Changes to generated code are:
1. In a few places use `vpcmpeqb` instead of `vpcmpneq` to save a
byte of code size.
2. Add a branch for length <= (VEC_SIZE * 6) as opposed to doing
the entire block of [VEC_SIZE * 4 + 1, VEC_SIZE * 8] in a
single basic-block (the space to add the extra branch without
changing code size is bought with the above change).
Change (2) has roughly a 20-25% speedup for sizes in [VEC_SIZE * 4 +
1, VEC_SIZE * 6] and negligible to no-cost for [VEC_SIZE * 6 + 1,
VEC_SIZE * 8]
From N=10 runs on Tigerlake:
align1,align2 ,length ,result ,New Time ,Cur Time ,New Time / Old Time
0 ,0 ,129 ,0 ,5.404 ,6.887 ,0.785
0 ,0 ,129 ,1 ,5.308 ,6.826 ,0.778
0 ,0 ,129 ,18446744073709551615 ,5.359 ,6.823 ,0.785
0 ,0 ,161 ,0 ,5.284 ,6.827 ,0.774
0 ,0 ,161 ,1 ,5.317 ,6.745 ,0.788
0 ,0 ,161 ,18446744073709551615 ,5.406 ,6.778 ,0.798
0 ,0 ,193 ,0 ,6.804 ,6.802 ,1.000
0 ,0 ,193 ,1 ,6.950 ,6.754 ,1.029
0 ,0 ,193 ,18446744073709551615 ,6.792 ,6.719 ,1.011
0 ,0 ,225 ,0 ,6.625 ,6.699 ,0.989
0 ,0 ,225 ,1 ,6.776 ,6.735 ,1.003
0 ,0 ,225 ,18446744073709551615 ,6.758 ,6.738 ,0.992
0 ,0 ,256 ,0 ,5.402 ,5.462 ,0.989
0 ,0 ,256 ,1 ,5.364 ,5.483 ,0.978
0 ,0 ,256 ,18446744073709551615 ,5.341 ,5.539 ,0.964
Rewriting with VMM API allows for memcmpeq-evex to be used with
evex512 by including "x86-evex512-vecs.h" at the top.
Complete check passes on x86-64.
The only change to the existing generated code is `tzcnt` -> `bsf` to
save a byte of code size here and there.
Rewriting with VMM API allows for memcmp-evex-movbe to be used with
evex512 by including "x86-evex512-vecs.h" at the top.
Complete check passes on x86-64.
Changes from v1:
Use vec api for register.
Replace VPCMP with VPCMPEQ
Restructure and remove 1 unconditional jump.
Change page cross logic to use sall.
This patch implements following evex512 version of string functions.
evex512 version takes up to 30% less cycle as compared to evex,
depending on length and alignment.
- strrchr function using 512 bit vectors.
- wcsrchr function using 512 bit vectors.
Code size data:
strrchr-evex.o 879 byte
strrchr-evex512.o 601 byte (-32%)
wcsrchr-evex.o 882 byte
wcsrchr-evex512.o 572 byte (-35%)
Placeholder function, not used by any processor at the moment.
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
This makes it more likely that the compiler can compute the strlen
argument in _startup_fatal at compile time, which is required to
avoid a dependency on strlen this early during process startup.
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
The old exception handling implementation used function interposition
to replace the dynamic loader implementation (no TLS support) with the
libc implementation (TLS support). This results in problems if the
link order between the dynamic loader and libc is reversed (bug 25486).
The new implementation moves the entire implementation of the
exception handling functions back into the dynamic loader, using
THREAD_GETMEM and THREAD_SETMEM for thread-local data support.
These depends on Hurd support for these macros, added in commit
b65a82e4e7 ("hurd: Add THREAD_GET/SETMEM/_NC").
One small obstacle is that the exception handling facilities are used
before the TCB has been set up, so a check is needed if the TCB is
available. If not, a regular global variable is used to store the
exception handling information.
Also rename dl-error.c to dl-catch.c, to avoid confusion with the
dlerror function.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
GCC 13 has added more _FloatN and _FloatNx versions of existing
<math.h> and <complex.h> built-in functions, for use in libstdc++-v3.
This breaks the glibc build because of how those functions are defined
as aliases to functions with the same ABI but different types. Add
appropriate -fno-builtin-* options for compiling relevant files, as
already done for the case of long double functions aliasing double
ones and based on the list of files used there.
I fixed some mistakes in that list of double files that I noticed
while implementing this fix, but there may well be more such
(harmless) cases, in this list or the new one (files that don't
actually exist or don't define the named functions as aliases so don't
need the options). I did try to exclude cases where glibc doesn't
define certain functions for _FloatN or _FloatNx types at all from the
new uses of -fno-builtin-* options. As with the options for double
files (see the commit message for commit
49348beafe, "Fix build with GCC 10 when
long double = double."), it's deliberate that the options are used
even if GCC currently doesn't have a built-in version of a given
functions, so providing some level of future-proofing against more
such built-in functions being added in future.
Tested with build-many-glibcs.py for aarch64-linux-gnu
powerpc-linux-gnu powerpc64le-linux-gnu x86_64-linux-gnu (compilers
and glibcs builds) with GCC mainline.
This patch improves following functionality
- Replace VPCMP with VPCMPEQ.
- Replace page cross check logic with sall.
- Remove extra lea from align_more.
- Remove uncondition loop jump.
- Use bsf to check max length in first vector.
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
This patch implements following evex512 version of string functions.
evex512 version takes up to 30% less cycle as compared to evex,
depending on length and alignment.
- strchrnul function using 512 bit vectors.
- strchr function using 512 bit vectors.
- wcschr function using 512 bit vectors.
Code size data:
strchrnul-evex.o 599 byte
strchrnul-evex512.o 569 byte (-5%)
strchr-evex.o 639 byte
strchr-evex512.o 595 byte (-7%)
wcschr-evex.o 644 byte
wcschr-evex512.o 607 byte (-6%)
Placeholder function, not used by any processor at the moment.
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
Generic implementation on top of __bswap_32 always expands
inline to either bswap or movbe depending on -march=*.
Signed-off-by: Cristian Rodríguez <crrodriguez@opensuse.org>
Unused at the moment, but evex512 strcmp, strncmp, strcasecmp{l}, and
strncasecmp{l} functions can be added by including strcmp-evex.S with
"x86-evex512-vecs.h" defined.
In addition save code size a bit in a few places.
1. tzcnt ... -> bsf ...
2. vpcmp{b|d} $0 ... -> vpcmpeq{b|d}
This saves a touch of code size but has minimal net affect.
Full check passes on x86-64.
commit b412213eee
Author: Noah Goldstein <goldstein.w.n@gmail.com>
Date: Tue Oct 18 17:44:07 2022 -0700
x86: Optimize strrchr-evex.S and implement with VMM headers
Added `vpcompress{b|d}` to the page-cross logic with is an
AVX512-VBMI2 instruction. This is not supported on SKX. Since the
page-cross logic is relatively cold and the benefit is minimal
revert the page-cross case back to the old logic which is supported
on SKX.
Tested on x86-64.
Optimization is:
1. Cache latest result in "fast path" loop with `vmovdqu` instead of
`kunpckdq`. This helps if there are more than one matches.
Code Size Changes:
strrchr-evex.S : +30 bytes (Same number of cache lines)
Net perf changes:
Reported as geometric mean of all improvements / regressions from N=10
runs of the benchtests. Value as New Time / Old Time so < 1.0 is
improvement and 1.0 is regression.
strrchr-evex.S : 0.932 (From cases with higher match frequency)
Full results attached in email.
Full check passes on x86-64.
Optimizations are:
1. Use the fact that lzcnt(0) -> VEC_SIZE for memchr to save a branch
in short string case.
2. Save several instructions in len = [VEC_SIZE, 4 * VEC_SIZE] case.
3. Use more code-size efficient instructions.
- tzcnt ... -> bsf ...
- vpcmpb $0 ... -> vpcmpeq ...
Code Size Changes:
memrchr-evex.S : -29 bytes
Net perf changes:
Reported as geometric mean of all improvements / regressions from N=10
runs of the benchtests. Value as New Time / Old Time so < 1.0 is
improvement and 1.0 is regression.
memrchr-evex.S : 0.949 (Mostly from improvements in small strings)
Full results attached in email.
Full check passes on x86-64.
Optimizations are:
1. Use the fact that bsf(0) leaves the destination unchanged to save a
branch in short string case.
2. Restructure code so that small strings are given the hot path.
- This is a net-zero on the benchmark suite but in general makes
sense as smaller sizes are far more common.
3. Use more code-size efficient instructions.
- tzcnt ... -> bsf ...
- vpcmpb $0 ... -> vpcmpeq ...
4. Align labels less aggressively, especially if it doesn't save fetch
blocks / causes the basic-block to span extra cache-lines.
The optimizations (especially for point 2) make the strnlen and
strlen code essentially incompatible so split strnlen-evex
to a new file.
Code Size Changes:
strlen-evex.S : -23 bytes
strnlen-evex.S : -167 bytes
Net perf changes:
Reported as geometric mean of all improvements / regressions from N=10
runs of the benchtests. Value as New Time / Old Time so < 1.0 is
improvement and 1.0 is regression.
strlen-evex.S : 0.992 (No real change)
strnlen-evex.S : 0.947
Full results attached in email.
Full check passes on x86-64.
Size Optimizations:
1. Condence hot path for better cache-locality.
- This is most impact for strchrnul where the logic strings with
len <= VEC_SIZE or with a match in the first VEC no fits entirely
in the first cache line.
2. Reuse common targets in first 4x VEC and after the loop.
3. Don't align targets so aggressively if it doesn't change the number
of fetch blocks it will require and put more care in avoiding the
case where targets unnecessarily split cache lines.
4. Align the loop better for DSB/LSD
5. Use more code-size efficient instructions.
- tzcnt ... -> bsf ...
- vpcmpb $0 ... -> vpcmpeq ...
6. Align labels less aggressively, especially if it doesn't save fetch
blocks / causes the basic-block to span extra cache-lines.
Code Size Changes:
strchr-evex.S : -63 bytes
strchrnul-evex.S: -48 bytes
Net perf changes:
Reported as geometric mean of all improvements / regressions from N=10
runs of the benchtests. Value as New Time / Old Time so < 1.0 is
improvement and 1.0 is regression.
strchr-evex.S (Fixed) : 0.971
strchr-evex.S (Rand) : 0.932
strchrnul-evex.S : 0.965
Full results attached in email.
Full check passes on x86-64.
Optimizations are:
1. Use the fact that tzcnt(0) -> VEC_SIZE for memchr to save a branch
in short string case.
2. Restructure code so that small strings are given the hot path.
- This is a net-zero on the benchmark suite but in general makes
sense as smaller sizes are far more common.
3. Use more code-size efficient instructions.
- tzcnt ... -> bsf ...
- vpcmpb $0 ... -> vpcmpeq ...
4. Align labels less aggressively, especially if it doesn't save fetch
blocks / causes the basic-block to span extra cache-lines.
The optimizations (especially for point 2) make the memchr and
rawmemchr code essentially incompatible so split rawmemchr-evex
to a new file.
Code Size Changes:
memchr-evex.S : -107 bytes
rawmemchr-evex.S : -53 bytes
Net perf changes:
Reported as geometric mean of all improvements / regressions from N=10
runs of the benchtests. Value as New Time / Old Time so < 1.0 is
improvement and 1.0 is regression.
memchr-evex.S : 0.928
rawmemchr-evex.S : 0.986 (Less targets cross cache lines)
Full results attached in email.
Full check passes on x86-64.
This patch implements following evex512 version of string functions.
evex512 version takes up to 30% less cycle as compared to evex,
depending on length and alignment.
- memchr function using 512 bit vectors.
- rawmemchr function using 512 bit vectors.
- wmemchr function using 512 bit vectors.
Code size data:
memchr-evex.o 762 byte
memchr-evex512.o 576 byte (-24%)
rawmemchr-evex.o 461 byte
rawmemchr-evex512.o 412 byte (-11%)
wmemchr-evex.o 794 byte
wmemchr-evex512.o 552 byte (-30%)
Placeholder function, not used by any processor at the moment.
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
In the future, this will result in a compilation failure if the
macros are unexpectedly undefined (due to header inclusion ordering
or header inclusion missing altogether).
Assembler sources are more difficult to convert. In many cases,
they are hand-optimized for the mangling and no-mangling variants,
which is why they are not converted.
sysdeps/s390/s390-32/__longjmp.c and sysdeps/s390/s390-64/__longjmp.c
are special: These are C sources, but most of the implementation is
in assembler, so the PTR_DEMANGLE macro has to be undefined in some
cases, to match the assembler style.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This allows us to define a generic no-op version of PTR_MANGLE and
PTR_DEMANGLE. In the future, we can use PTR_MANGLE and PTR_DEMANGLE
unconditionally in C sources, avoiding an unintended loss of hardening
due to missing include files or unlucky header inclusion ordering.
In i386 and x86_64, we can avoid a <tls.h> dependency in the C
code by using the computed constant from <tcb-offsets.h>. <sysdep.h>
no longer includes these definitions, so there is no cyclic dependency
anymore when computing the <tcb-offsets.h> constants.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This way, we can define the pointer guard macros without including
<sysdep.h> on x86-64. Other architectures will not have such an
inclusion dependency, and the implied header file inclusion would
create a porting hazard.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
To avoid duplicate the VMM / GPR / mask insn macros in all incoming
evex512 files use the macros defined in 'reg-macros.h' and
'{vec}-macros.h'
This commit does not change libc.so
Tested build on x86-64
1) Copy so that backport will be easier.
2) Make section only define if there is not a previous definition
3) Add `VEC_lo` definition for proper reg-width but in the
ymm/zmm0-15 range.
4) Add macros for accessing GPRs based on VEC_SIZE
This is to make it easier to do think like:
```
vpcmpb %VEC(0), %VEC(1), %k0
kmov{d|q} %k0, %{eax|rax}
test %{eax|rax}
```
It adds macro s.t any GPR can get the proper width with:
`V{upcase_GPR_name}`
and any mask insn can get the proper width with:
`{upcase_mask_insn_without_postfix}`
This commit does not change libc.so
Tested build on x86-64
Besides the option being gcc specific, this approach is still fragile
and not future proof since we do not know if this will be the only
optimization option gcc will add that transforms loops to memset
(or any libcall).
This patch adds a new header, dl-symbol-redir-ifunc.h, that can b
used to redirect the compiler generated libcalls to port the generic
memset implementation if required.
Checked on x86_64-linux-gnu and aarch64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This was to test loading of shared libraries from platform
subdirectories, but this functionality is going away in the
following commits.
Signed-off-by: Javier Pello <devel@otheo.eu>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The compiler might transform __stpcpy calls (which are routed to
__builtin_stpcpy as an optimization) to strcpy and x86_64 strcpy
multiarch implementation does not build any working symbol due
ISA_SHOULD_BUILD not being evaluated for IS_IN(rtld).
Checked on x86_64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
The AVX2 strrchr and wcsrchr implementation uses the 'blsmsk'
instruction which belongs to the BMI1 CPU feature and the 'shrx'
instruction, which belongs to the BMI2 CPU feature.
Fixes: df7e295d18 ("x86: Optimize {str|wcs}rchr-avx2")
Partially resolves: BZ #29611
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
The AVX2 memrchr implementation uses the 'shlxl' instruction, which
belongs to the BMI2 CPU feature and uses the 'lzcnt' instruction, which
belongs to the LZCNT CPU feature.
Fixes: af5306a735 ("x86: Optimize memrchr-avx2.S")
Partially resolves: BZ #29611
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
The AVX2 memchr, rawmemchr and wmemchr implementations use the 'bzhi'
and 'sarx' instructions, which belongs to the BMI2 CPU feature.
Fixes: acfd088a19 ("x86: Optimize memchr-avx2.S")
Partially resolves: BZ #29611
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
The AVX2 wcs(n)cmp implementations use the 'bzhi' instruction, which
belongs to the BMI2 CPU feature.
NB: It also uses the 'tzcnt' BMI1 instruction, but it is executed as BSF
as BSF if the CPU doesn't support TZCNT, and produces the same result
for non-zero input.
Partially fixes: b77b06e0e2 ("x86: Optimize strcmp-avx2.S")
Partially resolves: BZ #29611
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
The AVX2 strncmp implementations uses the 'bzhi' instruction, which
belongs to the BMI2 CPU feature.
NB: It also uses the 'tzcnt' BMI1 instruction, but it is executed as BSF
as BSF if the CPU doesn't support TZCNT, and produces the same result
for non-zero input.
Partially fixes: b77b06e0e2 ("x86: Optimize strcmp-avx2.S")
Partially resolves: BZ #29611
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
The AVX2 strcmp implementation uses the 'bzhi' instruction, which
belongs to the BMI2 CPU feature.
NB: It also uses the 'tzcnt' BMI1 instruction, but it is executed as BSF
as BSF if the CPU doesn't support TZCNT, and produces the same result
for non-zero input.
Partially fixes: b77b06e0e2 ("x86: Optimize strcmp-avx2.S")
Partially resolves: BZ #29611
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
The AVX2 str(n)casecmp implementations use the 'bzhi' instruction, which
belongs to the BMI2 CPU feature.
NB: It also uses the 'tzcnt' BMI1 instruction, but it is executed as BSF
as BSF if the CPU doesn't support TZCNT, and produces the same result
for non-zero input.
Partially fixes: b77b06e0e2 ("x86: Optimize strcmp-avx2.S")
Partially resolves: BZ #29611
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
Save a jmp on the lock path coming from an initial failure in
pthread_spin_lock.S. This costs 4-bytes of code but since the
function still fits in the same number of 16-byte blocks (default
function alignment) it does not have affect on the total binary size
of libc.so (unchanged after this commit).
pthread_spin_trylock was using a CAS when a simple xchg works which
is often more expensive.
Full check passes on x86-64.
Previous implementation was adjusting length (rsi) to match
bytes (eax), but since there is no bound to length this can cause
overflow.
Fix is to just convert the byte-count (eax) to length by dividing by
sizeof (wchar_t) before the comparison.
Full check passes on x86-64 and build succeeds w/ and w/o multiarch.
It avoids the possible warning of uninitialized 'frame' variable when
building with clang:
../sysdeps/nptl/jmp-unwind.c:27:42: error: variable 'frame' is
uninitialized when used here [-Werror,-Wuninitialized]
__pthread_cleanup_upto (env->__jmpbuf, CURRENT_STACK_FRAME);
The resulting code is similar to CURRENT_STACK_FRAME.
Checked on x86_64-linux-gnu.
`#ifndef STPCPY` is incorrect for checking if `STRCPY` is already
defined. It doesn't end up mattering as the whole check is
guarded by `#if IS_IN (libc)` but is incorrect none the less.
Rather than buffering 16 MiB of entropy in userspace (by way of
chacha20), simply call getrandom() every time.
This approach is doubtlessly slower, for now, but trying to prematurely
optimize arc4random appears to be leading toward all sorts of nasty
properties and gotchas. Instead, this patch takes a much more
conservative approach. The interface is added as a basic loop wrapper
around getrandom(), and then later, the kernel and libc together can
work together on optimizing that.
This prevents numerous issues in which userspace is unaware of when it
really must throw away its buffer, since we avoid buffering all
together. Future improvements may include userspace learning more from
the kernel about when to do that, which might make these sorts of
chacha20-based optimizations more possible. The current heuristic of 16
MiB is meaningless garbage that doesn't correspond to anything the
kernel might know about. So for now, let's just do something
conservative that we know is correct and won't lead to cryptographic
issues for users of this function.
This patch might be considered along the lines of, "optimization is the
root of all evil," in that the much more complex implementation it
replaces moves too fast without considering security implications,
whereas the incremental approach done here is a much safer way of going
about things. Once this lands, we can take our time in optimizing this
properly using new interplay between the kernel and userspace.
getrandom(0) is used, since that's the one that ensures the bytes
returned are cryptographically secure. But on systems without it, we
fallback to using /dev/urandom. This is unfortunate because it means
opening a file descriptor, but there's not much of a choice. Secondly,
as part of the fallback, in order to get more or less the same
properties of getrandom(0), we poll on /dev/random, and if the poll
succeeds at least once, then we assume the RNG is initialized. This is a
rough approximation, as the ancient "non-blocking pool" initialized
after the "blocking pool", not before, and it may not port back to all
ancient kernels, though it does to all kernels supported by glibc
(≥3.2), so generally it's the best approximation we can do.
The motivation for including arc4random, in the first place, is to have
source-level compatibility with existing code. That means this patch
doesn't attempt to litigate the interface itself. It does, however,
choose a conservative approach for implementing it.
Cc: Adhemerval Zanella Netto <adhemerval.zanella@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Cristian Rodríguez <crrodriguez@opensuse.org>
Cc: Paul Eggert <eggert@cs.ucla.edu>
Cc: Mark Harris <mark.hsj@gmail.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
It adds vectorized ChaCha20 implementation based on libgcrypt
cipher/chacha20-amd64-avx2.S. It is used only if AVX2 is supported
and enabled by the architecture.
As for generic implementation, the last step that XOR with the
input is omited. The final state register clearing is also
omitted.
On a Ryzen 9 5900X it shows the following improvements (using
formatted bench-arc4random data):
SSE MB/s
-----------------------------------------------
arc4random [single-thread] 704.25
arc4random_buf(16) [single-thread] 1018.17
arc4random_buf(32) [single-thread] 1315.27
arc4random_buf(48) [single-thread] 1449.36
arc4random_buf(64) [single-thread] 1511.16
arc4random_buf(80) [single-thread] 1539.48
arc4random_buf(96) [single-thread] 1571.06
arc4random_buf(112) [single-thread] 1596.16
arc4random_buf(128) [single-thread] 1613.48
-----------------------------------------------
AVX2 MB/s
-----------------------------------------------
arc4random [single-thread] 922.61
arc4random_buf(16) [single-thread] 1478.70
arc4random_buf(32) [single-thread] 2241.80
arc4random_buf(48) [single-thread] 2681.28
arc4random_buf(64) [single-thread] 2913.43
arc4random_buf(80) [single-thread] 3009.73
arc4random_buf(96) [single-thread] 3141.16
arc4random_buf(112) [single-thread] 3254.46
arc4random_buf(128) [single-thread] 3305.02
-----------------------------------------------
Checked on x86_64-linux-gnu.
It adds vectorized ChaCha20 implementation based on libgcrypt
cipher/chacha20-amd64-ssse3.S. It replaces the ROTATE_SHUF_2 (which
uses pshufb) by ROTATE2 and thus making the original implementation
SSE2.
As for generic implementation, the last step that XOR with the
input is omited. The final state register clearing is also
omitted.
On a Ryzen 9 5900X it shows the following improvements (using
formatted bench-arc4random data):
GENERIC MB/s
-----------------------------------------------
arc4random [single-thread] 443.11
arc4random_buf(16) [single-thread] 552.27
arc4random_buf(32) [single-thread] 626.86
arc4random_buf(48) [single-thread] 649.81
arc4random_buf(64) [single-thread] 663.95
arc4random_buf(80) [single-thread] 674.78
arc4random_buf(96) [single-thread] 675.17
arc4random_buf(112) [single-thread] 680.69
arc4random_buf(128) [single-thread] 683.20
-----------------------------------------------
SSE MB/s
-----------------------------------------------
arc4random [single-thread] 704.25
arc4random_buf(16) [single-thread] 1018.17
arc4random_buf(32) [single-thread] 1315.27
arc4random_buf(48) [single-thread] 1449.36
arc4random_buf(64) [single-thread] 1511.16
arc4random_buf(80) [single-thread] 1539.48
arc4random_buf(96) [single-thread] 1571.06
arc4random_buf(112) [single-thread] 1596.16
arc4random_buf(128) [single-thread] 1613.48
-----------------------------------------------
Checked on x86_64-linux-gnu.
1. Add default ISA level selection in non-multiarch/rtld
implementations.
2. Add ISA level build guards to different implementations.
- I.e strcpy-avx2.S which is ISA level 3 will only build if
compiled ISA level <= 3. Otherwise there is no reason to
include it as we will always use one of the ISA level 4
implementations (strcpy-evex.S).
3. Refactor the ifunc selector and ifunc implementation list to use
the ISA level aware wrapper macros that allow functions below the
compiled ISA level (with a guranteed replacement) to be skipped.
Tested with and without multiarch on x86_64 for ISA levels:
{generic, x86-64-v2, x86-64-v3, x86-64-v4}
And m32 with and without multiarch.
1. Add ISA level build guards to different implementations.
- wcscpy-ssse3.S is used as ISA level 2/3/4.
- wcscpy-generic.c is only used at ISA level 1 and will
only build if compiled with ISA level == 1. Otherwise
there is no reason to include it as we will always use
wcscpy-ssse3.S
2. Refactor the ifunc selector and ifunc implementation list to use
the ISA level aware wrapper macros that allow functions below the
compiled ISA level (with a guranteed replacement) to be skipped.
Tested with and without multiarch on x86_64 for ISA levels:
{generic, x86-64-v2, x86-64-v3, x86-64-v4}
And m32 with and without multiarch.