This sets __HAVE_64B_ATOMICS if provided. It also sets
USE_ATOMIC_COMPILER_BUILTINS to true if the existing atomic ops use the
__atomic* builtins (aarch64, mips partially) or if this has been
tested (x86_64); otherwise, this is set to false so that C11 atomics will
be based on the existing atomic operations.
Continuing the removal of the obsolete INTDEF / INTUSE mechanism, this
patch eliminates its use for _dl_init. Since _dl_init was already
declared with hidden visibility, creating a second hidden alias for it
was completely pointless, so this patch replaces all uses of
_dl_init_internal with plain _dl_init instead of using hidden_proto /
hidden_def (which are only needed when you want a hidden alias for a
non-hidden symbol; it's quite possible there are cases where they are
used but don't need to be because the symbol in question is not part
of the public ABI and is only used within a single library, so using
attributes_hidden instead would suffice).
Tested for x86_64 that installed stripped shared libraries are
unchanged by the patch.
[BZ #14132]
* elf/dl-init.c (_dl_init): Don't use INTDEF.
* sysdeps/aarch64/dl-machine.h (RTLD_START): Use _dl_init instead
of _dl_init_internal.
* sysdeps/alpha/dl-machine.h (RTLD_START): Likewise.
* sysdeps/arm/dl-machine.h (RTLD_START): Likewise.
* sysdeps/hppa/dl-machine.h (RTLD_START): Likewise.
* sysdeps/i386/dl-machine.h (RTLD_START): Likewise.
* sysdeps/ia64/dl-machine.h (RTLD_START): Likewise.
* sysdeps/m68k/dl-machine.h (RTLD_START): Likewise.
* sysdeps/microblaze/dl-machine.h (RTLD_START): Likewise.
* sysdeps/mips/dl-machine.h (RTLD_START): Likewise.
* sysdeps/powerpc/powerpc32/dl-start.S (_start): Likewise.
* sysdeps/s390/s390-32/dl-machine.h (RTLD_START): Likewise.
* sysdeps/s390/s390-64/dl-machine.h (RTLD_START): Likewise.
* sysdeps/sh/dl-machine.h (RTLD_START): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (RTLD_START): Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (RTLD_START): Likewise.
* sysdeps/tile/dl-start.S (_start): Likewise.
* sysdeps/x86_64/dl-machine.h (RTLD_START): Likewise.
* sysdeps/x86_64/x32/dl-machine.h (RTLD_START): Likewise.
This patch refactors how soft-fp comparisons handle setting exceptions
for NaN operands, so that exceptions are set through the FP_CMP macros
rather than directly in the C files calling them.
The _FP_CMP* and FP_CMP* macros gain an extra argument to specify when
exceptions should be set, 0 for no exception setting (I'm not sure
this is actually needed - at least it's not needed for IEEE operations
in glibc / libgcc, but might be relevant in some cases for kernel
use), 1 for exceptions only for signaling NaNs and 2 for exceptions
for all NaNs. This argument is handled through _FP_CMP_CHECK_NAN,
newly called by the _FP_CMP* macros when a NaN is encountered. Calls
to these macros are updated, which eliminates all the existing
checking and exception setting in soft-fp *.c files in glibc.
Tested for powerpc-nofpu. (The __unord* functions have no code
changes; the __eq* / __ge* / __le* functions get slightly larger, but
I don't think that's significant.)
* soft-fp/op-common.h (_FP_CMP_CHECK_NAN): New macro.
(_FP_CMP): Add extra argument EX. Call _FP_CMP_CHECK_NAN.
(_FP_CMP_EQ): Likewise.
(_FP_CMP_UNORD): Likewise.
* soft-fp/double.h (FP_CMP_D): Add extra argument EX.
(FP_CMP_EQ_D): Likewise.
(FP_CMP_UNORD_D): Likewise.
* soft-fp/extended.h (FP_CMP_E): Likewise.
(FP_CMP_EQ_E): Likewise.
(FP_CMP_UNORD_E): Likewise.
* soft-fp/quad.h (FP_CMP_Q): Likewise.
(FP_CMP_EQ_Q): Likewise.
(FP_CMP_UNORD_Q): Likewise.
* soft-fp/single.h (FP_CMP_S): Likewise.
(FP_CMP_EQ_S): Likewise.
(FP_CMP_UNORD_S): Likewise.
* soft-fp/eqdf2.c (__eqdf2): Update call to FP_CMP_EQ_D.
* soft-fp/eqsf2.c (__eqsf2): Update call to FP_CMP_EQ_S.
* soft-fp/eqtf2.c (__eqtf2): Update call to FP_CMP_EQ_Q.
* soft-fp/gedf2.c (__gedf2): Update call to FP_CMP_D.
* soft-fp/gesf2.c (__gesf2): Update call to FP_CMP_S.
* soft-fp/getf2.c (__getf2): Update call to FP_CMP_Q.
* soft-fp/ledf2.c (__ledf2): Update call to FP_CMP_D.
* soft-fp/lesf2.c (__lesf2): Update call to FP_CMP_S.
* soft-fp/letf2.c (__letf2): Update call to FP_CMP_Q.
* soft-fp/unorddf2.c (__unorddf2): Update call to FP_CMP_UNORD_D.
* soft-fp/unordsf2.c (__unordsf2): Update call to FP_CMP_UNORD_S.
* soft-fp/unordtf2.c (__unordtf2): Update call to FP_CMP_UNORD_Q.
* sysdeps/alpha/soft-fp/ots_cmpe.c (internal_compare): Update call
to FP_CMP_Q.
* sysdeps/sparc/sparc32/soft-fp/q_cmp.c (_Q_cmp): Update call to
FP_CMP_Q.
* sysdeps/sparc/sparc32/soft-fp/q_cmpe.c (_Q_cmpe): Likewise.
* sysdeps/sparc/sparc32/soft-fp/q_feq.c (_Q_feq): Update call to
FP_CMP_EQ_Q.
* sysdeps/sparc/sparc32/soft-fp/q_fge.c (_Q_fge): Update call to
FP_CMP_Q.
* sysdeps/sparc/sparc32/soft-fp/q_fgt.c (_Q_fgt): Likewise.
* sysdeps/sparc/sparc32/soft-fp/q_fle.c (_Q_fle): Likewise.
* sysdeps/sparc/sparc32/soft-fp/q_flt.c (_Q_flt): Likewise.
* sysdeps/sparc/sparc32/soft-fp/q_fne.c (_Q_fne): Update call to
FP_CMP_EQ_Q.
* sysdeps/sparc/sparc64/soft-fp/qp_cmp.c (_Qp_cmp): Update call to
FP_CMP_Q.
* sysdeps/sparc/sparc64/soft-fp/qp_cmpe.c (_Qp_cmpe): Likewise.
* sysdeps/sparc/sparc64/soft-fp/qp_feq.c (_Qp_feq): Update call to
FP_CMP_EQ_Q.
* sysdeps/sparc/sparc64/soft-fp/qp_fge.c (_Qp_fge): Update call to
FP_CMP_Q.
* sysdeps/sparc/sparc64/soft-fp/qp_fgt.c (_Qp_fgt): Likewise.
* sysdeps/sparc/sparc64/soft-fp/qp_fle.c (_Qp_fle): Likewise.
* sysdeps/sparc/sparc64/soft-fp/qp_flt.c (_Qp_flt): Likewise.
* sysdeps/sparc/sparc64/soft-fp/qp_fne.c (_Qp_fne): Update call to
FP_CMP_EQ_Q.
As noted in
<https://sourceware.org/ml/libc-alpha/2013-10/msg00516.html>, the
soft-fp macro FP_CLEAR_EXCEPTIONS should not be necessary, as soft-fp
code should never set an exception and later clear it.
In fact, all four uses in glibc (for SPARC) are indeed unnecessary:
they appear in files that convert 32-bit or 64-bit integers to IEEE
binary128, an operation that can never raise any exceptions. If this
was intended to enable the compiler to optimize away any FP_FROM_INT
code testing for exceptional cases, we now have a better way of doing
this: defining FP_NO_EXCEPTIONS before including soft-fp.h causes all
code handling exceptions to be stubbed out, and the rounding mode to
be hardwired for round-to-zero, to allow such optimizations for source
files where (a) the operation in question, for the particular types in
question, can never raise exceptions, but (b) some instances of the
operation for other types can, so the macros used in the file do
contain references to rounding or exceptions, albeit dead in that
particular file.
The uses in the Linux kernel are also unnecessary (clearing exceptions
at a point where they are already cleared).
This patch duly removes FP_CLEAR_EXCEPTIONS, making the SPARC code in
question use FP_NO_EXCEPTIONS and stop using exception-related macros.
* soft-fp/soft-fp.h (FP_CLEAR_EXCEPTIONS): Remove macro.
* sysdeps/sparc/sparc32/soft-fp/q_itoq.c: Define FP_NO_EXCEPTIONS.
(_Q_itoq): Do not use FP_DECL_EX, FP_CLEAR_EXCEPTIONS or
FP_HANDLE_EXCEPTIONS.
* sysdeps/sparc/sparc32/soft-fp/q_lltoq.c: Define FP_NO_EXCEPTIONS.
(_Q_lltoq): Do not use FP_DECL_EX, FP_CLEAR_EXCEPTIONS or
FP_HANDLE_EXCEPTIONS.
* sysdeps/sparc/sparc32/soft-fp/q_ulltoq.c: Define FP_NO_EXCEPTIONS.
(_Q_ulltoq): Do not use FP_DECL_EX, FP_CLEAR_EXCEPTIONS or
FP_HANDLE_EXCEPTIONS.
* sysdeps/sparc/sparc32/soft-fp/q_utoq.c: Define FP_NO_EXCEPTIONS.
(_Q_utoq): Do not use FP_DECL_EX, FP_CLEAR_EXCEPTIONS or
FP_HANDLE_EXCEPTIONS.
This patch defines ELF_MACHINE_NO_RELA on all architectures. Tested
only on x86_64 to verify that the sources before and after are
identical except for two instructions that pass the current line
number in dl-machine.h to assert_fail.
This patch makes non-ex-ports architectures set base_machine and
machine based on the original configured machine value in preconfigure
fragments, like ex-ports architectures, rather than in the toplevel
configure.ac.
Tested x86 that the disassembly of installed shared libraries is
unchanged by the patch.
* configure.ac (base_machine): Do not set specially for particular
machines here.
* configure: Regenerated.
* sysdeps/powerpc/preconfigure: Move machine and base_machine
settings from configure.ac.
* sysdeps/i386/preconfigure: New file.
* sysdeps/s390/preconfigure: Likewise.
* sysdeps/sh/preconfigure: Likewise.
* sysdeps/sparc/preconfigure: Likewise.
Errno is not set and the testcases will fail.
Now the scalbln-aliases are removed in i386/m68
and the wrappers are used when calling the scalbln-functions.
On ia64 only scalblnf has its own implementation.
For scalbln and scalblnl the ieee754/dbl-64 and ieee754/ldbl-96 are used, thus
the wrappers are needed, too.
This patch relies on the C version of the rwlocks posted earlier.
With C rwlocks it is very straight forward to do adaptive elision
using TSX. It is based on the infrastructure added earlier
for mutexes, but uses its own elision macros. The macros
are fairly general purpose and could be used for other
elision purposes too.
This version is much cleaner than the earlier assembler based
version, and in particular implements adaptation which makes
it safer.
I changed the behavior slightly to not require any changes
in the test suite and fully conform to all expected
behaviors (generally at the cost of not eliding in
various situations). In particular this means the timedlock
variants are not elided. Nested trylock aborts.
[BZ #16885]
* sysdeps/sparc/sparc64/strcmp.S: Fix end comparison handling when
multiple zero bytes exist at the end of a string.
Reported by Aurelien Jarno <aurelien@aurel32.net>
* string/test-strcmp.c (check): Add explicit test for situations where
there are multiple zero bytes after the first.
As recently discussed
<https://sourceware.org/ml/libc-alpha/2014-02/msg00670.html>, it
doesn't seem particularly useful for libm-test-ulps files to contain
huge amounts of data on ulps for individual tests; just the global
maximum observed ulps for each function, together with the
verification of exceptions, errno and special results such as
infinities and NaNs for each test, suffices to verify that a
function's behavior on the given test inputs is within the expected
accuracy. Removing this data reduces source tree churn caused by
updates to these files when libm tests are added, and reduces the
frequency with which testsuite additions actually need libm-test-ulps
changes at all.
Accordingly, this patch removes that data, so that individual tests
get checked against the global bounds for the given function and only
generate an error if those are exceeded. Tested x86_64 (including
verifying that if an ulps value is artificially reduced, the tests do
indeed fail as they should and "make regen-ulps" generates the
expected changes).
* math/libm-test.inc (struct ulp_data): Don't refer to ulps for
individual tests in comment.
(libm-test-ulps.h): Don't refer to test_ulps in #include comment.
(prev_max_error): New variable.
(prev_real_max_error): Likewise.
(prev_imag_max_error): Likewise.
(compare_ulp_data): Don't refer to test names in comment.
(find_test_ulps): Remove function.
(find_function_ulps): Likewise.
(find_complex_function_ulps): Likewise.
(init_max_error): Take function name as argument. Look up ulps
for that function.
(print_ulps): Remove function.
(print_max_error): Use prev_max_error instead of calling
find_function_ulps.
(print_complex_max_error): Use prev_real_max_error and
prev_imag_max_error instead of calling find_complex_function_ulps.
(check_float_internal): Take max_ulp parameter instead of calling
find_test_ulps. Don't call print_ulps.
(check_float): Update call to check_float_internal.
(check_complex): Update calls to check_float_internal.
(START): Pass argument to init_max_error.
* math/gen-libm-test.pl (%results): Don't include "kind"
information.
(parse_ulps): Don't handle ulps of individual tests.
(print_ulps_file): Likewise.
(output_ulps): Likewise.
* math/README.libm-test: Update.
* manual/libm-err-tab.pl (parse_ulps): Don't handle ulps of
individual tests.
* sysdeps/aarch64/libm-test-ulps: Remove individual test ulps.
* sysdeps/alpha/fpu/libm-test-ulps: Likewise.
* sysdeps/arm/libm-test-ulps: Likewise.
* sysdeps/i386/fpu/libm-test-ulps: Likewise.
* sysdeps/ia64/fpu/libm-test-ulps: Likewise.
* sysdeps/m68k/coldfire/fpu/libm-test-ulps: Likewise.
* sysdeps/m68k/m680x0/fpu/libm-test-ulps: Likewise.
* sysdeps/microblaze/libm-test-ulps: Likewise.
* sysdeps/mips/mips32/libm-test-ulps: Likewise.
* sysdeps/mips/mips64/libm-test-ulps: Likewise.
* sysdeps/powerpc/fpu/libm-test-ulps: Likewise.
* sysdeps/powerpc/nofpu/libm-test-ulps: Likewise.
* sysdeps/s390/fpu/libm-test-ulps: Likewise.
* sysdeps/sh/libm-test-ulps: Likewise.
* sysdeps/sparc/fpu/libm-test-ulps: Likewise.
* sysdeps/tile/libm-test-ulps: Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
* sysdeps/hppa/fpu/libm-test-ulps: Remove individual test ulps.
elf/tst-auxv.c includes misc/sys/auxv.h, which ends up not actually
being included due to the guard overlap, and getauxval becomes an
implicit declaration and implicit pointer conversion which means, at
best, the test isn't actually testing what it thinks it is and, at
worst, it'll crash and burn on platforms where implict pointer
conversion is a Very Bad Thing.
* sysdeps/powerpc/bits/hwcap.h: Allow _SYSDEPS_SYSDEP_H guard as a
synonym for _SYS_AUXV_H to allow direct inclusion.
* sysdeps/sparc/bits/hwcap.h: Likewise.
* sysdeps/powerpc/sysdep.h: Define _SYSDEPS_SYSDEP_H instead of
_SYS_AUXV_H so we can include sysdep.h and sys/auxv.h together.
* sysdeps/sparc/sysdep.h: Likewise.
IEEE 754-2008 defines two ways in which tiny results can be detected,
"before rounding" (based on the infinite-precision result) and "after
rounding" (based on the result when rounded to normal precision as if
the exponent range were unbounded). All binary operations on an
architecture must use the same choice of how tininess is detected.
soft-fp has so far implemented only before-rounding tininess
detection. This patch adds support for after-rounding tininess
detection. A new macro _FP_TININESS_AFTER_ROUNDING is added that
sfp-machine.h must define (soft-fp is meant to be self-contained so
the existing tininess.h files aren't used here, though the information
going in sfp-machine.h has been taken from them). The soft-fp macros
dealing with raising underflow exceptions then handle the cases where
the choice matters specially, rounding a copy of the input to the
appropriate precision to see if a value that's tiny before rounding
isn't tiny after rounding.
Tested for mips64 using GCC trunk (which now uses soft-fp on MIPS, so
supporting exceptions and rounding modes for long double where not
previously supported - this is the immediate motivation for doing this
patch now) together with (a) a patch to sysdeps/mips/math-tests.h to
enable exceptions / rounding modes tests for long double for GCC 4.9
and later, and (b) corresponding changes applied to libgcc's soft-fp
and sfp-machine.h files. In the libgcc context this is also tested on
x86_64 (also an after-rounding architecture) with testcases for
__float128 that I intend to add to the GCC testsuite when updating
soft-fp there.
(To be clear: this patch does not fix any glibc bugs that were
user-visible in past releases, since after-rounding architectures
didn't use soft-fp in any affected case with support for
floating-point exceptions - so there is no corresponding Bugzilla bug.
Rather, it works together with the GCC changes to use soft-fp on MIPS
to allow previously absent long double functionality to work properly,
and allows soft-fp to be used in glibc on after-rounding architectures
in cases where it couldn't previously be used.)
* soft-fp/op-common.h (_FP_DECL): Mark exponent as possibly
unused.
(_FP_PACK_SEMIRAW): Determine tininess based on rounding shifted
value if _FP_TININESS_AFTER_ROUNDING and unrounded value is in
subnormal range.
(_FP_PACK_CANONICAL): Determine tininess based on rounding to
normal precision if _FP_TININESS_AFTER_ROUNDING and unrounded
value has largest subnormal exponent.
* soft-fp/soft-fp.h [FP_NO_EXCEPTIONS]
(_FP_TININESS_AFTER_ROUNDING): Undefine and redefine to 0.
* sysdeps/aarch64/soft-fp/sfp-machine.h
(_FP_TININESS_AFTER_ROUNDING): New macro.
* sysdeps/alpha/soft-fp/sfp-machine.h
(_FP_TININESS_AFTER_ROUNDING): Likewise.
* sysdeps/arm/soft-fp/sfp-machine.h (_FP_TININESS_AFTER_ROUNDING):
Likewise.
* sysdeps/mips/mips64/soft-fp/sfp-machine.h
(_FP_TININESS_AFTER_ROUNDING): Likewise.
* sysdeps/mips/soft-fp/sfp-machine.h
(_FP_TININESS_AFTER_ROUNDING): Likewise.
* sysdeps/powerpc/soft-fp/sfp-machine.h
(_FP_TININESS_AFTER_ROUNDING): Likewise.
* sysdeps/sh/soft-fp/sfp-machine.h (_FP_TININESS_AFTER_ROUNDING):
Likewise.
* sysdeps/sparc/sparc32/soft-fp/sfp-machine.h
(_FP_TININESS_AFTER_ROUNDING): Likewise.
* sysdeps/sparc/sparc64/soft-fp/sfp-machine.h
(_FP_TININESS_AFTER_ROUNDING): Likewise.
* sysdeps/tile/sfp-machine.h (_FP_TININESS_AFTER_ROUNDING):
Likewise.
[BZ #16150]
* sysdeps/sparc/sparc64/multiarch/add_n.S: Resolve to the correct generic
symbol in the non-vis3 case in static builds.
* sysdeps/sparc/sparc64/multiarch/addmul_1.S: Likewise.
* sysdeps/sparc/sparc64/multiarch/mul_1.S: Likewise.
* sysdeps/sparc/sparc64/multiarch/sub_n.S: Likewise.
* sysdeps/sparc/sparc64/multiarch/submul_1.S: Likewise.
We cannot use fnegd in this code, as fnegd was added in v9.
Only fnegs exists in v8 and earlier.
[BZ #15985]
* sysdeps/sparc/sparc32/fpu/s_fdim.S (__fdim): Do not use fnegd
on pre-v9 cpus, use a fnegs+fmovs sequence instead.
Autoconf has been deprecating configure.in for quite a long time.
Rename all our configure.in and preconfigure.in files to .ac.
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
The pointer guard used for pointer mangling was not initialized for
static applications resulting in the security feature being disabled.
The pointer guard is now correctly initialized to a random value for
static applications. Existing static applications need to be
recompiled to take advantage of the fix.
The test tst-ptrguard1-static and tst-ptrguard1 add regression
coverage to ensure the pointer guards are sufficiently random
and initialized to a default value.