This patch implements following evex512 version of string functions.
evex512 version takes up to 30% less cycle as compared to evex,
depending on length and alignment.
- strchrnul function using 512 bit vectors.
- strchr function using 512 bit vectors.
- wcschr function using 512 bit vectors.
Code size data:
strchrnul-evex.o 599 byte
strchrnul-evex512.o 569 byte (-5%)
strchr-evex.o 639 byte
strchr-evex512.o 595 byte (-7%)
wcschr-evex.o 644 byte
wcschr-evex512.o 607 byte (-6%)
Placeholder function, not used by any processor at the moment.
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
Unused at the moment, but evex512 strcmp, strncmp, strcasecmp{l}, and
strncasecmp{l} functions can be added by including strcmp-evex.S with
"x86-evex512-vecs.h" defined.
In addition save code size a bit in a few places.
1. tzcnt ... -> bsf ...
2. vpcmp{b|d} $0 ... -> vpcmpeq{b|d}
This saves a touch of code size but has minimal net affect.
Full check passes on x86-64.
commit b412213eee
Author: Noah Goldstein <goldstein.w.n@gmail.com>
Date: Tue Oct 18 17:44:07 2022 -0700
x86: Optimize strrchr-evex.S and implement with VMM headers
Added `vpcompress{b|d}` to the page-cross logic with is an
AVX512-VBMI2 instruction. This is not supported on SKX. Since the
page-cross logic is relatively cold and the benefit is minimal
revert the page-cross case back to the old logic which is supported
on SKX.
Tested on x86-64.
Optimization is:
1. Cache latest result in "fast path" loop with `vmovdqu` instead of
`kunpckdq`. This helps if there are more than one matches.
Code Size Changes:
strrchr-evex.S : +30 bytes (Same number of cache lines)
Net perf changes:
Reported as geometric mean of all improvements / regressions from N=10
runs of the benchtests. Value as New Time / Old Time so < 1.0 is
improvement and 1.0 is regression.
strrchr-evex.S : 0.932 (From cases with higher match frequency)
Full results attached in email.
Full check passes on x86-64.
Optimizations are:
1. Use the fact that lzcnt(0) -> VEC_SIZE for memchr to save a branch
in short string case.
2. Save several instructions in len = [VEC_SIZE, 4 * VEC_SIZE] case.
3. Use more code-size efficient instructions.
- tzcnt ... -> bsf ...
- vpcmpb $0 ... -> vpcmpeq ...
Code Size Changes:
memrchr-evex.S : -29 bytes
Net perf changes:
Reported as geometric mean of all improvements / regressions from N=10
runs of the benchtests. Value as New Time / Old Time so < 1.0 is
improvement and 1.0 is regression.
memrchr-evex.S : 0.949 (Mostly from improvements in small strings)
Full results attached in email.
Full check passes on x86-64.
Optimizations are:
1. Use the fact that bsf(0) leaves the destination unchanged to save a
branch in short string case.
2. Restructure code so that small strings are given the hot path.
- This is a net-zero on the benchmark suite but in general makes
sense as smaller sizes are far more common.
3. Use more code-size efficient instructions.
- tzcnt ... -> bsf ...
- vpcmpb $0 ... -> vpcmpeq ...
4. Align labels less aggressively, especially if it doesn't save fetch
blocks / causes the basic-block to span extra cache-lines.
The optimizations (especially for point 2) make the strnlen and
strlen code essentially incompatible so split strnlen-evex
to a new file.
Code Size Changes:
strlen-evex.S : -23 bytes
strnlen-evex.S : -167 bytes
Net perf changes:
Reported as geometric mean of all improvements / regressions from N=10
runs of the benchtests. Value as New Time / Old Time so < 1.0 is
improvement and 1.0 is regression.
strlen-evex.S : 0.992 (No real change)
strnlen-evex.S : 0.947
Full results attached in email.
Full check passes on x86-64.
Size Optimizations:
1. Condence hot path for better cache-locality.
- This is most impact for strchrnul where the logic strings with
len <= VEC_SIZE or with a match in the first VEC no fits entirely
in the first cache line.
2. Reuse common targets in first 4x VEC and after the loop.
3. Don't align targets so aggressively if it doesn't change the number
of fetch blocks it will require and put more care in avoiding the
case where targets unnecessarily split cache lines.
4. Align the loop better for DSB/LSD
5. Use more code-size efficient instructions.
- tzcnt ... -> bsf ...
- vpcmpb $0 ... -> vpcmpeq ...
6. Align labels less aggressively, especially if it doesn't save fetch
blocks / causes the basic-block to span extra cache-lines.
Code Size Changes:
strchr-evex.S : -63 bytes
strchrnul-evex.S: -48 bytes
Net perf changes:
Reported as geometric mean of all improvements / regressions from N=10
runs of the benchtests. Value as New Time / Old Time so < 1.0 is
improvement and 1.0 is regression.
strchr-evex.S (Fixed) : 0.971
strchr-evex.S (Rand) : 0.932
strchrnul-evex.S : 0.965
Full results attached in email.
Full check passes on x86-64.
Optimizations are:
1. Use the fact that tzcnt(0) -> VEC_SIZE for memchr to save a branch
in short string case.
2. Restructure code so that small strings are given the hot path.
- This is a net-zero on the benchmark suite but in general makes
sense as smaller sizes are far more common.
3. Use more code-size efficient instructions.
- tzcnt ... -> bsf ...
- vpcmpb $0 ... -> vpcmpeq ...
4. Align labels less aggressively, especially if it doesn't save fetch
blocks / causes the basic-block to span extra cache-lines.
The optimizations (especially for point 2) make the memchr and
rawmemchr code essentially incompatible so split rawmemchr-evex
to a new file.
Code Size Changes:
memchr-evex.S : -107 bytes
rawmemchr-evex.S : -53 bytes
Net perf changes:
Reported as geometric mean of all improvements / regressions from N=10
runs of the benchtests. Value as New Time / Old Time so < 1.0 is
improvement and 1.0 is regression.
memchr-evex.S : 0.928
rawmemchr-evex.S : 0.986 (Less targets cross cache lines)
Full results attached in email.
Full check passes on x86-64.
This patch implements following evex512 version of string functions.
evex512 version takes up to 30% less cycle as compared to evex,
depending on length and alignment.
- memchr function using 512 bit vectors.
- rawmemchr function using 512 bit vectors.
- wmemchr function using 512 bit vectors.
Code size data:
memchr-evex.o 762 byte
memchr-evex512.o 576 byte (-24%)
rawmemchr-evex.o 461 byte
rawmemchr-evex512.o 412 byte (-11%)
wmemchr-evex.o 794 byte
wmemchr-evex512.o 552 byte (-30%)
Placeholder function, not used by any processor at the moment.
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
To avoid duplicate the VMM / GPR / mask insn macros in all incoming
evex512 files use the macros defined in 'reg-macros.h' and
'{vec}-macros.h'
This commit does not change libc.so
Tested build on x86-64
1) Copy so that backport will be easier.
2) Make section only define if there is not a previous definition
3) Add `VEC_lo` definition for proper reg-width but in the
ymm/zmm0-15 range.
4) Add macros for accessing GPRs based on VEC_SIZE
This is to make it easier to do think like:
```
vpcmpb %VEC(0), %VEC(1), %k0
kmov{d|q} %k0, %{eax|rax}
test %{eax|rax}
```
It adds macro s.t any GPR can get the proper width with:
`V{upcase_GPR_name}`
and any mask insn can get the proper width with:
`{upcase_mask_insn_without_postfix}`
This commit does not change libc.so
Tested build on x86-64
Besides the option being gcc specific, this approach is still fragile
and not future proof since we do not know if this will be the only
optimization option gcc will add that transforms loops to memset
(or any libcall).
This patch adds a new header, dl-symbol-redir-ifunc.h, that can b
used to redirect the compiler generated libcalls to port the generic
memset implementation if required.
Checked on x86_64-linux-gnu and aarch64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
The compiler might transform __stpcpy calls (which are routed to
__builtin_stpcpy as an optimization) to strcpy and x86_64 strcpy
multiarch implementation does not build any working symbol due
ISA_SHOULD_BUILD not being evaluated for IS_IN(rtld).
Checked on x86_64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
The AVX2 strrchr and wcsrchr implementation uses the 'blsmsk'
instruction which belongs to the BMI1 CPU feature and the 'shrx'
instruction, which belongs to the BMI2 CPU feature.
Fixes: df7e295d18 ("x86: Optimize {str|wcs}rchr-avx2")
Partially resolves: BZ #29611
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
The AVX2 memrchr implementation uses the 'shlxl' instruction, which
belongs to the BMI2 CPU feature and uses the 'lzcnt' instruction, which
belongs to the LZCNT CPU feature.
Fixes: af5306a735 ("x86: Optimize memrchr-avx2.S")
Partially resolves: BZ #29611
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
The AVX2 memchr, rawmemchr and wmemchr implementations use the 'bzhi'
and 'sarx' instructions, which belongs to the BMI2 CPU feature.
Fixes: acfd088a19 ("x86: Optimize memchr-avx2.S")
Partially resolves: BZ #29611
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
The AVX2 wcs(n)cmp implementations use the 'bzhi' instruction, which
belongs to the BMI2 CPU feature.
NB: It also uses the 'tzcnt' BMI1 instruction, but it is executed as BSF
as BSF if the CPU doesn't support TZCNT, and produces the same result
for non-zero input.
Partially fixes: b77b06e0e2 ("x86: Optimize strcmp-avx2.S")
Partially resolves: BZ #29611
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
The AVX2 strncmp implementations uses the 'bzhi' instruction, which
belongs to the BMI2 CPU feature.
NB: It also uses the 'tzcnt' BMI1 instruction, but it is executed as BSF
as BSF if the CPU doesn't support TZCNT, and produces the same result
for non-zero input.
Partially fixes: b77b06e0e2 ("x86: Optimize strcmp-avx2.S")
Partially resolves: BZ #29611
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
The AVX2 strcmp implementation uses the 'bzhi' instruction, which
belongs to the BMI2 CPU feature.
NB: It also uses the 'tzcnt' BMI1 instruction, but it is executed as BSF
as BSF if the CPU doesn't support TZCNT, and produces the same result
for non-zero input.
Partially fixes: b77b06e0e2 ("x86: Optimize strcmp-avx2.S")
Partially resolves: BZ #29611
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
The AVX2 str(n)casecmp implementations use the 'bzhi' instruction, which
belongs to the BMI2 CPU feature.
NB: It also uses the 'tzcnt' BMI1 instruction, but it is executed as BSF
as BSF if the CPU doesn't support TZCNT, and produces the same result
for non-zero input.
Partially fixes: b77b06e0e2 ("x86: Optimize strcmp-avx2.S")
Partially resolves: BZ #29611
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
Previous implementation was adjusting length (rsi) to match
bytes (eax), but since there is no bound to length this can cause
overflow.
Fix is to just convert the byte-count (eax) to length by dividing by
sizeof (wchar_t) before the comparison.
Full check passes on x86-64 and build succeeds w/ and w/o multiarch.
`#ifndef STPCPY` is incorrect for checking if `STRCPY` is already
defined. It doesn't end up mattering as the whole check is
guarded by `#if IS_IN (libc)` but is incorrect none the less.
1. Add default ISA level selection in non-multiarch/rtld
implementations.
2. Add ISA level build guards to different implementations.
- I.e strcpy-avx2.S which is ISA level 3 will only build if
compiled ISA level <= 3. Otherwise there is no reason to
include it as we will always use one of the ISA level 4
implementations (strcpy-evex.S).
3. Refactor the ifunc selector and ifunc implementation list to use
the ISA level aware wrapper macros that allow functions below the
compiled ISA level (with a guranteed replacement) to be skipped.
Tested with and without multiarch on x86_64 for ISA levels:
{generic, x86-64-v2, x86-64-v3, x86-64-v4}
And m32 with and without multiarch.
1. Add ISA level build guards to different implementations.
- wcscpy-ssse3.S is used as ISA level 2/3/4.
- wcscpy-generic.c is only used at ISA level 1 and will
only build if compiled with ISA level == 1. Otherwise
there is no reason to include it as we will always use
wcscpy-ssse3.S
2. Refactor the ifunc selector and ifunc implementation list to use
the ISA level aware wrapper macros that allow functions below the
compiled ISA level (with a guranteed replacement) to be skipped.
Tested with and without multiarch on x86_64 for ISA levels:
{generic, x86-64-v2, x86-64-v3, x86-64-v4}
And m32 with and without multiarch.
1. Add default ISA level selection in non-multiarch/rtld
implementations.
2. Add ISA level build guards to different implementations.
- I.e strcmp-avx2.S which is ISA level 3 will only build if
compiled ISA level <= 3. Otherwise there is no reason to
include it as we will always use one of the ISA level 4
implementations (strcmp-evex.S).
3. Refactor the ifunc selector and ifunc implementation list to use
the ISA level aware wrapper macros that allow functions below the
compiled ISA level (with a guranteed replacement) to be skipped.
Tested with and without multiarch on x86_64 for ISA levels:
{generic, x86-64-v2, x86-64-v3, x86-64-v4}
And m32 with and without multiarch.
wmemcmp isn't used by the dynamic loader so their no need to add an
RTLD stub for it.
Tested with and without multiarch on x86_64 for ISA levels:
{generic, x86-64-v2, x86-64-v3, x86-64-v4}
And m32 with and without multiarch.
This commit doesn't affect libc.so.6, its just housekeeping to prepare
for adding explicit ISA level support.
Tested build on x86_64 and x86_32 with/without multiarch.
This commit doesn't affect libc.so.6, its just housekeeping to prepare
for adding explicit ISA level support.
Tested build on x86_64 and x86_32 with/without multiarch.
This commit doesn't affect libc.so.6, its just housekeeping to prepare
for adding explicit ISA level support.
Tested build on x86_64 and x86_32 with/without multiarch.
This commit doesn't affect libc.so.6, its just housekeeping to prepare
for adding explicit ISA level support.
Tested build on x86_64 and x86_32 with/without multiarch.
This commit doesn't affect libc.so.6, its just housekeeping to prepare
for adding explicit ISA level support.
Tested build on x86_64 and x86_32 with/without multiarch.
This commit doesn't affect libc.so.6, its just housekeeping to prepare
for adding explicit ISA level support.
Tested build on x86_64 and x86_32 with/without multiarch.
This commit doesn't affect libc.so.6, its just housekeeping to prepare
for adding explicit ISA level support.
Tested build on x86_64 and x86_32 with/without multiarch.
This commit doesn't affect libc.so.6, its just housekeeping to prepare
for adding explicit ISA level support.
Tested build on x86_64 and x86_32 with/without multiarch.
This commit doesn't affect libc.so.6, its just housekeeping to prepare
for adding explicit ISA level support.
Tested build on x86_64 and x86_32 with/without multiarch.
This commit doesn't affect libc.so.6, its just housekeeping to prepare
for adding explicit ISA level support.
Tested build on x86_64 and x86_32 with/without multiarch.
This commit doesn't affect libc.so.6, its just housekeeping to prepare
for adding explicit ISA level support.
Because strcmp-sse2.S implements so many functions (more from
avx2/evex/sse42) add a new file 'strcmp-naming.h' to assist in
getting the correct symbol name for all the function across
multiarch/non-multiarch builds.
Tested build on x86_64 and x86_32 with/without multiarch.
The previous macro name can be confusing given that both
`__strcasecmp_l_nonascii` and `__strcasecmp_nonascii` are
functions and we use the `_l` version.
The intrinsics are not available before GCC7 and using standard
operators generates code of equivalent or better quality.
Removed:
_cvtmask64_u64
_kshiftri_mask64
_kand_mask64
Geometric Mean of 5 Runs of Full Benchmark Suite New / Old: 0.958
These functions all have optimized versions:
__strncat_sse2_unaligned, __strncpy_sse2_unaligned, and
stpncpy_sse2_unaligned which are faster than their respective generic
implementations. Since the sse2 versions can run on baseline x86_64,
we should use these as the baseline implementation and can remove the
generic implementations.
Geometric mean of N=20 runs of the entire benchmark suite on:
11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz (Tigerlake)
__strncat_sse2_unaligned / __strncat_generic: .944
__strncpy_sse2_unaligned / __strncpy_generic: .726
__stpncpy_sse2_unaligned / __stpncpy_generic: .650
Tested build with and without multiarch and full check with multiarch.
Remove redundant strcspn-generic, strpbrk-generic and strspn-generic
from sysdep_routines in sysdeps/x86_64/multiarch/Makefile added by
commit c69f960b01
Author: Noah Goldstein <goldstein.w.n@gmail.com>
Date: Sun Jul 3 21:28:07 2022 -0700
x86: Add support for building str{c|p}{brk|spn} with explicit ISA level
since they have been added to sysdep_routines in sysdeps/x86_64/Makefile.