ptr; \
|
||||
ranges[0].size = (map)->l_info[DT_##RELOC##SZ]->d_un.d_val; \
|
||||
} \
|
||||
\
|
||||
elf_dynamic_do_##reloc ((map), r_addr, r_size, 0); \
|
||||
if (p_addr) \
|
||||
elf_dynamic_do_##reloc ((map), p_addr, p_size, (lazy)); \
|
||||
} \
|
||||
else if ((map)->l_info[DT_PLTREL] && \
|
||||
(map)->l_info[DT_PLTREL]->d_un.d_val == DT_##RELOC) \
|
||||
if ((lazy) \
|
||||
&& (map)->l_info[DT_PLTREL] \
|
||||
&& (map)->l_info[DT_PLTREL]->d_un.d_val == DT_##RELOC) \
|
||||
{ \
|
||||
p_addr = (map)->l_info[DT_JMPREL]->d_un.d_ptr; \
|
||||
p_size = (map)->l_info[DT_PLTRELSZ]->d_un.d_val; \
|
||||
\
|
||||
elf_dynamic_do_##reloc ((map), p_addr, p_size, (lazy)); \
|
||||
ranges[1].start = (map)->l_info[DT_JMPREL]->d_un.d_ptr; \
|
||||
ranges[1].size = (map)->l_info[DT_PLTRELSZ]->d_un.d_val; \
|
||||
ranges[2].start = ranges[1].start + ranges[1].size; \
|
||||
ranges[2].size = ranges[0].start + ranges[0].size - ranges[2].start; \
|
||||
ranges[0].size = ranges[1].start - ranges[0].start; \
|
||||
} \
|
||||
\
|
||||
for (ranges_index = 0; ranges_index < 3; ++ranges_index) \
|
||||
elf_dynamic_do_##reloc ((map), \
|
||||
ranges[ranges_index].start, \
|
||||
ranges[ranges_index].size, \
|
||||
ranges[ranges_index].lazy); \
|
||||
} while (0)
|
||||
#else
|
||||
#define _ELF_DYNAMIC_DO_RELOC(RELOC, reloc, map, lazy) \
|
||||
do { \
|
||||
struct { ElfW(Addr) start, size; int lazy; } ranges[2]; \
|
||||
int ranges_index; \
|
||||
ranges[0].lazy = 0; \
|
||||
ranges[1].lazy = 1; \
|
||||
ranges[0].size = ranges[1].size = 0; \
|
||||
ranges[0].start = 0; \
|
||||
\
|
||||
if ((map)->l_info[DT_##RELOC]) \
|
||||
{ \
|
||||
ElfW(Addr) r_addr, r_size; \
|
||||
r_addr = (map)->l_info[DT_##RELOC]->d_un.d_ptr; \
|
||||
r_size = (map)->l_info[DT_##RELOC##SZ]->d_un.d_val; \
|
||||
elf_dynamic_do_##reloc ((map), r_addr, r_size, 0); \
|
||||
ranges[0].start = (map)->l_info[DT_##RELOC]->d_un.d_ptr; \
|
||||
ranges[0].size = (map)->l_info[DT_##RELOC##SZ]->d_un.d_val; \
|
||||
} \
|
||||
if ((map)->l_info[DT_PLTREL] && \
|
||||
(map)->l_info[DT_PLTREL]->d_un.d_val == DT_##RELOC) \
|
||||
{ \
|
||||
ElfW(Addr) p_addr, p_size; \
|
||||
p_addr = (map)->l_info[DT_JMPREL]->d_un.d_ptr; \
|
||||
p_size = (map)->l_info[DT_PLTRELSZ]->d_un.d_val; \
|
||||
elf_dynamic_do_##reloc ((map), p_addr, p_size, (lazy)); \
|
||||
ElfW(Addr) start = (map)->l_info[DT_JMPREL]->d_un.d_ptr; \
|
||||
\
|
||||
if (lazy \
|
||||
/* This test does not only detect whether the relocation \
|
||||
sections are in the right order, it also checks whether \
|
||||
there is a DT_REL/DT_RELA section. */ \
|
||||
|| ranges[0].start + ranges[0].size != start) \
|
||||
{ \
|
||||
ranges[1].start = start; \
|
||||
ranges[1].size = (map)->l_info[DT_PLTRELSZ]->d_un.d_val; \
|
||||
} \
|
||||
else \
|
||||
/* Combine processing the sections. */ \
|
||||
ranges[0].size += (map)->l_info[DT_PLTRELSZ]->d_un.d_val; \
|
||||
} \
|
||||
\
|
||||
for (ranges_index = 0; ranges_index < 2; ++ranges_index) \
|
||||
elf_dynamic_do_##reloc ((map), \
|
||||
ranges[ranges_index].start, \
|
||||
ranges[ranges_index].size, \
|
||||
ranges[ranges_index].lazy); \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
|
@ -164,6 +164,10 @@ struct link_map
|
||||
|
||||
/* String specifying the path where this object was found. */
|
||||
const char *l_origin;
|
||||
|
||||
/* Start and finish of memory map for this object. l_map_start
|
||||
need not be the same as l_addr. */
|
||||
ElfW(Addr) l_map_start, l_map_end;
|
||||
};
|
||||
|
||||
#endif /* link.h */
|
||||
|
18
elf/rtld.c
18
elf/rtld.c
@ -165,6 +165,10 @@ _dl_start (void *arg)
|
||||
_dl_rtld_map.l_info[DT_RPATH]->d_un.d_val);
|
||||
}
|
||||
|
||||
/* Don't bother trying to work out how ld.so is mapped in memory. */
|
||||
_dl_rtld_map.l_map_start = ~0;
|
||||
_dl_rtld_map.l_map_end = ~0;
|
||||
|
||||
/* Call the OS-dependent function to set up life so we can do things like
|
||||
file access. It will call `dl_main' (below) to do all the real work
|
||||
of the dynamic linker, and then unwind our frame and run the user
|
||||
@ -432,6 +436,11 @@ of this helper program; chances are you did not intend to run this program.\n\
|
||||
information for the program. */
|
||||
}
|
||||
|
||||
/* It is not safe to load stuff after the main program. */
|
||||
main_map->l_map_end = ~0;
|
||||
/* Perhaps the executable has no PT_LOAD header entries at all. */
|
||||
main_map->l_map_start = ~0;
|
||||
|
||||
/* Scan the program header table for the dynamic section. */
|
||||
for (ph = phdr; ph < &phdr[phent]; ++ph)
|
||||
switch (ph->p_type)
|
||||
@ -474,6 +483,15 @@ of this helper program; chances are you did not intend to run this program.\n\
|
||||
|
||||
has_interp = 1;
|
||||
break;
|
||||
case PT_LOAD:
|
||||
/* Remember where the main program starts in memory. */
|
||||
{
|
||||
ElfW(Addr) mapstart;
|
||||
mapstart = main_map->l_addr + (ph->p_vaddr & ~(ph->p_align - 1));
|
||||
if (main_map->l_map_start > mapstart)
|
||||
main_map->l_map_start = mapstart;
|
||||
}
|
||||
break;
|
||||
}
|
||||
if (! _dl_rtld_map.l_libname && _dl_rtld_map.l_name)
|
||||
{
|
||||
|
@ -1,5 +1,10 @@
|
||||
/* Argp example #1 -- a minimal program using argp */
|
||||
|
||||
/* This is (probably) the smallest possible program that
|
||||
uses argp. It won't do much except give an error
|
||||
messages and exit when there are any arguments, and print
|
||||
a (rather pointless) messages for --help. */
|
||||
|
||||
#include <argp.h>
|
||||
|
||||
int main (int argc, char **argv)
|
||||
|
@ -1,11 +1,30 @@
|
||||
/* Argp example #2 -- a pretty minimal program using argp */
|
||||
|
||||
/* This program doesn't use any options or arguments, but uses
|
||||
argp to be compliant with the GNU standard command line
|
||||
format.
|
||||
|
||||
In addition to making sure no arguments are given, and
|
||||
implementing a --help option, this example will have a
|
||||
--version option, and will put the given documentation string
|
||||
and bug address in the --help output, as per GNU standards.
|
||||
|
||||
The variable ARGP contains the argument parser specification;
|
||||
adding fields to this structure is the way most parameters are
|
||||
passed to argp_parse (the first three fields are usually used,
|
||||
but not in this small program). There are also two global
|
||||
variables that argp knows about defined here,
|
||||
ARGP_PROGRAM_VERSION and ARGP_PROGRAM_BUG_ADDRESS (they are
|
||||
global variables becuase they will almost always be constant
|
||||
for a given program, even if it uses different argument
|
||||
parsers for various tasks). */
|
||||
|
||||
#include <argp.h>
|
||||
|
||||
const char *argp_program_version =
|
||||
"argp-ex2 1.0";
|
||||
const char *argp_program_bug_address =
|
||||
"<bug-gnu-utils@@prep.ai.mit.edu>";
|
||||
"<bug-gnu-utils@@gnu.org>";
|
||||
|
||||
/* Program documentation. */
|
||||
static char doc[] =
|
||||
|
@ -1,11 +1,63 @@
|
||||
/* Argp example #3 -- a program with options and arguments using argp */
|
||||
|
||||
/* This program uses the same features as example 2, and uses options and
|
||||
arguments.
|
||||
|
||||
We now use the first four fields in ARGP, so here's a description of them:
|
||||
OPTIONS -- A pointer to a vector of struct argp_option (see below)
|
||||
PARSER -- A function to parse a single option, called by argp
|
||||
ARGS_DOC -- A string describing how the non-option arguments should look
|
||||
DOC -- A descriptive string about this program; if it contains a
|
||||
vertical tab character (\v), the part after it will be
|
||||
printed *following* the options
|
||||
|
||||
The function PARSER takes the following arguments:
|
||||
KEY -- An integer specifying which option this is (taken
|
||||
from the KEY field in each struct argp_option), or
|
||||
a special key specifying something else; the only
|
||||
special keys we use here are ARGP_KEY_ARG, meaning
|
||||
a non-option argument, and ARGP_KEY_END, meaning
|
||||
that all argumens have been parsed
|
||||
ARG -- For an option KEY, the string value of its
|
||||
argument, or NULL if it has none
|
||||
STATE-- A pointer to a struct argp_state, containing
|
||||
various useful information about the parsing state; used here
|
||||
are the INPUT field, which reflects the INPUT argument to
|
||||
argp_parse, and the ARG_NUM field, which is the number of the
|
||||
current non-option argument being parsed
|
||||
It should return either 0, meaning success, ARGP_ERR_UNKNOWN, meaning the
|
||||
given KEY wasn't recognized, or an errno value indicating some other
|
||||
error.
|
||||
|
||||
Note that in this example, main uses a structure to communicate with the
|
||||
parse_opt function, a pointer to which it passes in the INPUT argument to
|
||||
argp_parse. Of course, it's also possible to use global variables
|
||||
instead, but this is somewhat more flexible.
|
||||
|
||||
The OPTIONS field contains a pointer to a vector of struct argp_option's;
|
||||
that structure has the following fields (if you assign your option
|
||||
structures using array initialization like this example, unspecified
|
||||
fields will be defaulted to 0, and need not be specified):
|
||||
NAME -- The name of this option's long option (may be zero)
|
||||
KEY -- The KEY to pass to the PARSER function when parsing this option,
|
||||
*and* the name of this option's short option, if it is a
|
||||
printable ascii character
|
||||
ARG -- The name of this option's argument, if any
|
||||
FLAGS -- Flags describing this option; some of them are:
|
||||
OPTION_ARG_OPTIONAL -- The argument to this option is optional
|
||||
OPTION_ALIAS -- This option is an alias for the
|
||||
previous option
|
||||
OPTION_HIDDEN -- Don't show this option in --help output
|
||||
DOC -- A documentation string for this option, shown in --help output
|
||||
|
||||
An options vector should be terminated by an option with all fields zero. */
|
||||
|
||||
#include <argp.h>
|
||||
|
||||
const char *argp_program_version =
|
||||
"argp-ex3 1.0";
|
||||
const char *argp_program_bug_address =
|
||||
"<bug-gnu-utils@@prep.ai.mit.edu>";
|
||||
"<bug-gnu-utils@@gnu.org>";
|
||||
|
||||
/* Program documentation. */
|
||||
static char doc[] =
|
||||
|
@ -1,5 +1,28 @@
|
||||
/* Argp example #4 -- a program with somewhat more complicated options */
|
||||
|
||||
/* This program uses the same features as example 3, but has more
|
||||
options, and somewhat more structure in the -help output. It
|
||||
also shows how you can `steal' the remainder of the input
|
||||
arguments past a certain point, for programs that accept a
|
||||
list of items. It also shows the special argp KEY value
|
||||
ARGP_KEY_NO_ARGS, which is only given if no non-option
|
||||
arguments were supplied to the program.
|
||||
|
||||
For structuring the help output, two features are used,
|
||||
*headers* which are entries in the options vector with the
|
||||
first four fields being zero, and a two part documentation
|
||||
string (in the variable DOC), which allows documentation both
|
||||
before and after the options; the two parts of DOC are
|
||||
separated by a vertical-tab character ('\v', or '\013'). By
|
||||
convention, the documentation before the options is just a
|
||||
short string saying what the program does, and that afterwards
|
||||
is longer, describing the behavior in more detail. All
|
||||
documentation strings are automatically filled for output,
|
||||
although newlines may be included to force a line break at a
|
||||
particular point. All documenation strings are also passed to
|
||||
the `gettext' function, for possible translation into the
|
||||
current locale. */
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <error.h>
|
||||
#include <argp.h>
|
||||
|
@ -82,7 +82,7 @@ allow this three-argument form, so to be portable it is best to write
|
||||
* Parsing Program Arguments:: Ways to parse program options and arguments.
|
||||
@end menu
|
||||
|
||||
@node Argument Syntax
|
||||
@node Argument Syntax, Parsing Program Arguments, , Program Arguments
|
||||
@subsection Program Argument Syntax Conventions
|
||||
@cindex program argument syntax
|
||||
@cindex syntax, for program arguments
|
||||
@ -154,7 +154,7 @@ accept an argument that is itself optional.
|
||||
Eventually, the GNU system will provide completion for long option names
|
||||
in the shell.
|
||||
|
||||
@node Parsing Program Arguments
|
||||
@node Parsing Program Arguments, , Argument Syntax, Program Arguments
|
||||
@subsection Parsing Program Arguments
|
||||
|
||||
@cindex program arguments, parsing
|
||||
@ -188,7 +188,7 @@ it does more of the dirty work for you.
|
||||
|
||||
@node Suboptions, Suboptions Example, Argp, Parsing Program Arguments
|
||||
@c This is a @section so that it's at the same level as getopt and argp
|
||||
@section Parsing of Suboptions
|
||||
@subsubsection Parsing of Suboptions
|
||||
|
||||
Having a single level of options is sometimes not enough. There might
|
||||
be too many options which have to be available or a set of options is
|
||||
|
23
posix/glob.h
23
posix/glob.h
@ -43,6 +43,21 @@ extern "C" {
|
||||
# define __ptr_t char *
|
||||
#endif /* C++ or ANSI C. */
|
||||
|
||||
/* We need `size_t' for the following definitions. */
|
||||
#ifndef __size_t
|
||||
# if defined __GNUC__ && __GNUC__ >= 2
|
||||
typedef __SIZE_TYPE__ __size_t;
|
||||
# else
|
||||
/* This is a guess. */
|
||||
typedef unsigned long int __size_t;
|
||||
# endif
|
||||
#else
|
||||
/* The GNU CC stddef.h version defines __size_t as empty. We need a real
|
||||
definition. */
|
||||
# undef __size_t
|
||||
# define __size_t size_t
|
||||
#endif
|
||||
|
||||
/* Bits set in the FLAGS argument to `glob'. */
|
||||
#define GLOB_ERR (1 << 0)/* Return on read errors. */
|
||||
#define GLOB_MARK (1 << 1)/* Append a slash to each name. */
|
||||
@ -90,9 +105,9 @@ struct stat;
|
||||
#endif
|
||||
typedef struct
|
||||
{
|
||||
size_t gl_pathc; /* Count of paths matched by the pattern. */
|
||||
__size_t gl_pathc; /* Count of paths matched by the pattern. */
|
||||
char **gl_pathv; /* List of matched pathnames. */
|
||||
size_t gl_offs; /* Slots to reserve in `gl_pathv'. */
|
||||
__size_t gl_offs; /* Slots to reserve in `gl_pathv'. */
|
||||
int gl_flags; /* Set to FLAGS, maybe | GLOB_MAGCHAR. */
|
||||
|
||||
/* If the GLOB_ALTDIRFUNC flag is set, the following functions
|
||||
@ -108,9 +123,9 @@ typedef struct
|
||||
struct stat64;
|
||||
typedef struct
|
||||
{
|
||||
size_t gl_pathc;
|
||||
__size_t gl_pathc;
|
||||
char **gl_pathv;
|
||||
size_t gl_offs;
|
||||
__size_t gl_offs;
|
||||
int gl_flags;
|
||||
|
||||
/* If the GLOB_ALTDIRFUNC flag is set, the following functions
|
||||
|
@ -28,3 +28,8 @@ endif
|
||||
ifeq ($(subdir),string)
|
||||
CFLAGS-memcmp.c += -Wno-uninitialized
|
||||
endif
|
||||
|
||||
ifeq ($(subdir),elf)
|
||||
dl-routines += dl-machine
|
||||
rtld-routines += dl-machine dl-start
|
||||
endif
|
||||
|
442
sysdeps/powerpc/dl-machine.c
Normal file
442
sysdeps/powerpc/dl-machine.c
Normal file
@ -0,0 +1,442 @@
|
||||
/* Machine-dependent ELF dynamic relocation functions. PowerPC version.
|
||||
Copyright (C) 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Library General Public License as
|
||||
published by the Free Software Foundation; either version 2 of the
|
||||
License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Library General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Library General Public
|
||||
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
||||
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||||
Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include <unistd.h>
|
||||
#include <string.h>
|
||||
#include <sys/param.h>
|
||||
#include <link.h>
|
||||
#include <dl-machine.h>
|
||||
#include <elf/ldsodefs.h>
|
||||
#include <elf/dynamic-link.h>
|
||||
|
||||
/* Because ld.so is now versioned, these functions can be in their own file;
|
||||
no relocations need to be done to call them.
|
||||
Of course, if ld.so is not versioned... */
|
||||
#if !(DO_VERSIONING - 0)
|
||||
#error This will not work with versioning turned off, sorry.
|
||||
#endif
|
||||
|
||||
|
||||
/* stuff for the PLT */
|
||||
#define PLT_INITIAL_ENTRY_WORDS 18
|
||||
#define PLT_LONGBRANCH_ENTRY_WORDS 10
|
||||
#define PLT_DOUBLE_SIZE (1<<13)
|
||||
#define PLT_ENTRY_START_WORDS(entry_number) \
|
||||
(PLT_INITIAL_ENTRY_WORDS + (entry_number)*2 + \
|
||||
((entry_number) > PLT_DOUBLE_SIZE ? \
|
||||
((entry_number) - PLT_DOUBLE_SIZE)*2 : \
|
||||
0))
|
||||
#define PLT_DATA_START_WORDS(num_entries) PLT_ENTRY_START_WORDS(num_entries)
|
||||
|
||||
#define OPCODE_ADDI(rd,ra,simm) \
|
||||
(0x38000000 | (rd) << 21 | (ra) << 16 | (simm) & 0xffff)
|
||||
#define OPCODE_ADDIS(rd,ra,simm) \
|
||||
(0x3c000000 | (rd) << 21 | (ra) << 16 | (simm) & 0xffff)
|
||||
#define OPCODE_ADD(rd,ra,rb) \
|
||||
(0x7c000214 | (rd) << 21 | (ra) << 16 | (rb) << 11)
|
||||
#define OPCODE_B(target) (0x48000000 | (target) & 0x03fffffc)
|
||||
#define OPCODE_BA(target) (0x48000002 | (target) & 0x03fffffc)
|
||||
#define OPCODE_BCTR() 0x4e800420
|
||||
#define OPCODE_LWZ(rd,d,ra) \
|
||||
(0x80000000 | (rd) << 21 | (ra) << 16 | (d) & 0xffff)
|
||||
#define OPCODE_MTCTR(rd) (0x7C0903A6 | (rd) << 21)
|
||||
#define OPCODE_RLWINM(ra,rs,sh,mb,me) \
|
||||
(0x54000000 | (rs) << 21 | (ra) << 16 | (sh) << 11 | (mb) << 6 | (me) << 1)
|
||||
|
||||
#define OPCODE_LI(rd,simm) OPCODE_ADDI(rd,0,simm)
|
||||
#define OPCODE_SLWI(ra,rs,sh) OPCODE_RLWINM(ra,rs,sh,0,31-sh)
|
||||
|
||||
|
||||
#define PPC_DCBST(where) asm volatile ("dcbst 0,%0" : : "r"(where))
|
||||
#define PPC_SYNC asm volatile ("sync")
|
||||
#define PPC_ISYNC asm volatile ("sync; isync")
|
||||
#define PPC_ICBI(where) asm volatile ("icbi 0,%0" : : "r"(where))
|
||||
#define PPC_DIE asm volatile ("tweq 0,0")
|
||||
|
||||
/* Use this when you've modified some code, but it won't be in the
|
||||
instruction fetch queue (or when it doesn't matter if it is). */
|
||||
#define MODIFIED_CODE_NOQUEUE(where) \
|
||||
do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); } while (0)
|
||||
/* Use this when it might be in the instruction queue. */
|
||||
#define MODIFIED_CODE(where) \
|
||||
do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); PPC_ISYNC; } while (0)
|
||||
|
||||
|
||||
/* The idea here is that to conform to the ABI, we are supposed to try
|
||||
to load dynamic objects between 0x10000 (we actually use 0x40000 as
|
||||
the lower bound, to increase the chance of a memory reference from
|
||||
a null pointer giving a segfault) and the program's load address;
|
||||
this may allow us to use a branch instruction in the PLT rather
|
||||
than a computed jump. The address is only used as a preference for
|
||||
mmap, so if we get it wrong the worst that happens is that it gets
|
||||
mapped somewhere else. */
|
||||
|
||||
ElfW(Addr)
|
||||
__elf_preferred_address(struct link_map *loader, size_t maplength,
|
||||
ElfW(Addr) mapstartpref)
|
||||
{
|
||||
ElfW(Addr) low, high;
|
||||
struct link_map *l;
|
||||
|
||||
/* If the object has a preference, load it there! */
|
||||
if (mapstartpref != 0)
|
||||
return mapstartpref;
|
||||
|
||||
/* Otherwise, quickly look for a suitable gap between 0x3FFFF and
|
||||
0x70000000. 0x3FFFF is so that references off NULL pointers will
|
||||
cause a segfault, 0x70000000 is just paranoia (it should always
|
||||
be superceded by the program's load address). */
|
||||
low = 0x0003FFFF;
|
||||
high = 0x70000000;
|
||||
for (l = _dl_loaded; l; l = l->l_next)
|
||||
{
|
||||
ElfW(Addr) mapstart, mapend;
|
||||
mapstart = l->l_map_start & ~(_dl_pagesize - 1);
|
||||
mapend = l->l_map_end | (_dl_pagesize - 1);
|
||||
assert (mapend > mapstart);
|
||||
|
||||
if (mapend >= high && high >= mapstart)
|
||||
high = mapstart;
|
||||
else if (mapend >= low && low >= mapstart)
|
||||
low = mapend;
|
||||
else if (high >= mapend && mapstart >= low)
|
||||
{
|
||||
if (high - mapend >= mapstart - low)
|
||||
low = mapend;
|
||||
else
|
||||
high = mapstart;
|
||||
}
|
||||
}
|
||||
|
||||
high -= 0x10000; /* Allow some room between objects. */
|
||||
maplength = (maplength | (_dl_pagesize-1)) + 1;
|
||||
if (high <= low || high - low < maplength )
|
||||
return 0;
|
||||
return high - maplength; /* Both high and maplength are page-aligned. */
|
||||
}
|
||||
|
||||
/* Set up the loaded object described by L so its unrelocated PLT
|
||||
entries will jump to the on-demand fixup code in dl-runtime.c.
|
||||
Also install a small trampoline to be used by entries that have
|
||||
been relocated to an address too far away for a single branch. */
|
||||
|
||||
/* A PLT entry does one of three things:
|
||||
(i) Jumps to the actual routine. Such entries are set up above, in
|
||||
elf_machine_rela.
|
||||
|
||||
(ii) Jumps to the actual routine via glue at the start of the PLT.
|
||||
We do this by putting the address of the routine in space
|
||||
allocated at the end of the PLT, and when the PLT entry is
|
||||
called we load the offset of that word (from the start of the
|
||||
space) into r11, then call the glue, which loads the word and
|
||||
branches to that address. These entries are set up in
|
||||
elf_machine_rela, but the glue is set up here.
|
||||
|
||||
(iii) Loads the index of this PLT entry (we count the double-size
|
||||
entries as one entry for this purpose) into r11, then
|
||||
branches to code at the start of the PLT. This code then
|
||||
calls `fixup', in dl-runtime.c, via the glue in the macro
|
||||
ELF_MACHINE_RUNTIME_TRAMPOLINE, which resets the PLT entry to
|
||||
be one of the above two types. These entries are set up here. */
|
||||
int
|
||||
__elf_machine_runtime_setup (struct link_map *map, int lazy, int profile)
|
||||
{
|
||||
if (map->l_info[DT_JMPREL])
|
||||
{
|
||||
Elf32_Word i;
|
||||
/* Fill in the PLT. Its initial contents are directed to a
|
||||
function earlier in the PLT which arranges for the dynamic
|
||||
linker to be called back. */
|
||||
Elf32_Word *plt = (Elf32_Word *) ((char *) map->l_addr
|
||||
+ map->l_info[DT_PLTGOT]->d_un.d_val);
|
||||
Elf32_Word num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
|
||||
/ sizeof (Elf32_Rela));
|
||||
Elf32_Word rel_offset_words = PLT_DATA_START_WORDS (num_plt_entries);
|
||||
Elf32_Word size_modified;
|
||||
extern void _dl_runtime_resolve (void);
|
||||
extern void _dl_prof_resolve (void);
|
||||
Elf32_Word dlrr;
|
||||
|
||||
dlrr = (Elf32_Word)(char *)(profile
|
||||
? _dl_prof_resolve
|
||||
: _dl_runtime_resolve);
|
||||
|
||||
if (lazy)
|
||||
for (i = 0; i < num_plt_entries; i++)
|
||||
{
|
||||
Elf32_Word offset = PLT_ENTRY_START_WORDS (i);
|
||||
|
||||
if (i >= PLT_DOUBLE_SIZE)
|
||||
{
|
||||
plt[offset ] = OPCODE_LI (11, i * 4);
|
||||
plt[offset+1] = OPCODE_ADDIS (11, 11, (i * 4 + 0x8000) >> 16);
|
||||
plt[offset+2] = OPCODE_B (-(4 * (offset + 2)));
|
||||
}
|
||||
else
|
||||
{
|
||||
plt[offset ] = OPCODE_LI (11, i * 4);
|
||||
plt[offset+1] = OPCODE_B (-(4 * (offset + 1)));
|
||||
}
|
||||
}
|
||||
|
||||
/* Multiply index of entry by 3 (in r11). */
|
||||
plt[0] = OPCODE_SLWI (12, 11, 1);
|
||||
plt[1] = OPCODE_ADD (11, 12, 11);
|
||||
if (dlrr <= 0x01fffffc || dlrr >= 0xfe000000)
|
||||
{
|
||||
/* Load address of link map in r12. */
|
||||
plt[2] = OPCODE_LI (12, (Elf32_Word) (char *) map);
|
||||
plt[3] = OPCODE_ADDIS (12, 12, (((Elf32_Word) (char *) map
|
||||
+ 0x8000) >> 16));
|
||||
|
||||
/* Call _dl_runtime_resolve. */
|
||||
plt[4] = OPCODE_BA (dlrr);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Get address of _dl_runtime_resolve in CTR. */
|
||||
plt[2] = OPCODE_LI (12, dlrr);
|
||||
plt[3] = OPCODE_ADDIS (12, 12, (dlrr + 0x8000) >> 16);
|
||||
plt[4] = OPCODE_MTCTR (12);
|
||||
|
||||
/* Load address of link map in r12. */
|
||||
plt[5] = OPCODE_LI (12, (Elf32_Word) (char *) map);
|
||||
plt[6] = OPCODE_ADDIS (12, 12, (((Elf32_Word) (char *) map
|
||||
+ 0x8000) >> 16));
|
||||
|
||||
/* Call _dl_runtime_resolve. */
|
||||
plt[7] = OPCODE_BCTR ();
|
||||
}
|
||||
|
||||
|
||||
/* Convert the index in r11 into an actual address, and get the
|
||||
word at that address. */
|
||||
plt[PLT_LONGBRANCH_ENTRY_WORDS] =
|
||||
OPCODE_ADDIS (11, 11, (((Elf32_Word) (char*) (plt + rel_offset_words)
|
||||
+ 0x8000) >> 16));
|
||||
plt[PLT_LONGBRANCH_ENTRY_WORDS+1] =
|
||||
OPCODE_LWZ (11, (Elf32_Word) (char*) (plt+rel_offset_words), 11);
|
||||
|
||||
/* Call the procedure at that address. */
|
||||
plt[PLT_LONGBRANCH_ENTRY_WORDS+2] = OPCODE_MTCTR (11);
|
||||
plt[PLT_LONGBRANCH_ENTRY_WORDS+3] = OPCODE_BCTR ();
|
||||
|
||||
|
||||
/* Now, we've modified code (quite a lot of code, possibly). We
|
||||
need to write the changes from the data cache to a
|
||||
second-level unified cache, then make sure that stale data in
|
||||
the instruction cache is removed. (In a multiprocessor
|
||||
system, the effect is more complex.)
|
||||
|
||||
Assumes the cache line size is at least 32 bytes, or at least
|
||||
that dcbst and icbi apply to 32-byte lines. At present, all
|
||||
PowerPC processors have line sizes of exactly 32 bytes. */
|
||||
|
||||
size_modified = lazy ? rel_offset_words : PLT_INITIAL_ENTRY_WORDS;
|
||||
for (i = 0; i < size_modified; i+=8)
|
||||
PPC_DCBST (plt + i);
|
||||
PPC_SYNC;
|
||||
for (i = 0; i < size_modified; i+=8)
|
||||
PPC_ICBI (plt + i);
|
||||
PPC_ISYNC;
|
||||
}
|
||||
|
||||
return lazy;
|
||||
}
|
||||
|
||||
void
|
||||
__elf_machine_fixup_plt(struct link_map *map, const Elf32_Rela *reloc,
|
||||
Elf32_Addr *reloc_addr, Elf32_Addr finaladdr)
|
||||
{
|
||||
Elf32_Sword delta = finaladdr - (Elf32_Word) (char *) reloc_addr;
|
||||
if (delta << 6 >> 6 == delta)
|
||||
*reloc_addr = OPCODE_B (delta);
|
||||
else if (finaladdr <= 0x01fffffc || finaladdr >= 0xfe000000)
|
||||
*reloc_addr = OPCODE_BA (finaladdr);
|
||||
else
|
||||
{
|
||||
Elf32_Word *plt;
|
||||
Elf32_Word index;
|
||||
|
||||
plt = (Elf32_Word *)((char *)map->l_addr
|
||||
+ map->l_info[DT_PLTGOT]->d_un.d_val);
|
||||
index = (reloc_addr - plt - PLT_INITIAL_ENTRY_WORDS)/2;
|
||||
if (index >= PLT_DOUBLE_SIZE)
|
||||
{
|
||||
/* Slots greater than or equal to 2^13 have 4 words available
|
||||
instead of two. */
|
||||
/* FIXME: There are some possible race conditions in this code,
|
||||
when called from 'fixup'.
|
||||
|
||||
1) Suppose that a lazy PLT entry is executing, a context switch
|
||||
between threads (or a signal) occurs, and the new thread or
|
||||
signal handler calls the same lazy PLT entry. Then the PLT entry
|
||||
would be changed while it's being run, which will cause a segfault
|
||||
(almost always).
|
||||
|
||||
2) Suppose the reverse: that a lazy PLT entry is being updated,
|
||||
a context switch occurs, and the new code calls the lazy PLT
|
||||
entry that is being updated. Then the half-fixed PLT entry will
|
||||
be executed, which will also almost always cause a segfault.
|
||||
|
||||
These problems don't happen with the 2-word entries, because
|
||||
only one of the two instructions are changed when a lazy entry
|
||||
is retargeted at the actual PLT entry; the li instruction stays
|
||||
the same (we have to update it anyway, because we might not be
|
||||
updating a lazy PLT entry). */
|
||||
|
||||
reloc_addr[0] = OPCODE_LI (11, finaladdr);
|
||||
reloc_addr[1] = OPCODE_ADDIS (11, 11, finaladdr + 0x8000 >> 16);
|
||||
reloc_addr[2] = OPCODE_MTCTR (11);
|
||||
reloc_addr[3] = OPCODE_BCTR ();
|
||||
}
|
||||
else
|
||||
{
|
||||
Elf32_Word num_plt_entries;
|
||||
|
||||
num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
|
||||
/ sizeof(Elf32_Rela));
|
||||
|
||||
plt[index+PLT_DATA_START_WORDS (num_plt_entries)] = finaladdr;
|
||||
reloc_addr[0] = OPCODE_LI (11, index*4);
|
||||
reloc_addr[1] = OPCODE_B (-(4*(index*2
|
||||
+ 1
|
||||
- PLT_LONGBRANCH_ENTRY_WORDS
|
||||
+ PLT_INITIAL_ENTRY_WORDS)));
|
||||
}
|
||||
}
|
||||
MODIFIED_CODE (reloc_addr);
|
||||
}
|
||||
|
||||
void
|
||||
__process_machine_rela (struct link_map *map,
|
||||
const Elf32_Rela *reloc,
|
||||
const Elf32_Sym *sym,
|
||||
const Elf32_Sym *refsym,
|
||||
Elf32_Addr *const reloc_addr,
|
||||
Elf32_Addr const finaladdr,
|
||||
int rinfo)
|
||||
{
|
||||
switch (rinfo)
|
||||
{
|
||||
case R_PPC_NONE:
|
||||
return;
|
||||
|
||||
case R_PPC_ADDR32:
|
||||
case R_PPC_UADDR32:
|
||||
case R_PPC_GLOB_DAT:
|
||||
case R_PPC_RELATIVE:
|
||||
*reloc_addr = finaladdr;
|
||||
return;
|
||||
|
||||
case R_PPC_ADDR24:
|
||||
if (finaladdr > 0x01fffffc && finaladdr < 0xfe000000)
|
||||
{
|
||||
_dl_signal_error(0, map->l_name,
|
||||
"R_PPC_ADDR24 relocation out of range");
|
||||
}
|
||||
*reloc_addr = *reloc_addr & 0xfc000003 | finaladdr & 0x3fffffc;
|
||||
break;
|
||||
|
||||
case R_PPC_ADDR16:
|
||||
case R_PPC_UADDR16:
|
||||
if (finaladdr > 0x7fff && finaladdr < 0x8000)
|
||||
{
|
||||
_dl_signal_error(0, map->l_name,
|
||||
"R_PPC_ADDR16 relocation out of range");
|
||||
}
|
||||
*(Elf32_Half*) reloc_addr = finaladdr;
|
||||
break;
|
||||
|
||||
case R_PPC_ADDR16_LO:
|
||||
*(Elf32_Half*) reloc_addr = finaladdr;
|
||||
break;
|
||||
|
||||
case R_PPC_ADDR16_HI:
|
||||
*(Elf32_Half*) reloc_addr = finaladdr >> 16;
|
||||
break;
|
||||
|
||||
case R_PPC_ADDR16_HA:
|
||||
*(Elf32_Half*) reloc_addr = (finaladdr + 0x8000) >> 16;
|
||||
break;
|
||||
|
||||
case R_PPC_ADDR14:
|
||||
case R_PPC_ADDR14_BRTAKEN:
|
||||
case R_PPC_ADDR14_BRNTAKEN:
|
||||
if (finaladdr > 0x7fff && finaladdr < 0x8000)
|
||||
{
|
||||
_dl_signal_error(0, map->l_name,
|
||||
"R_PPC_ADDR14 relocation out of range");
|
||||
}
|
||||
*reloc_addr = *reloc_addr & 0xffff0003 | finaladdr & 0xfffc;
|
||||
if (rinfo != R_PPC_ADDR14)
|
||||
*reloc_addr = (*reloc_addr & 0xffdfffff
|
||||
| (rinfo == R_PPC_ADDR14_BRTAKEN
|
||||
^ finaladdr >> 31) << 21);
|
||||
break;
|
||||
|
||||
case R_PPC_REL24:
|
||||
{
|
||||
Elf32_Sword delta = finaladdr - (Elf32_Word) (char *) reloc_addr;
|
||||
if (delta << 6 >> 6 != delta)
|
||||
{
|
||||
_dl_signal_error(0, map->l_name,
|
||||
"R_PPC_REL24 relocation out of range");
|
||||
}
|
||||
*reloc_addr = *reloc_addr & 0xfc000003 | delta & 0x3fffffc;
|
||||
}
|
||||
break;
|
||||
|
||||
case R_PPC_COPY:
|
||||
if (sym == NULL)
|
||||
/* This can happen in trace mode when an object could not be
|
||||
found. */
|
||||
return;
|
||||
if (sym->st_size > refsym->st_size
|
||||
|| (_dl_verbose && sym->st_size < refsym->st_size))
|
||||
{
|
||||
const char *strtab;
|
||||
|
||||
strtab = ((void *) map->l_addr
|
||||
+ map->l_info[DT_STRTAB]->d_un.d_ptr);
|
||||
_dl_sysdep_error (_dl_argv[0] ?: "<program name unknown>",
|
||||
": Symbol `", strtab + refsym->st_name,
|
||||
"' has different size in shared object, "
|
||||
"consider re-linking\n", NULL);
|
||||
}
|
||||
memcpy (reloc_addr, (char *) finaladdr, MIN (sym->st_size,
|
||||
refsym->st_size));
|
||||
return;
|
||||
|
||||
case R_PPC_REL32:
|
||||
*reloc_addr = finaladdr - (Elf32_Word) (char *) reloc_addr;
|
||||
return;
|
||||
|
||||
case R_PPC_JMP_SLOT:
|
||||
elf_machine_fixup_plt(map, reloc, reloc_addr, finaladdr);
|
||||
return;
|
||||
|
||||
default:
|
||||
_dl_sysdep_error (_dl_argv[0] ?: "<program name unknown>",
|
||||
": Unknown relocation type\n", NULL);
|
||||
return;
|
||||
}
|
||||
|
||||
MODIFIED_CODE_NOQUEUE (reloc_addr);
|
||||
}
|
@ -23,57 +23,9 @@
|
||||
#define ELF_MACHINE_NAME "powerpc"
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include <link.h>
|
||||
#include <sys/param.h>
|
||||
|
||||
|
||||
/* stuff for the PLT */
|
||||
#define PLT_INITIAL_ENTRY_WORDS 18
|
||||
#define PLT_LONGBRANCH_ENTRY_WORDS 10
|
||||
#define PLT_DOUBLE_SIZE (1<<13)
|
||||
#define PLT_ENTRY_START_WORDS(entry_number) \
|
||||
(PLT_INITIAL_ENTRY_WORDS + (entry_number)*2 + \
|
||||
((entry_number) > PLT_DOUBLE_SIZE ? \
|
||||
((entry_number) - PLT_DOUBLE_SIZE)*2 : \
|
||||
0))
|
||||
#define PLT_DATA_START_WORDS(num_entries) PLT_ENTRY_START_WORDS(num_entries)
|
||||
|
||||
#define OPCODE_ADDI(rd,ra,simm) \
|
||||
(0x38000000 | (rd) << 21 | (ra) << 16 | (simm) & 0xffff)
|
||||
#define OPCODE_ADDIS(rd,ra,simm) \
|
||||
(0x3c000000 | (rd) << 21 | (ra) << 16 | (simm) & 0xffff)
|
||||
#define OPCODE_ADD(rd,ra,rb) \
|
||||
(0x7c000214 | (rd) << 21 | (ra) << 16 | (rb) << 11)
|
||||
#define OPCODE_B(target) (0x48000000 | (target) & 0x03fffffc)
|
||||
#define OPCODE_BA(target) (0x48000002 | (target) & 0x03fffffc)
|
||||
#define OPCODE_BCTR() 0x4e800420
|
||||
#define OPCODE_LWZ(rd,d,ra) \
|
||||
(0x80000000 | (rd) << 21 | (ra) << 16 | (d) & 0xffff)
|
||||
#define OPCODE_MTCTR(rd) (0x7C0903A6 | (rd) << 21)
|
||||
#define OPCODE_RLWINM(ra,rs,sh,mb,me) \
|
||||
(0x54000000 | (rs) << 21 | (ra) << 16 | (sh) << 11 | (mb) << 6 | (me) << 1)
|
||||
|
||||
#define OPCODE_LI(rd,simm) OPCODE_ADDI(rd,0,simm)
|
||||
#define OPCODE_SLWI(ra,rs,sh) OPCODE_RLWINM(ra,rs,sh,0,31-sh)
|
||||
|
||||
#define PPC_DCBST(where) asm volatile ("dcbst 0,%0" : : "r"(where))
|
||||
#define PPC_SYNC asm volatile ("sync")
|
||||
#define PPC_ISYNC asm volatile ("sync; isync")
|
||||
#define PPC_ICBI(where) asm volatile ("icbi 0,%0" : : "r"(where))
|
||||
#define PPC_DIE asm volatile ("tweq 0,0")
|
||||
|
||||
/* Use this when you've modified some code, but it won't be in the
|
||||
instruction fetch queue (or when it doesn't matter if it is). */
|
||||
#define MODIFIED_CODE_NOQUEUE(where) \
|
||||
do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); } while (0)
|
||||
/* Use this when it might be in the instruction queue. */
|
||||
#define MODIFIED_CODE(where) \
|
||||
do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); PPC_ISYNC; } while (0)
|
||||
|
||||
|
||||
/* Return nonzero iff E_MACHINE is compatible with the running host. */
|
||||
static inline int
|
||||
extern inline int
|
||||
elf_machine_matches_host (Elf32_Half e_machine)
|
||||
{
|
||||
return e_machine == EM_PPC;
|
||||
@ -82,7 +34,7 @@ elf_machine_matches_host (Elf32_Half e_machine)
|
||||
|
||||
/* Return the link-time address of _DYNAMIC, stored as
|
||||
the first value in the GOT. */
|
||||
static inline Elf32_Addr
|
||||
extern inline Elf32_Addr
|
||||
elf_machine_dynamic (void)
|
||||
{
|
||||
Elf32_Addr *got;
|
||||
@ -248,150 +200,16 @@ _dl_prof_resolve:
|
||||
.previous
|
||||
");
|
||||
|
||||
/* Initial entry point code for the dynamic linker.
|
||||
The C function `_dl_start' is the real entry point;
|
||||
its return value is the user program's entry point. */
|
||||
#define RTLD_START \
|
||||
static ElfW(Addr) _dl_start (void *arg) __attribute__((unused)); \
|
||||
asm ("\
|
||||
.section \".text\"
|
||||
.align 2
|
||||
.globl _start
|
||||
.type _start,@function
|
||||
_start:
|
||||
# We start with the following on the stack, from top:
|
||||
# argc (4 bytes);
|
||||
# arguments for program (terminated by NULL);
|
||||
# environment variables (terminated by NULL);
|
||||
# arguments for the program loader.
|
||||
# FIXME: perhaps this should do the same trick as elf/start.c?
|
||||
|
||||
# Call _dl_start with one parameter pointing at argc
|
||||
mr 3,1
|
||||
# (we have to frob the stack pointer a bit to allow room for
|
||||
# _dl_start to save the link register)
|
||||
li 4,0
|
||||
addi 1,1,-16
|
||||
stw 4,0(1)
|
||||
bl _dl_start@local
|
||||
|
||||
# Now, we do our main work of calling initialisation procedures.
|
||||
# The ELF ABI doesn't say anything about parameters for these,
|
||||
# so we just pass argc, argv, and the environment.
|
||||
# Changing these is strongly discouraged (not least because argc is
|
||||
# passed by value!).
|
||||
|
||||
# Put our GOT pointer in r31,
|
||||
bl _GLOBAL_OFFSET_TABLE_-4@local
|
||||
mflr 31
|
||||
# the address of _start in r30,
|
||||
mr 30,3
|
||||
# &_dl_argc in 29, &_dl_argv in 27, and _dl_default_scope in 28.
|
||||
lwz 28,_dl_default_scope@got(31)
|
||||
lwz 29,_dl_argc@got(31)
|
||||
lwz 27,_dl_argv@got(31)
|
||||
0:
|
||||
# Set initfunc = _dl_init_next(_dl_default_scope[2])
|
||||
lwz 3,8(28)
|
||||
bl _dl_init_next@plt
|
||||
# If initfunc is NULL, we exit the loop; otherwise,
|
||||
cmpwi 3,0
|
||||
beq 1f
|
||||
# call initfunc(_dl_argc, _dl_argv, _dl_argv+_dl_argc+1)
|
||||
mtlr 3
|
||||
lwz 3,0(29)
|
||||
lwz 4,0(27)
|
||||
slwi 5,3,2
|
||||
add 5,4,5
|
||||
addi 5,5,4
|
||||
blrl
|
||||
# and loop.
|
||||
b 0b
|
||||
1:
|
||||
# Now, to conform to the ELF ABI, we have to:
|
||||
# Pass argc (actually _dl_argc) in r3;
|
||||
lwz 3,0(29)
|
||||
# pass argv (actually _dl_argv) in r4;
|
||||
lwz 4,0(27)
|
||||
# pass envp (actually _dl_argv+_dl_argc+1) in r5;
|
||||
slwi 5,3,2
|
||||
add 6,4,5
|
||||
addi 5,6,4
|
||||
# pass the auxilary vector in r6. This is passed to us just after _envp.
|
||||
2: lwzu 0,4(6)
|
||||
cmpwi 0,0,0
|
||||
bne 2b
|
||||
addi 6,6,4
|
||||
# Pass a termination function pointer (in this case _dl_fini) in r7.
|
||||
lwz 7,_dl_fini@got(31)
|
||||
# Now, call the start function in r30...
|
||||
mtctr 30
|
||||
lwz 26,_dl_starting_up@got(31)
|
||||
# Pass the stack pointer in r1 (so far so good), pointing to a NULL value.
|
||||
# (This lets our startup code distinguish between a program linked statically,
|
||||
# which linux will call with argc on top of the stack which will hopefully
|
||||
# never be zero, and a dynamically linked program which will always have
|
||||
# a NULL on the top of the stack).
|
||||
# Take the opportunity to clear LR, so anyone who accidentally returns
|
||||
# from _start gets SEGV. Also clear the next few words of the stack.
|
||||
li 31,0
|
||||
stw 31,0(1)
|
||||
mtlr 31
|
||||
stw 31,4(1)
|
||||
stw 31,8(1)
|
||||
stw 31,12(1)
|
||||
# Clear _dl_starting_up.
|
||||
stw 31,0(26)
|
||||
# Go do it!
|
||||
bctr
|
||||
0:
|
||||
.size _start,0b-_start
|
||||
# Undo '.section text'.
|
||||
.previous
|
||||
");
|
||||
|
||||
/* The idea here is that to conform to the ABI, we are supposed to try
|
||||
to load dynamic objects between 0x10000 (we actually use 0x40000 as
|
||||
the lower bound, to increase the chance of a memory reference from
|
||||
a null pointer giving a segfault) and the program's load address.
|
||||
Regrettably, in this code we can't find the program's load address,
|
||||
so we punt and choose 0x01800000, which is below the ABI's
|
||||
recommended default, and what GNU ld currently chooses. We only use
|
||||
the address as a preference for mmap, so if we get it wrong the
|
||||
worst that happens is that it gets mapped somewhere else.
|
||||
|
||||
FIXME: Unfortunately, 'somewhere else' is probably right after the
|
||||
program's break, which causes malloc to fail. We really need more
|
||||
information here about the way memory is mapped. */
|
||||
|
||||
#define ELF_PREFERRED_ADDRESS_DATA \
|
||||
static ElfW(Addr) _dl_preferred_address = 1
|
||||
/* The actual _start code is in dl-start.S. Use a really
|
||||
ugly bit of assembler to let dl-start.o see _dl_start. */
|
||||
#define RTLD_START asm (".globl _dl_start");
|
||||
|
||||
/* Decide where a relocatable object should be loaded. */
|
||||
extern ElfW(Addr)
|
||||
__elf_preferred_address(struct link_map *loader, size_t maplength,
|
||||
ElfW(Addr) mapstartpref);
|
||||
#define ELF_PREFERRED_ADDRESS(loader, maplength, mapstartpref) \
|
||||
( { \
|
||||
ElfW(Addr) prefd; \
|
||||
if (mapstartpref != 0 && _dl_preferred_address == 1) \
|
||||
_dl_preferred_address = mapstartpref; \
|
||||
if (mapstartpref != 0) \
|
||||
prefd = mapstartpref; \
|
||||
else if (_dl_preferred_address == 1) \
|
||||
prefd = _dl_preferred_address = \
|
||||
(0x01800000 - maplength - 0x10000) & \
|
||||
~(_dl_pagesize - 1); \
|
||||
else if (_dl_preferred_address < maplength + 0x50000) \
|
||||
prefd = 0; \
|
||||
else \
|
||||
prefd = _dl_preferred_address = \
|
||||
((_dl_preferred_address - maplength - 0x10000) \
|
||||
& ~(_dl_pagesize - 1)); \
|
||||
prefd; \
|
||||
} )
|
||||
|
||||
#define ELF_FIXED_ADDRESS(loader, mapstart) \
|
||||
( { \
|
||||
if (mapstart != 0 && _dl_preferred_address == 1) \
|
||||
_dl_preferred_address = mapstart; \
|
||||
} )
|
||||
__elf_preferred_address (loader, maplength, mapstartpref)
|
||||
|
||||
/* Nonzero iff TYPE should not be allowed to resolve to one of
|
||||
the main executable's symbols, as for a COPY reloc. */
|
||||
@ -417,203 +235,25 @@ static ElfW(Addr) _dl_preferred_address = 1
|
||||
entries will jump to the on-demand fixup code in dl-runtime.c.
|
||||
Also install a small trampoline to be used by entries that have
|
||||
been relocated to an address too far away for a single branch. */
|
||||
extern int __elf_machine_runtime_setup (struct link_map *map,
|
||||
int lazy, int profile);
|
||||
#define elf_machine_runtime_setup __elf_machine_runtime_setup
|
||||
|
||||
/* A PLT entry does one of three things:
|
||||
(i) Jumps to the actual routine. Such entries are set up above, in
|
||||
elf_machine_rela.
|
||||
|
||||
(ii) Jumps to the actual routine via glue at the start of the PLT.
|
||||
We do this by putting the address of the routine in space
|
||||
allocated at the end of the PLT, and when the PLT entry is
|
||||
called we load the offset of that word (from the start of the
|
||||
space) into r11, then call the glue, which loads the word and
|
||||
branches to that address. These entries are set up in
|
||||
elf_machine_rela, but the glue is set up here.
|
||||
|
||||
(iii) Loads the index of this PLT entry (we count the double-size
|
||||
entries as one entry for this purpose) into r11, then
|
||||
branches to code at the start of the PLT. This code then
|
||||
calls `fixup', in dl-runtime.c, via the glue in the macro
|
||||
ELF_MACHINE_RUNTIME_TRAMPOLINE, which resets the PLT entry to
|
||||
be one of the above two types. These entries are set up here. */
|
||||
static inline int
|
||||
elf_machine_runtime_setup (struct link_map *map, int lazy, int profile)
|
||||
{
|
||||
if (map->l_info[DT_JMPREL])
|
||||
{
|
||||
Elf32_Word i;
|
||||
/* Fill in the PLT. Its initial contents are directed to a
|
||||
function earlier in the PLT which arranges for the dynamic
|
||||
linker to be called back. */
|
||||
Elf32_Word *plt = (Elf32_Word *) ((char *) map->l_addr
|
||||
+ map->l_info[DT_PLTGOT]->d_un.d_val);
|
||||
Elf32_Word num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
|
||||
/ sizeof (Elf32_Rela));
|
||||
Elf32_Word rel_offset_words = PLT_DATA_START_WORDS (num_plt_entries);
|
||||
Elf32_Word size_modified;
|
||||
extern void _dl_runtime_resolve (void);
|
||||
extern void _dl_prof_resolve (void);
|
||||
Elf32_Word dlrr;
|
||||
|
||||
dlrr = (Elf32_Word)(char *)(profile
|
||||
? _dl_prof_resolve
|
||||
: _dl_runtime_resolve);
|
||||
|
||||
if (lazy)
|
||||
for (i = 0; i < num_plt_entries; i++)
|
||||
{
|
||||
Elf32_Word offset = PLT_ENTRY_START_WORDS (i);
|
||||
|
||||
if (i >= PLT_DOUBLE_SIZE)
|
||||
{
|
||||
plt[offset ] = OPCODE_LI (11, i * 4);
|
||||
plt[offset+1] = OPCODE_ADDIS (11, 11, (i * 4 + 0x8000) >> 16);
|
||||
plt[offset+2] = OPCODE_B (-(4 * (offset + 2)));
|
||||
}
|
||||
else
|
||||
{
|
||||
plt[offset ] = OPCODE_LI (11, i * 4);
|
||||
plt[offset+1] = OPCODE_B (-(4 * (offset + 1)));
|
||||
}
|
||||
}
|
||||
|
||||
/* Multiply index of entry by 3 (in r11). */
|
||||
plt[0] = OPCODE_SLWI (12, 11, 1);
|
||||
plt[1] = OPCODE_ADD (11, 12, 11);
|
||||
if (dlrr <= 0x01fffffc || dlrr >= 0xfe000000)
|
||||
{
|
||||
/* Load address of link map in r12. */
|
||||
plt[2] = OPCODE_LI (12, (Elf32_Word) (char *) map);
|
||||
plt[3] = OPCODE_ADDIS (12, 12, (((Elf32_Word) (char *) map
|
||||
+ 0x8000) >> 16));
|
||||
|
||||
/* Call _dl_runtime_resolve. */
|
||||
plt[4] = OPCODE_BA (dlrr);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Get address of _dl_runtime_resolve in CTR. */
|
||||
plt[2] = OPCODE_LI (12, dlrr);
|
||||
plt[3] = OPCODE_ADDIS (12, 12, (dlrr + 0x8000) >> 16);
|
||||
plt[4] = OPCODE_MTCTR (12);
|
||||
|
||||
/* Load address of link map in r12. */
|
||||
plt[5] = OPCODE_LI (12, (Elf32_Word) (char *) map);
|
||||
plt[6] = OPCODE_ADDIS (12, 12, (((Elf32_Word) (char *) map
|
||||
+ 0x8000) >> 16));
|
||||
|
||||
/* Call _dl_runtime_resolve. */
|
||||
plt[7] = OPCODE_BCTR ();
|
||||
}
|
||||
|
||||
|
||||
/* Convert the index in r11 into an actual address, and get the
|
||||
word at that address. */
|
||||
plt[PLT_LONGBRANCH_ENTRY_WORDS] =
|
||||
OPCODE_ADDIS (11, 11, (((Elf32_Word) (char*) (plt + rel_offset_words)
|
||||
+ 0x8000) >> 16));
|
||||
plt[PLT_LONGBRANCH_ENTRY_WORDS+1] =
|
||||
OPCODE_LWZ (11, (Elf32_Word) (char*) (plt+rel_offset_words), 11);
|
||||
|
||||
/* Call the procedure at that address. */
|
||||
plt[PLT_LONGBRANCH_ENTRY_WORDS+2] = OPCODE_MTCTR (11);
|
||||
plt[PLT_LONGBRANCH_ENTRY_WORDS+3] = OPCODE_BCTR ();
|
||||
|
||||
|
||||
/* Now, we've modified code (quite a lot of code, possibly). We
|
||||
need to write the changes from the data cache to a
|
||||
second-level unified cache, then make sure that stale data in
|
||||
the instruction cache is removed. (In a multiprocessor
|
||||
system, the effect is more complex.)
|
||||
|
||||
Assumes the cache line size is at least 32 bytes, or at least
|
||||
that dcbst and icbi apply to 32-byte lines. At present, all
|
||||
PowerPC processors have line sizes of exactly 32 bytes. */
|
||||
|
||||
size_modified = lazy ? rel_offset_words : PLT_INITIAL_ENTRY_WORDS;
|
||||
for (i = 0; i < size_modified; i+=8)
|
||||
PPC_DCBST (plt + i);
|
||||
PPC_SYNC;
|
||||
for (i = 0; i < size_modified; i+=8)
|
||||
PPC_ICBI (plt + i);
|
||||
PPC_ISYNC;
|
||||
}
|
||||
|
||||
return lazy;
|
||||
}
|
||||
|
||||
static inline void
|
||||
extern inline void
|
||||
elf_machine_lazy_rel (Elf32_Addr l_addr, const Elf32_Rela *reloc)
|
||||
{
|
||||
/* elf_machine_runtime_setup handles this. */
|
||||
}
|
||||
|
||||
static inline void
|
||||
elf_machine_fixup_plt(struct link_map *map, const Elf32_Rela *reloc,
|
||||
Elf32_Addr *reloc_addr, Elf32_Addr finaladdr)
|
||||
{
|
||||
Elf32_Sword delta = finaladdr - (Elf32_Word) (char *) reloc_addr;
|
||||
if (delta << 6 >> 6 == delta)
|
||||
*reloc_addr = OPCODE_B (delta);
|
||||
else if (finaladdr <= 0x01fffffc || finaladdr >= 0xfe000000)
|
||||
*reloc_addr = OPCODE_BA (finaladdr);
|
||||
else
|
||||
{
|
||||
Elf32_Word *plt;
|
||||
Elf32_Word index;
|
||||
|
||||
plt = (Elf32_Word *)((char *)map->l_addr
|
||||
+ map->l_info[DT_PLTGOT]->d_un.d_val);
|
||||
index = (reloc_addr - plt - PLT_INITIAL_ENTRY_WORDS)/2;
|
||||
if (index >= PLT_DOUBLE_SIZE)
|
||||
{
|
||||
/* Slots greater than or equal to 2^13 have 4 words available
|
||||
instead of two. */
|
||||
/* FIXME: There are some possible race conditions in this code,
|
||||
when called from 'fixup'.
|
||||
|
||||
1) Suppose that a lazy PLT entry is executing, a context switch
|
||||
between threads (or a signal) occurs, and the new thread or
|
||||
signal handler calls the same lazy PLT entry. Then the PLT entry
|
||||
would be changed while it's being run, which will cause a segfault
|
||||
(almost always).
|
||||
|
||||
2) Suppose the reverse: that a lazy PLT entry is being updated,
|
||||
a context switch occurs, and the new code calls the lazy PLT
|
||||
entry that is being updated. Then the half-fixed PLT entry will
|
||||
be executed, which will also almost always cause a segfault.
|
||||
|
||||
These problems don't happen with the 2-word entries, because
|
||||
only one of the two instructions are changed when a lazy entry
|
||||
is retargeted at the actual PLT entry; the li instruction stays
|
||||
the same (we have to update it anyway, because we might not be
|
||||
updating a lazy PLT entry). */
|
||||
|
||||
reloc_addr[0] = OPCODE_LI (11, finaladdr);
|
||||
reloc_addr[1] = OPCODE_ADDIS (11, 11, finaladdr + 0x8000 >> 16);
|
||||
reloc_addr[2] = OPCODE_MTCTR (11);
|
||||
reloc_addr[3] = OPCODE_BCTR ();
|
||||
}
|
||||
else
|
||||
{
|
||||
Elf32_Word num_plt_entries;
|
||||
|
||||
num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
|
||||
/ sizeof(Elf32_Rela));
|
||||
|
||||
plt[index+PLT_DATA_START_WORDS (num_plt_entries)] = finaladdr;
|
||||
reloc_addr[0] = OPCODE_LI (11, index*4);
|
||||
reloc_addr[1] = OPCODE_B (-(4*(index*2
|
||||
+ 1
|
||||
- PLT_LONGBRANCH_ENTRY_WORDS
|
||||
+ PLT_INITIAL_ENTRY_WORDS)));
|
||||
}
|
||||
}
|
||||
MODIFIED_CODE (reloc_addr);
|
||||
}
|
||||
/* Change the PLT entry whose reloc is 'reloc' to call the actual routine. */
|
||||
extern void __elf_machine_fixup_plt(struct link_map *map,
|
||||
const Elf32_Rela *reloc,
|
||||
Elf32_Addr *reloc_addr,
|
||||
Elf32_Addr finaladdr);
|
||||
#define elf_machine_fixup_plt __elf_machine_fixup_plt
|
||||
|
||||
/* Return the final value of a plt relocation. */
|
||||
static inline Elf32_Addr
|
||||
extern inline Elf32_Addr
|
||||
elf_machine_plt_value (struct link_map *map, const Elf32_Rela *reloc,
|
||||
Elf32_Addr value)
|
||||
{
|
||||
@ -624,32 +264,38 @@ elf_machine_plt_value (struct link_map *map, const Elf32_Rela *reloc,
|
||||
|
||||
#ifdef RESOLVE
|
||||
|
||||
/* Do the actual processing of a reloc, once its target address
|
||||
has been determined. */
|
||||
extern void __process_machine_rela (struct link_map *map,
|
||||
const Elf32_Rela *reloc,
|
||||
const Elf32_Sym *sym,
|
||||
const Elf32_Sym *refsym,
|
||||
Elf32_Addr *const reloc_addr,
|
||||
Elf32_Addr finaladdr,
|
||||
int rinfo);
|
||||
|
||||
/* Perform the relocation specified by RELOC and SYM (which is fully resolved).
|
||||
LOADADDR is the load address of the object; INFO is an array indexed
|
||||
by DT_* of the .dynamic section info. */
|
||||
|
||||
static void
|
||||
extern void
|
||||
elf_machine_rela (struct link_map *map, const Elf32_Rela *reloc,
|
||||
const Elf32_Sym *sym, const struct r_found_version *version,
|
||||
Elf32_Addr *const reloc_addr)
|
||||
{
|
||||
#ifndef RTLD_BOOTSTRAP
|
||||
const Elf32_Sym *const refsym = sym;
|
||||
extern char **_dl_argv;
|
||||
#endif
|
||||
Elf32_Word loadbase, finaladdr;
|
||||
const int rinfo = ELF32_R_TYPE (reloc->r_info);
|
||||
|
||||
if (rinfo == R_PPC_NONE)
|
||||
return;
|
||||
|
||||
assert (sym != NULL);
|
||||
/* The condition on the next two lines is a hack around a bug in Solaris
|
||||
tools on Sparc. It's not clear whether it should really be here at all,
|
||||
but if not the binutils need to be changed. */
|
||||
if ((sym->st_shndx != SHN_UNDEF
|
||||
&& ELF32_ST_BIND (sym->st_info) == STB_LOCAL)
|
||||
|| rinfo == R_PPC_RELATIVE)
|
||||
if (rinfo == R_PPC_RELATIVE
|
||||
|| (sym->st_shndx != SHN_UNDEF
|
||||
&& ELF32_ST_BIND (sym->st_info) == STB_LOCAL))
|
||||
{
|
||||
/* Has already been relocated. */
|
||||
loadbase = map->l_addr;
|
||||
@ -670,99 +316,27 @@ elf_machine_rela (struct link_map *map, const Elf32_Rela *reloc,
|
||||
+ reloc->r_addend);
|
||||
}
|
||||
|
||||
/* This is still an if/else if chain because GCC uses the GOT to find
|
||||
the table for table-based switch statements, and we haven't set it
|
||||
up yet. */
|
||||
if (rinfo == R_PPC_UADDR32 ||
|
||||
rinfo == R_PPC_GLOB_DAT ||
|
||||
rinfo == R_PPC_ADDR32 ||
|
||||
rinfo == R_PPC_RELATIVE)
|
||||
/* A small amount of code is duplicated here for speed. In libc,
|
||||
more than 90% of the relocs are R_PPC_RELATIVE; in the X11 shared
|
||||
libraries, 60% are R_PPC_RELATIVE, 24% are R_PPC_GLOB_DAT or
|
||||
R_PPC_ADDR32, and 16% are R_PPC_JMP_SLOT (which this routine
|
||||
wouldn't usually handle). As an bonus, doing this here allows
|
||||
the switch statement in __process_machine_rela to work. */
|
||||
if (rinfo == R_PPC_RELATIVE
|
||||
|| rinfo == R_PPC_GLOB_DAT
|
||||
|| rinfo == R_PPC_ADDR32)
|
||||
{
|
||||
*reloc_addr = finaladdr;
|
||||
}
|
||||
#ifndef RTLD_BOOTSTRAP
|
||||
else if (rinfo == R_PPC_ADDR16_LO)
|
||||
{
|
||||
*(Elf32_Half*) reloc_addr = finaladdr;
|
||||
}
|
||||
else if (rinfo == R_PPC_ADDR16_HI)
|
||||
{
|
||||
*(Elf32_Half*) reloc_addr = finaladdr >> 16;
|
||||
}
|
||||
else if (rinfo == R_PPC_ADDR16_HA)
|
||||
{
|
||||
*(Elf32_Half*) reloc_addr = (finaladdr + 0x8000) >> 16;
|
||||
}
|
||||
else if (rinfo == R_PPC_REL24)
|
||||
{
|
||||
Elf32_Sword delta = finaladdr - (Elf32_Word) (char *) reloc_addr;
|
||||
if (delta << 6 >> 6 != delta)
|
||||
{
|
||||
_dl_signal_error(0, map->l_name,
|
||||
"R_PPC_REL24 relocation out of range");
|
||||
}
|
||||
*reloc_addr = *reloc_addr & 0xfc000003 | delta & 0x3fffffc;
|
||||
}
|
||||
else if (rinfo == R_PPC_ADDR24)
|
||||
{
|
||||
if (finaladdr << 6 >> 6 != finaladdr)
|
||||
{
|
||||
_dl_signal_error(0, map->l_name,
|
||||
"R_PPC_ADDR24 relocation out of range");
|
||||
}
|
||||
*reloc_addr = *reloc_addr & 0xfc000003 | finaladdr & 0x3fffffc;
|
||||
}
|
||||
else if (rinfo == R_PPC_COPY)
|
||||
{
|
||||
if (sym == NULL)
|
||||
/* This can happen in trace mode when an object could not be
|
||||
found. */
|
||||
return;
|
||||
if (sym->st_size > refsym->st_size
|
||||
|| (_dl_verbose && sym->st_size < refsym->st_size))
|
||||
{
|
||||
const char *strtab;
|
||||
|
||||
strtab = ((void *) map->l_addr
|
||||
+ map->l_info[DT_STRTAB]->d_un.d_ptr);
|
||||
_dl_sysdep_error (_dl_argv[0] ?: "<program name unknown>",
|
||||
": Symbol `", strtab + refsym->st_name,
|
||||
"' has different size in shared object, "
|
||||
"consider re-linking\n", NULL);
|
||||
}
|
||||
memcpy (reloc_addr, (char *) finaladdr, MIN (sym->st_size,
|
||||
refsym->st_size));
|
||||
}
|
||||
#endif
|
||||
else if (rinfo == R_PPC_REL32)
|
||||
{
|
||||
*reloc_addr = finaladdr - (Elf32_Word) (char *) reloc_addr;
|
||||
}
|
||||
else if (rinfo == R_PPC_JMP_SLOT)
|
||||
{
|
||||
elf_machine_fixup_plt (map, reloc, reloc_addr, finaladdr);
|
||||
}
|
||||
else
|
||||
{
|
||||
#ifdef RTLD_BOOTSTRAP
|
||||
PPC_DIE; /* There is no point calling _dl_sysdep_error, it
|
||||
almost certainly hasn't been relocated properly. */
|
||||
#else
|
||||
_dl_sysdep_error (_dl_argv[0] ?: "<program name unknown>",
|
||||
": Unknown relocation type\n", NULL);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifndef RTLD_BOOTSTRAP
|
||||
if (rinfo == R_PPC_ADDR16_LO ||
|
||||
rinfo == R_PPC_ADDR16_HI ||
|
||||
rinfo == R_PPC_ADDR16_HA ||
|
||||
rinfo == R_PPC_REL24 ||
|
||||
rinfo == R_PPC_ADDR24)
|
||||
MODIFIED_CODE_NOQUEUE (reloc_addr);
|
||||
#endif
|
||||
__process_machine_rela (map, reloc, sym, refsym,
|
||||
reloc_addr, finaladdr, rinfo);
|
||||
}
|
||||
|
||||
#define ELF_MACHINE_NO_REL 1
|
||||
|
||||
/* The SVR4 ABI specifies that the JMPREL relocs must be inside the
|
||||
DT_RELA table. */
|
||||
#define ELF_MACHINE_PLTREL_OVERLAP 1
|
||||
|
||||
#endif /* RESOLVE */
|
||||
|
111
sysdeps/powerpc/dl-start.S
Normal file
111
sysdeps/powerpc/dl-start.S
Normal file
@ -0,0 +1,111 @@
|
||||
/* Machine-dependent ELF startup code. PowerPC version.
|
||||
Copyright (C) 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Library General Public License as
|
||||
published by the Free Software Foundation; either version 2 of the
|
||||
License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Library General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Library General Public
|
||||
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
||||
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||||
Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include <sysdep.h>
|
||||
|
||||
/* Initial entry point code for the dynamic linker.
|
||||
The C function `_dl_start' is the real entry point;
|
||||
its return value is the user program's entry point. */
|
||||
ENTRY(_start)
|
||||
/* We start with the following on the stack, from top:
|
||||
argc (4 bytes);
|
||||
arguments for program (terminated by NULL);
|
||||
environment variables (terminated by NULL);
|
||||
arguments for the program loader. */
|
||||
|
||||
/* Call _dl_start with one parameter pointing at argc */
|
||||
mr %r3,%r1
|
||||
/* (we have to frob the stack pointer a bit to allow room for
|
||||
_dl_start to save the link register). */
|
||||
li %r4,0
|
||||
addi %r1,%r1,-16
|
||||
stw %r4,0(%r1)
|
||||
bl _dl_start@local
|
||||
|
||||
/* Now, we do our main work of calling initialisation procedures.
|
||||
The ELF ABI doesn't say anything about parameters for these,
|
||||
so we just pass argc, argv, and the environment.
|
||||
Changing these is strongly discouraged (not least because argc is
|
||||
passed by value!). */
|
||||
|
||||
/* Put our GOT pointer in r31, */
|
||||
bl _GLOBAL_OFFSET_TABLE_-4@local
|
||||
mflr %r31
|
||||
/* the address of _start in r30, */
|
||||
mr %r30,%r3
|
||||
/* &_dl_argc in 29, &_dl_argv in 27, and _dl_default_scope in 28. */
|
||||
lwz %r28,_dl_default_scope@got(%r31)
|
||||
lwz %r29,_dl_argc@got(%r31)
|
||||
lwz %r27,_dl_argv@got(%r31)
|
||||
0:
|
||||
/* Set initfunc = _dl_init_next(_dl_default_scope[2]) */
|
||||
lwz %r3,8(%r28)
|
||||
bl _dl_init_next@plt
|
||||
/* If initfunc is NULL, we exit the loop; otherwise, */
|
||||
cmpwi %r3,0
|
||||
beq 1f
|
||||
/* call initfunc(_dl_argc, _dl_argv, _dl_argv+_dl_argc+1) */
|
||||
mtlr %r3
|
||||
lwz %r3,0(%r29)
|
||||
lwz %r4,0(%r27)
|
||||
slwi %r5,%r3,2
|
||||
add %r5,%r4,%r5
|
||||
addi %r5,%r5,4
|
||||
blrl
|
||||
/* and loop. */
|
||||
b 0b
|
||||
1:
|
||||
/* Now, to conform to the ELF ABI, we have to: */
|
||||
/* Pass argc (actually _dl_argc) in r3; */
|
||||
lwz %r3,0(%r29)
|
||||
/* pass argv (actually _dl_argv) in r4; */
|
||||
lwz %r4,0(%r27)
|
||||
/* pass envp (actually _dl_argv+_dl_argc+1) in r5; */
|
||||
slwi %r5,%r3,2
|
||||
add %r6,%r4,%r5
|
||||
addi %r5,%r6,4
|
||||
/* pass the auxilary vector in r6. This is passed to us just after _envp. */
|
||||
2: lwzu %r0,4(%r6)
|
||||
cmpwi %r0,0
|
||||
bne 2b
|
||||
addi %r6,%r6,4
|
||||
/* Pass a termination function pointer (in this case _dl_fini) in r7. */
|
||||
lwz %r7,_dl_fini@got(%r31)
|
||||
/* Now, call the start function in r30... */
|
||||
mtctr %r30
|
||||
lwz %r26,_dl_starting_up@got(%r31)
|
||||
/* Pass the stack pointer in r1 (so far so good), pointing to a NULL value.
|
||||
(This lets our startup code distinguish between a program linked statically,
|
||||
which linux will call with argc on top of the stack which will hopefully
|
||||
never be zero, and a dynamically linked program which will always have
|
||||
a NULL on the top of the stack).
|
||||
Take the opportunity to clear LR, so anyone who accidentally returns
|
||||
from _start gets SEGV. Also clear the next few words of the stack. */
|
||||
|
||||
li %r31,0
|
||||
stw %r31,0(%r1)
|
||||
mtlr %r31
|
||||
stw %r31,4(%r1)
|
||||
stw %r31,8(%r1)
|
||||
stw %r31,12(%r1)
|
||||
/* Clear _dl_starting_up. */
|
||||
stw %r31,0(%r26)
|
||||
/* Go do it! */
|
||||
bctr
|
||||
END(_start)
|
Loading…
Reference in New Issue
Block a user