Remove the wordsize-64 implementations by merging them into the main dbl-64
directory. The second patch just moves all wordsize-64 files and removes a
few wordsize-64 uses in comments and Implies files.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Remove the wordsize-64 implementations by merging them into the main dbl-64
directory. The first patch adds special cases needed for 32-bit targets
(FIX_INT_FP_CONVERT_ZERO and FIX_DBL_LONG_CONVERT_OVERFLOW) to the
wordsize-64 versions. This has no effect on 64-bit targets since they don't
define these macros.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Make the tests use TEST_COND_intel96 to decide on whether to build the
unnormal tests instead of the macro in nan-pseudo-number.h and then
drop the header inclusion. This unbreaks test runs on all
architectures that do not have ldbl-96.
Also drop the HANDLE_PSEUDO_NUMBERS macro since it is not used
anywhere.
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
Add support to treat pseudo-numbers specially and implement x86
version to consider all of them as signaling.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
asin and acos have slow paths for rounding the last bit that cause some
calls to be 500-1500x slower than average calls.
These slow paths are rare, a test of a trillion (1.000.000.000.000)
random inputs between -1 and 1 showed 32870 slow calls for acos and 4473
for asin, with most occurrences between -1.0 .. -0.9 and 0.9 .. 1.0.
The slow paths claim correct rounding and use __sin32() and __cos32()
(which compare two result candidates and return the closest one) as the
final step, with the second result candidate (res1) having a small offset
applied from res. This suggests that res and res1 are intended to be 1
ULP apart (which makes sense for rounding), barring bugs, allowing us to
pick either one and still remain within 1 ULP of the exact result.
Remove the slow paths as the accuracy is better than 1 ULP even without
them, which is enough for glibc.
Also remove code comments claiming correctly rounded results.
After slow path removal, checking the accuracy of 14.400.000.000 random
asin() and acos() inputs showed only three incorrectly rounded
(error > 0.5 ULP) results:
- asin(-0x1.ee2b43286db75p-1) (0.500002 ULP, same as before)
- asin(-0x1.f692ba202abcp-4) (0.500003 ULP, same as before)
- asin(-0x1.9915e876fc062p-1) (0.50000000001 ULP, previously exact)
The first two had the same error even before this commit, and they did
not use the slow path at all.
Checking 4934 known randomly found previously-slow-path asin inputs
shows 25 calls with incorrectly rounded results, with a maximum error of
0.500000002 ULP (for 0x1.fcd5742999ab8p-1). The previous slow-path code
rounded all these inputs correctly (error < 0.5 ULP).
The observed average speed increase was 130x.
Checking 36240 known randomly found previously-slow-path acos inputs
shows 42 calls with incorrectly rounded results, with a maximum error of
0.500000008 ULP (for 0x1.f63845056f35ep-1). The previous "exact"
slow-path code showed 34 calls with incorrectly rounded results, with the
same maximum error of 0.500000008 ULP (for 0x1.f63845056f35ep-1).
The observed average speed increase was 130x.
The functions could likely be trimmed more while keeping acceptable
accuracy, but this at least gets rid of the egregiously slow cases.
Tested on x86_64.
The tls.h inclusion is not really required and limits possible
definition on more arch specific headers.
This is a cleanup to allow inline functions on sysdep.h, more
specifically on i386 and ia64 which requires to access some tls
definitions its own.
No semantic changes expected, checked with a build against all
affected ABIs.
In TS 18661-1, getpayload had an unspecified return value for a
non-NaN argument, while C2x requires the return value -1 in that case.
This patch implements the return value of -1. I don't think this is
worth having a new symbol version that's an alias of the old one,
although occasionally we do that in such cases where the new function
semantics are a refinement of the old ones (to avoid programs relying
on the new semantics running on older glibc versions but not behaving
as intended).
Tested for x86_64 and x86; also ran math/ tests for aarch64 and
powerpc.
This patch changes the exp10f error handling semantics to only set
errno according to POSIX rules. New symbol version is introduced at
GLIBC_2.32. The old wrappers are kept for compat symbols.
There are some outliers that need special handling:
- ia64 provides an optimized implementation of exp10f that uses ia64
specific routines to set SVID compatibility. The new symbol version
is aliased to the exp10f one.
- m68k also provides an optimized implementation, and the new version
uses it instead of the sysdeps/ieee754/flt32 one.
- riscv and csky uses the generic template implementation that
does not provide SVID support. For both cases a new exp10f
version is not added, but rather the symbols version of the
generic sysdeps/ieee754/flt32 is adjusted instead.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
powerpc64le-linux-gnu.
It is inspired by expf and reuses its tables and internal functions.
The error checks are inlined and errno setting is in separate tail
called functions, but the wrappers are kept in this patch to handle
the _LIB_VERSION==_SVID_ case.
Double precision arithmetics is used which is expected to be faster on
most targets (including soft-float) than using single precision and it
is easier to get good precision result with it.
Result for x86_64 (i7-4790K CPU @ 4.00GHz) are:
Before new code:
"exp10f": {
"workload-spec2017.wrf (adapted)": {
"duration": 4.0414e+09,
"iterations": 1.00128e+08,
"reciprocal-throughput": 26.6818,
"latency": 54.043,
"max-throughput": 3.74787e+07,
"min-throughput": 1.85038e+07
}
With new code:
"exp10f": {
"workload-spec2017.wrf (adapted)": {
"duration": 4.11951e+09,
"iterations": 1.23968e+08,
"reciprocal-throughput": 21.0581,
"latency": 45.4028,
"max-throughput": 4.74876e+07,
"min-throughput": 2.20251e+07
}
Result for aarch64 (A72 @ 2GHz) are:
Before new code:
"exp10f": {
"workload-spec2017.wrf (adapted)": {
"duration": 4.62362e+09,
"iterations": 3.3376e+07,
"reciprocal-throughput": 127.698,
"latency": 149.365,
"max-throughput": 7.831e+06,
"min-throughput": 6.69501e+06
}
With new code:
"exp10f": {
"workload-spec2017.wrf (adapted)": {
"duration": 4.29108e+09,
"iterations": 6.6752e+07,
"reciprocal-throughput": 51.2111,
"latency": 77.3568,
"max-throughput": 1.9527e+07,
"min-throughput": 1.29271e+07
}
Checked on x86_64-linux-gnu, powerpc64le-linux-gnu, aarch64-linux-gnu,
and sparc64-linux-gnu.
This came to light when adding hard-flaot support to ARC glibc port
without hardware sqrt support causing glibc build to fail:
| ../sysdeps/ieee754/dbl-64/e_sqrt.c: In function '__ieee754_sqrt':
| ../sysdeps/ieee754/dbl-64/e_sqrt.c:58:54: error: unused variable 'ty' [-Werror=unused-variable]
| double y, t, del, res, res1, hy, z, zz, p, hx, tx, ty, s;
The reason being EMULV() macro uses the hardware provided
__builtin_fma() variant, leaving temporary variables 'p, hx, tx, hy, ty'
unused hence compiler warning and ensuing error.
The intent of the patch was to fix that error, but EMULV is pervasive
and used fair bit indirectly via othe rmacros, hence this patch.
Functionally it should not result in code gen changes and if at all
those would be better since the scope of those temporaries is greatly
reduced now
Built tested with aarch64-linux-gnu arm-linux-gnueabi arm-linux-gnueabihf hppa-linux-gnu x86_64-linux-gnu arm-linux-gnueabihf riscv64-linux-gnu-rv64imac-lp64 riscv64-linux-gnu-rv64imafdc-lp64 powerpc-linux-gnu microblaze-linux-gnu nios2-linux-gnu hppa-linux-gnu
Also as suggested by Joseph [1] used --strip and compared the libs with
and w/o patch and they are byte-for-byte unchanged (with gcc 9).
| for i in `find . -name libm-2.31.9000.so`;
| do
| echo $i; diff $i /SCRATCH/vgupta/gnu2/install/glibcs/$i ; echo $?;
| done
| ./aarch64-linux-gnu/lib64/libm-2.31.9000.so
| 0
| ./arm-linux-gnueabi/lib/libm-2.31.9000.so
| 0
| ./x86_64-linux-gnu/lib64/libm-2.31.9000.so
| 0
| ./arm-linux-gnueabihf/lib/libm-2.31.9000.so
| 0
| ./riscv64-linux-gnu-rv64imac-lp64/lib64/lp64/libm-2.31.9000.so
| 0
| ./riscv64-linux-gnu-rv64imafdc-lp64/lib64/lp64/libm-2.31.9000.so
| 0
| ./powerpc-linux-gnu/lib/libm-2.31.9000.so
| 0
| ./microblaze-linux-gnu/lib/libm-2.31.9000.so
| 0
| ./nios2-linux-gnu/lib/libm-2.31.9000.so
| 0
| ./hppa-linux-gnu/lib/libm-2.31.9000.so
| 0
| ./s390x-linux-gnu/lib64/libm-2.31.9000.so
[1] https://sourceware.org/pipermail/libc-alpha/2019-November/108267.html
The minimum GCC version has been raised to 6.2 for building
glibc. Therefore, follow the advice inside the implementation
and remove the GCC < 6 codepath.
Likewise, remove the hidden_proto as all internal usages should
inline now.
GCC 7.5.0 (PR94200) will refuse to compile if both -mabi=% and
-mlong-double-128 are passed on the command line. Surprisingly,
it will work happily if the latter is not. For the sake of
maintaining status quo, test for and blacklist such compilers.
Tested with a GCC 8.3.1 and GCC 7.5.0 compiler for ppc64le.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Improve the commentary to aid future developers who will stumble
upon this novel, yet not always perfect, mechanism to support
alternative formats for long double.
Likewise, rename __LONG_DOUBLE_USES_FLOAT128 to
__LDOUBLE_REDIRECTS_TO_FLOAT128_ABI now that development work
has settled down. The command used was
git grep -l __LONG_DOUBLE_USES_FLOAT128 ':!./ChangeLog*' | \
xargs sed -i 's/__LONG_DOUBLE_USES_FLOAT128/__LDOUBLE_REDIRECTS_TO_FLOAT128_ABI/g'
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
The test for enabling _Float128 or IEEE 128 long double can be
greatly simplified knowing that there is no ibm128, thus we require
no special cases, and everything is canonical.
This reverts the changes to ldbl-128ibm iscanonical.h from commit
8dbfea3a20 and extends the check
for __NO_LONG_DOUBLE_MATH to include a check for float128 redirects
to long double.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
This better resembles the default linking process with the gnulibs,
and also resolves the increasingly difficult to maintain
f128-loader-link usage on powerpc64le as some libgcc symbols are
dependent on those found in the loader (ld).
Tweak the PLT bypass magic when building glibc with long double
redirects. This is made more difficult by the fact we only get
one chance to redirect functions. This happens via the public
headers.
There are roughly three classes of redirect we need to attend to
today:
1. Simple redirects, redirected via cdef macro overrides and
and new libc_hidden_ldbl_proto macro.
2. Internal usage of internal API, e.g __snprintf, which has
no direct analogue. This is bypassed directly on case-by-
case basis.
3. Double redirects, e.g sscanf and related. These require
a heavier handed approach of macro renaming to existing
symbols.
Most simple redirects are handled via 1. Ideally, the libc_*
macro would live in libc-symbols.h, but in practice the macros
needed for it to do anything useful live in cdefs.h, so they
are defined in the local override.
Notably, the internal name of the asprintf generated for ieee ldbl
redirects is renamed to work with internal prefixed usage.
This resolves the local plt usage introduced when building glibc
with ldbl == ieee128 on ppc64le.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
With mathinline removal there is no need to keep building and testing
inline math tests.
The gen-libm-tests.py support to generate ULP_I_* is removed and all
libm-test-ulps files are updated to longer have the
i{float,double,ldouble} entries. The support for no-test-inline is
also removed from both gen-auto-libm-tests and the
auto-libm-test-out-* were regenerated.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Soon, powerpc64le will need to provide extra compiler flags to the long
double files in order to continue to build using the IBM 128-bit
extended floating point type as long double.
This patch creates test-ibm128* tests from the long double function tests.
In order to explicitly test IBM long double functions -mabi=ibmlongdouble is
added to CFLAGS.
Likewise, update the test headers to correct choose ULPs when redirects
are enabled.
Co-authored-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Co-authored-by: Paul E. Murphy <murphyp@linux.vnet.ibm.com>
For lack of a more comprehensive solution, tack on the ibm128 ABI
compiler options for the totalorder{,mag}l compat tests which exist
prior to enabling this feature.
The functions in the nexttoward family are special, in the sense that
they always have a long double argument, regardless of their suffix
(i.e.: nexttowardf and nexttoward have a long double argument, besides
the float and double arguments).
On top of that, they are also special because nexttoward functions are
not part of the _FloatN API, hence __nexttowardf128 do not exist.
This patch adds 4 new function implementations for the new long double
format:
__nexttoward_to_ieee128
__nexttowardf_to_ieee128
__nexttowardieee128 (as an alias to __nextafterieee128)
Likewise, rename "long double" "_Float128" in shared ldbl-128
files to ensure correct type is used irrespective of ABI
switches.
Thank you to those who helped out with this patch:
Co-Authored-By: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Modify the headers to redirect long double functions to global __*f128
symbols or to __*ieee128 otherwise.
Most of the functions in math.h benefit from the infrastructure already
available for __LDBL_COMPAT. The only exceptions are nexttowardf and
nexttoward that need especial treatment.
Both math/bits/mathcalls-helper-functions.h and math/bits/mathcalls.h
were modified in order to provide alternative redirection destinations
that are essential to support functions that should not be redirected to
the same name pattern of the rest of the functions, i.e.: __fpclassify,
__signbit, __iseqsig, __issignaling, isinf, finite and isnan, which will
be redirected to __*f128 instead of __*ieee128 used for the rest.
Instead of attempting something more creative, just copy
the small struct from ldbl-128 and enable it when IEEE
long double is present, and update the ibm long double
variant if supported.
Likewise, provide a shadow copy of math_ldbl.h to prevent
the ibm128 specific long double header from poisoning
unrelated files due to it's usage in math_private.h.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
We want to ensure that if a second file is built to support
ieee128 long double, we built its companion implementation
with ibm128 long double. The shared object versions of these
files build correctly because the aliasing is sufficiently
complex to prevent the redirects from applying when defining
them.
However, this does not prevent the static object variants
from becoming quietly broken due to redirects. This is
intentionally avoided by marking such objects to be built
with -mabi=ibmlongdouble.
Shuffle the misplaced routines to build against the subdir
which defines the needed symbols.
A number of utility files and helper objects should also be
explicitly configured to build with the ibm128 ABI to prevent
gremlins when enabling IEEE long double.
Move the narrow math aliasing macros into a new sysdep header file
math-narrow-alias-float128.h. Then, provide an override header
to supply the necessary changes to supply the *ieee128 aliases of
these symbols.
This adds ieee128 aliases for faddl, fdivl, fmull, fsubl, daddl, ddivl,
dmull, dsubl.
After defining the long double redirections to double, __MATHDECL_1 has
to be redefined to its previous state in order to avoid redirecting all
subsequent types.
Reuse the template in order to provide the redirect for
scalbl to __scalbieee128, but avoid any extra aliasing
as this is intended to support long double redirects only.
This is a preparatory patch to enable building a _Float128
variant to ease reuse when building a _Float128 variant to
alias this long double only symbol.
Notably, stubs are added where missing to the native _Float128
sysdep dir to prevent building these newly templated variants
created inside the build directories.
Also noteworthy are the changes around LIBM_SVID_COMPAT. These
changes are not intuitive. The templated version is only
enabled when !LIBM_SVID_COMPAT, and the compat version is
predicated entirely on LIBM_SVID_COMPAT. Thus, exactly one is
stubbed out entirely when building. The nldbl scalb compat
files are updated to account for this.
Likewise, fixup the reuse of m68k's e_scalb{f,l}.c to include
it's override of e_scalb.c. Otherwise, the search path finds
the templated copy in the build directory. This could be
futher simplified by providing an overridden template, but I
lack the hardware to verify.
A recent discussion in bug 14469 notes that a threshold in float
Bessel function implementations, used to determine when to use a
simpler implementation approach, results in substantially inaccurate
results.
As I discussed in
<https://sourceware.org/ml/libc-alpha/2013-03/msg00345.html>, a
heuristic argument suggests 2^(S+P) as the right order of magnitude
for a suitable threshold, where S is the number of significand bits in
the floating-point type and P is the number of significant bits in the
representation of the floating-point type, and the float and ldbl-96
implementations use thresholds that are too small. Some threshold
does need using, there or elsewhere in the implementation, to avoid
spurious underflow and overflow for large arguments.
This patch sets the thresholds in the affected implementations to more
heuristically justifiable values. Results will still be inaccurate
close to zeroes of the functions (thus this patch does *not* fix any
of the bugs for Bessel function inaccuracy); fixing that would require
a different implementation approach, likely along the lines described
in <http://www.cl.cam.ac.uk/~jrh13/papers/bessel.ps.gz>.
So the justification for a change such as this would be statistical
rather than based on particular tests that had excessive errors and no
longer do so (no doubt such tests could be found, but would probably
be too fragile to add to the testsuite, as liable to give large errors
again from very small implementation changes or even from compiler
changes). See
<https://sourceware.org/ml/libc-alpha/2020-02/msg00638.html> for such
statistics of the resulting improvements for float functions.
Tested (glibc testsuite) for x86_64.
Bug 25487 reports stack corruption in ldbl-96 sinl on a pseudo-zero
argument (an representation where all the significand bits, including
the explicit high bit, are zero, but the exponent is not zero, which
is not a valid representation for the long double type).
Although this is not a valid long double representation, existing
practice in this area (see bug 4586, originally marked invalid but
subsequently fixed) is that we still seek to avoid invalid memory
accesses as a result, in case of programs that treat arbitrary binary
data as long double representations, although the invalid
representations of the ldbl-96 format do not need to be consistently
handled the same as any particular valid representation.
This patch makes the range reduction detect pseudo-zero and unnormal
representations that would otherwise go to __kernel_rem_pio2, and
returns a NaN for them instead of continuing with the range reduction
process. (Pseudo-zero and unnormal representations whose unbiased
exponent is less than -1 have already been safely returned from the
function before this point without going through the rest of range
reduction.) Pseudo-zero representations would previously result in
the value passed to __kernel_rem_pio2 being all-zero, which is
definitely unsafe; unnormal representations would previously result in
a value passed whose high bit is zero, which might well be unsafe
since that is not a form of input expected by __kernel_rem_pio2.
Tested for x86_64.
This should be unconditionally set to match the common implementation,
and fixes multiple test failures related to sprintf.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
The build has been failing on powerpc64le-linux-gnu with GCC 10
due to a maybe-uninitialized error:
../sysdeps/ieee754/dbl-64/mpa.c:875:6: error: ‘w.e’ may be used
uninitialized in this function [-Werror=maybe-uninitialized]
875 | EY -= EX;
| ^~
The warning is thrown because when __inv is called by __dvd *y is not
initialized and if t == 0 before calling __dbl_mp, EY will stay
uninitialized, as the function does not touch it in this case.
However, since t will be set to 1/t before calling __dbl_mp, t == 0 will
never happen, so we can instruct the compiler to ignore this case, which
suppresses the warning.
Tested on powerpc64le.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
This patch adds a new macro, libm_alias_finite, to define all _finite
symbol. It sets all _finite symbol as compat symbol based on its first
version (obtained from the definition at built generated first-versions.h).
The <fn>f128_finite symbols were introduced in GLIBC 2.26 and so need
special treatment in code that is shared between long double and float128.
It is done by adding a list, similar to internal symbol redifinition,
on sysdeps/ieee754/float128/float128_private.h.
Alpha also needs some tricky changes to ensure we still emit 2 compat
symbols for sqrt(f).
Passes buildmanyglibc.
Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
Some compiler versions, e.g. GCC 7, complain when -mlong-double-128 is
used together with -mabi=ibmlongdouble or -mabi=ieeelongdouble,
producing the following error message:
cc1: error: ‘-mabi=ibmlongdouble’ requires ‘-mlong-double-128’
This patch removes -mlong-double-128 from the compilation lines that
explicitly request -mabi=*longdouble.
Tested for powerpc64le.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Some of the files that provide stdio.h and wchar.h functions have a
filename prefixed with 'io', such as 'iovsprintf.c'. On platforms that
imply ldbl-128ibm-compat, these files must be compiled with the flag
-mabi=ibmlongdouble. This patch adds this flag to their compilation.
Notice that this is not required for the other files that provide
similar functions, because filenames that are not prefixed with 'io'
have ldbl-128ibm-compat counterparts in the Makefile, which already adds
-mabi=ibmlongdouble to them.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
On platforms where long double has IEEE binary128 format as a third
option (initially, only powerpc64le), many exported functions are
redirected to their __*ieee128 equivalents. This redirection is
provided by installed headers such as stdio-ldbl.h, and is supposed to
work correctly with user code.
However, during the build of glibc, similar redirections are employed,
in internal headers, such as include/stdio.h, in order to avoid extra
PLT entries. These redirections conflict with the redirections to
__*ieee128, and must be avoided during the build. This patch protects
the second redirections with a test for __LONG_DOUBLE_USES_FLOAT128, a
new macro that is defined to 1 when functions that deal with long double
typed values reuses the _Float128 implementation (this is currently only
true for powerpc64le).
Tested for powerpc64le, x86_64, and with build-many-glibcs.py.
Co-authored-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
Reviewed-by: Florian Weimer <fweimer@redhat.com>
On powerpc64le, the libm_alias_float128_other_r_ldbl macro is
used to create an alias between totalorderf128 and __totalorderlieee128,
as well as between the totalordermagf128 and __totalordermaglieee128.
However, the totalorder* and totalordermag* functions changed their
parameter type since commit ID 42760d7646 and got compat symbols for
their old versions. With this change, the aforementioned macro would
create two conflicting aliases for __totalorderlieee128 and
__totalordermaglieee128.
This patch avoids the creation of the alias between the IEEE long double
symbols (__totalorderl*ieee128) and the compat symbols, because the IEEE
long double functions have never been exported thus don't need such
compat symbol.
Tested for powerpc64le.
Reviewed-by: Joseph Myers <joseph@codesourcery.com>
This patch adds IEEE long double versions of q*cvt* functions for
powerpc64le. Unlike all other long double to/from string conversion
functions, these do not rely on internal functions that can take
floating-point numbers with different formats and act on them
accordingly, instead, the related files are rebuilt with the
-mabi=ieeelongdouble compiler flag set.
Having -mabi=ieeelongdouble passed to the compiler causes the object
files to be marked with a .gnu_attribute that is incompatible with the
.gnu_attribute in files built with -mabi=ibmlongdouble (the default).
The difference causes error messages similar to the following:
ld: libc_pic.a(s_isinfl.os) uses IBM long double,
libc_pic.a(ieee128-qefgcvt_r.os) uses IEEE long double.
collect2: error: ld returned 1 exit status
make[2]: *** [../Makerules:649: libc_pic.os] Error 1
Although this warning is useful in other situations, the library
actually needs to have functions with different long double formats, so
.gnu_attribute generation is explicitly disabled for these files with
the use of -mno-gnu-attribute.
Tested for powerpc64le on the branch that actually enables the
sysdeps/ieee754/ldbl-128ibm-compat for powerpc64le.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
In the format string for *scanf functions, the '%as', '%aS', and '%a[]'
modifiers behave differently depending on ISO C99 compatibility. When
_GNU_SOURCE is defined and -std=c89 is passed to the compiler, these
functions behave like ascanf, and the modifiers allocate memory for the
output. Otherwise, the ISO C99 compliant version of these functions is
used, and the modifiers consume a floating-point argument. This patch
adds the IEEE binary128 variant of ISO C99 compliant functions for the
third long double format on powerpc64le.
Tested for powerpc64le.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
Since commit
commit 03992356e6
Author: Zack Weinberg <zackw@panix.com>
Date: Sat Feb 10 11:58:35 2018 -0500
Use C99-compliant scanf under _GNU_SOURCE with modern compilers.
the selection of the GNU versions of scanf functions requires both
_GNU_SOURCE and -std=c89. This patch changes the tests in
ldbl-128ibm-compat so that they actually test the GNU versions (without
this change, the redirection to the ISO C99 version always happens, so
GNU versions of the new implementation (e.g. __scanfieee128) were left
untested).
Tested for powerpc64le.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
This patch just adjusts the generic implementation regarding code style.
No functional change.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch just adjusts the generic implementation regarding code style.
No functional change.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch just adjusts the generic implementation regarding code style.
No functional change.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch just adjusts the generic implementation regarding code style.
No functional change.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch just adjusts the generic implementation regarding code style.
No functional change.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is always using the corresponding GCC builtin for copysignf, copysign,
and is using the builtin for copysignl, copysignf128 if the USE_FUNCTION_BUILTIN
macros are defined to one in math-use-builtins.h.
Altough the long double version is enabled by default we still need
the macro and the alternative implementation as the _Float128 version
of the builtin is not available with all supported GCC versions.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for roundf, round,
roundl and roundf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for truncf, trunc,
truncl and truncf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for ceilf, ceil,
ceill and ceilf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for floorf, floor,
floorl and floorf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for rintf, rint,
rintl and rintf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for nearbyintf, nearbyint,
nearbintl and nearbyintf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces s_round.c in sysdeps/dbl-64 with the one in
sysdeps/dbl-64/wordsize-64 and removes the latter one.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces s_trunc.c in sysdeps/dbl-64 with the one in
sysdeps/dbl-64/wordsize-64 and removes the latter one.
The code is not changed except changes in code style.
Also adjusted the include path in x86_64 and sparc64 files.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces s_ceil.c in sysdeps/dbl-64 with the one in
sysdeps/dbl-64/wordsize-64 and removes the latter one.
The code is not changed except changes in code style.
Also adjusted the include path in x86_64 and sparc64 files.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces s_floor.c in sysdeps/dbl-64 with the one in
sysdeps/dbl-64/wordsize-64 and removes the latter one.
The code is not changed except changes in code style.
Also adjusted the include path in x86_64 and sparc64 files.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces s_rint.c in sysdeps/dbl-64 with the one in
sysdeps/dbl-64/wordsize-64 and removes the latter one.
The code is not changed except changes in code style.
Also adjusted the include path in x86_64 file.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces s_nearbyint.c in sysdeps/dbl-64 with the one in
sysdeps/dbl-64/wordsize-64 and removes the latter one.
The code is not changed except changes in code style.
Also adjusted the include path in x86_64 file.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Since the commit
commit 86a0f56158
Author: Rajalakshmi Srinivasaraghavan <raji@linux.vnet.ibm.com>
Date: Thu Jun 28 13:57:50 2018 +0530
ldbl-128ibm-compat: Introduce ieee128 symbols
IEEE long double versions of strfroml, strtold, and wcstold have been
prepared, but not exposed (which will only happen when the full support
for IEEE long double is complete). This patch adds tests for these
functions in both IBM and IEEE long double mode.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
This patch adds elementary tests to check that strfmon and strfmon_l
correctly evaluate long double values with IBM Extended Precision and
IEEE binary128 format.
Tested for powerpc64le.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
Similarly to what has been done for printf-like functions, more
specifically to the internal implementation in __vfprintf_internal, this
patch extends __vstrfmon_l_internal to deal with long double values with
binary128 format (as a third format option and reusing the float128
implementation).
Tested for powerpc64le, powerpc64, x86_64, and with build-many-glibcs.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
Several commits to the ldbl-128ibm-compat directory added new files
where the URL in the copyright notice pointed to an http, rather than to
an https, address. This happened because I copied the notices before
commit ID 5a82c74822. This trivial patch fixes this issue.
Similarly to __vfprintf_internal and __vfscanf_internal, the internal
implementation of syslog functions (__vsyslog_internal) takes a
'mode_flags' parameter used to select the format of long double
parameters. This patch adds variants of the syslog functions that set
'mode_flags' to PRINTF_LDBL_USES_FLOAT128, thus enabling the correct
printing of long double values on powerpc64le, when long double has IEEE
binary128 format (-mabi=ieeelongdouble).
Tested for powerpc64le.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
Reviewed-by: Joseph Myers <joseph@codesourcery.com>
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
Similarly to the functions from the *printf family, this patch adds
implementations for __obstack_*printf* functions that set the
'mode_flags' parameter to PRINTF_LDBL_USES_FLOAT128, before making calls
to __vfprintf_internal (indirectly through __obstack_vprintf_internal).
Tested for powerpc64le.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
Commit IDs 9771e6cb51 and 7597b0c7f7 added tests for the functions
from err.h and error.h that can take long double parameters.
Afterwards, commit ID f0eaf86276 reused them on architectures that
changed the long double format from the same as double to something else
(i.e.: architectures that imply ldbl-opt). This patch reuses it again
for IEEE long double on powerpc64le.
Tested for powerpc64le.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
Use the recently added, internal functions, __error_at_line_internal and
__error_internal, to provide error.h functions that can take long double
arguments with IEEE binary128 format on platforms where long double can
also take double format or some non-IEEE format (currently, this means
powerpc64le).
Tested for powerpc64le.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
Use the recently added, internal functions, __vwarnx_internal and
__vwarn_internal, to provide err.h functions that can take long double
arguments with IEEE binary128 format on platforms where long double can
also take double format or some non-IEEE format (currently, this means
powerpc64le).
Tested for powerpc64le.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
Use the recently added, internal functions, __argp_error_internal and
__argp_failure_internal, to provide argp_error and argp_failure that can
take long double arguments with IEEE binary128 format on platforms where
long double can also take double format or some non-IEEE format
(currently, this means powerpc64le).
Tested for powerpc64le.
Reviewed-by: Paul E. Murphy <murphyp@linux.ibm.com>
Similarly to what was done for regular character scanning functions,
this patch uses the new mode mask, SCANF_LDBL_USES_FLOAT128, in the
'mode' argument of the wide characters scanning function,
__vfwscanf_internal (which is also extended to support scanning
floating-point values with IEEE binary128, by redirecting calls to
__wcstold_internal to __wcstof128_internal).
Tested for powerpc64le.
Reviewed-By: Paul E. Murphy <murphyp@linux.ibm.com>
The 'mode' argument to __vfscanf_internal allows the selection of the
long double format for all long double arguments requested by the format
string. Currently, there are two possibilities: long double with the
same format as double or long double as something else. The 'something
else' format varies between architectures, and on powerpc64le, it means
IBM Extended Precision format.
In preparation for the third option of long double format on
powerpc64le, this patch uses the new mode mask,
SCANF_LDBL_USES_FLOAT128, which tells __vfscanf_internal to call
__strtof128_internal, instead of __strtold_internal, and save the output
into a _Float128 variable.
Tested for powerpc64le.
Reviewed-By: Paul E. Murphy <murphyp@linux.ibm.com>
The format string can request positional parameters, instead of relying
on the order in which they appear as arguments. Since this has an
effect on how the type of each argument is determined, this patch
extends the test cases to use positional parameters with mixed double
and long double types, to verify that the IEEE long double
implementations of *printf work correctly in this scenario.
Tested for powerpc64le.
Reviewed-By: Paul E. Murphy <murphyp@linux.ibm.com>
A single format string can take double and long double parameters at the
same time. Internally, these parameters are routed to the same
function, which correctly reads them and calls the underlying functions
responsible for the actual conversion to string. This patch adds a new
case to test this scenario.
Tested for powerpc64le.
Reviewed-By: Paul E. Murphy <murphyp@linux.ibm.com>
Similarly to what was done for the regular character, fortified printing
functions, this patch combines the mode masks PRINTF_LDBL_USES_FLOAT128
and PRINTF_FORTIFY to provide wide character versions of fortified
printf functions. It also adds two flavors of test cases: one that
explicitly calls the fortified functions, and another that reuses the
non-fortified test, but defining _FORTIFY_SOURCE as 2. The first
guarantees that the implementations are actually being tested
(independently of what's in bits/wchar2.h), whereas the second
guarantees that the redirections calls the correct function in the IBM
and IEEE long double cases.
Tested for powerpc64le.
Reviewed-By: Paul E. Murphy <murphyp@linux.ibm.com>
Since the introduction of internal functions with explicit flags for the
printf family of functions, the 'mode' parameter can be used to select
which format long double parameters have (with the mode flags:
PRINTF_LDBL_IS_DBL and PRINTF_LDBL_USES_FLOAT128), as well as to select
whether to check for overflows (mode flag: PRINTF_FORTIFY).
This patch combines PRINTF_LDBL_USES_FLOAT128 and PRINTF_FORTIFY to
provide the IEEE binary128 version of printf-like function for platforms
where long double can take this format, in addition to the double format
and to some non-ieee format (currently, this means powerpc64le).
There are two flavors of test cases provided with this patch: one that
explicitly calls the fortified functions, for instance __asprintf_chk,
and another that reuses the non-fortified test, but defining
_FORTIFY_SOURCE as 2. The first guarantees that the implementations are
actually being tested (in bits/stdio2.h, vprintf gets redirected to
__vfprintf_chk, which would leave __vprintf_chk untested), whereas the
second guarantees that the redirections calls the correct function in
the IBM and IEEE long double cases.
Tested for powerpc64le.
Reviewed-By: Paul E. Murphy <murphyp@linux.ibm.com>
Similarly to what was done for regular character printing functions,
this patch uses the new mode mask, PRINTF_LDBL_USES_FLOAT128, in the
'mode' argument of the wide characters printing function,
__vfwprintf_internal (which is also extended to support printing
floating-point values with IEEE binary128, by saving floating-point
values into variables of type __float128 and adjusting the parameters to
__printf_fp and __printf_fphex as if it was a call from a wide-character
version of strfromf128 (even though such version does not exist)).
Tested for powerpc64le.
Reviewed-By: Paul E. Murphy <murphyp@linux.ibm.com>
The 'mode' argument to __vfprintf_internal allows the selection of the
long double format for all long double arguments requested by the format
string. Currently, there are two possibilities: long double with the
same format as double or long double as something else. The 'something
else' format varies between architectures, and on powerpc64le, it means
IBM Extended Precision format.
In preparation for the third option of long double format on
powerpc64le, this patch uses the new mode mask,
PRINTF_LDBL_USES_FLOAT128, which tells __vfprintf_internal to save the
floating-point values into variables of type __float128 and adjusts the
parameters to __printf_fp and __printf_fphex as if it was a call from
strfromf128.
Many files from the stdio-common, wcsmbs, argp, misc, and libio
directories will have IEEE binary128 counterparts. Setting the correct
compiler options to these files (original and counterparts) would
produce a large amount of repetitive Makefile rules. To avoid this
repetition, this patch adds a Makefile routine that iterates over the
files adding or removing the appropriate flags.
Tested for powerpc64le.
Reviewed-By: Florian Weimer <fweimer@redhat.com>
Reviewed-By: Joseph Myers <joseph@codesourcery.com>
Reviewed-By: Paul E. Murphy <murphyp@linux.ibm.com>
Very recent commit 854e91bf6b enabled
inline of issignalingf() in general (__issignalingf in include/math.h).
There is another implementation for an inline use of issignalingf
(issignalingf_inline in sysdeps/ieee754/flt-32/math_config.h)
which could instead make use of the new enablement.
Replace the use of issignalingf_inline with __issignaling. Using
issignaling (instead of __issignalingf) will allow future enhancements
to the type-generic implementation, issignaling, to be automatically
adopted.
The implementations are slightly different, and compile to slightly
different code, but I measured no significant performance difference.
The second implementation was brought to my attention by:
Suggested-by: Joseph Myers <joseph@codesourcery.com>
Reviewed-by: Joseph Myers <joseph@codesourcery.com>
With only two exceptions (sys/types.h and sys/param.h, both of which
historically might have defined BYTE_ORDER) the public headers that
include <endian.h> only want to be able to test __BYTE_ORDER against
__*_ENDIAN.
This patch creates a new bits/endian.h that can be included by any
header that wants to be able to test __BYTE_ORDER and/or
__FLOAT_WORD_ORDER against the __*_ENDIAN constants, or needs
__LONG_LONG_PAIR. It only defines macros in the implementation
namespace.
The existing bits/endian.h (which could not be included independently
of endian.h, and only defines __BYTE_ORDER and maybe __FLOAT_WORD_ORDER)
is renamed to bits/endianness.h. I also took the opportunity to
canonicalize the form of this header, which we are stuck with having
one copy of per architecture. Since they are so short, this means git
doesn’t understand that they were renamed from existing headers, sigh.
endian.h itself is a nonstandard header and its only remaining use
from a standard header is guarded by __USE_MISC, so I dropped the
__USE_MISC conditionals from around all of the public-namespace things
it defines. (This means, an application that requests strict library
conformance but includes endian.h will still see the definition of
BYTE_ORDER.)
A few changes to specific bits/endian(ness).h variants deserve
mention:
- sysdeps/unix/sysv/linux/ia64/bits/endian.h is moved to
sysdeps/ia64/bits/endianness.h. If I remember correctly, ia64 did
have selectable endianness, but we have assembly code in
sysdeps/ia64 that assumes it’s little-endian, so there is no reason
to treat the ia64 endianness.h as linux-specific.
- The C-SKY port does not fully support big-endian mode, the compile
will error out if __CSKYBE__ is defined.
- The PowerPC port had extra logic in its bits/endian.h to detect a
broken compiler, which strikes me as unnecessary, so I removed it.
- The only files that defined __FLOAT_WORD_ORDER always defined it to
the same value as __BYTE_ORDER, so I removed those definitions.
The SH bits/endian(ness).h had comments inconsistent with the
actual setting of __FLOAT_WORD_ORDER, which I also removed.
- I *removed* copyright boilerplate from the few bits/endian(ness).h
headers that had it; these files record a single fact in a fashion
dictated by an external spec, so I do not think they are copyrightable.
As long as I was changing every copy of ieee754.h in the tree, I
noticed that only the MIPS variant includes float.h, because it uses
LDBL_MANT_DIG to decide among three different versions of
ieee854_long_double. This patch makes it not include float.h when
GCC’s intrinsic __LDBL_MANT_DIG__ is available.
* string/endian.h: Unconditionally define LITTLE_ENDIAN,
BIG_ENDIAN, PDP_ENDIAN, and BYTE_ORDER. Condition byteswapping
macros only on !__ASSEMBLER__. Move the definitions of
__BIG_ENDIAN, __LITTLE_ENDIAN, __PDP_ENDIAN, __FLOAT_WORD_ORDER,
and __LONG_LONG_PAIR to...
* string/bits/endian.h: ...this new file, which includes
the renamed header bits/endianness.h for the definition of
__BYTE_ORDER and possibly __FLOAT_WORD_ORDER.
* string/Makefile: Install bits/endianness.h.
* include/bits/endian.h: New wrapper.
* bits/endian.h: Rename to bits/endianness.h.
Add multiple-include guard. Rewrite the comment explaining what
the machine-specific variants of this file should do.
* sysdeps/unix/sysv/linux/ia64/bits/endian.h:
Move to sysdeps/ia64.
* sysdeps/aarch64/bits/endian.h
* sysdeps/alpha/bits/endian.h
* sysdeps/arm/bits/endian.h
* sysdeps/csky/bits/endian.h
* sysdeps/hppa/bits/endian.h
* sysdeps/ia64/bits/endian.h
* sysdeps/m68k/bits/endian.h
* sysdeps/microblaze/bits/endian.h
* sysdeps/mips/bits/endian.h
* sysdeps/nios2/bits/endian.h
* sysdeps/powerpc/bits/endian.h
* sysdeps/riscv/bits/endian.h
* sysdeps/s390/bits/endian.h
* sysdeps/sh/bits/endian.h
* sysdeps/sparc/bits/endian.h
* sysdeps/x86/bits/endian.h:
Rename to endianness.h; canonicalize form of file; remove
redundant definitions of __FLOAT_WORD_ORDER.
* sysdeps/powerpc/bits/endianness.h: Remove logic to check for
broken compilers.
* ctype/ctype.h
* sysdeps/aarch64/nptl/bits/pthreadtypes-arch.h
* sysdeps/arm/nptl/bits/pthreadtypes-arch.h
* sysdeps/csky/nptl/bits/pthreadtypes-arch.h
* sysdeps/ia64/ieee754.h
* sysdeps/ieee754/ieee754.h
* sysdeps/ieee754/ldbl-128/ieee754.h
* sysdeps/ieee754/ldbl-128ibm/ieee754.h
* sysdeps/m68k/nptl/bits/pthreadtypes-arch.h
* sysdeps/microblaze/nptl/bits/pthreadtypes-arch.h
* sysdeps/mips/ieee754/ieee754.h
* sysdeps/mips/nptl/bits/pthreadtypes-arch.h
* sysdeps/nios2/nptl/bits/pthreadtypes-arch.h
* sysdeps/nptl/pthread.h
* sysdeps/riscv/nptl/bits/pthreadtypes-arch.h
* sysdeps/sh/nptl/bits/pthreadtypes-arch.h
* sysdeps/sparc/sparc32/ieee754.h
* sysdeps/unix/sysv/linux/generic/bits/stat.h
* sysdeps/unix/sysv/linux/generic/bits/statfs.h
* sysdeps/unix/sysv/linux/sys/acct.h
* wctype/bits/wctype-wchar.h:
Include bits/endian.h, not endian.h.
* sysdeps/unix/sysv/linux/hppa/pthread.h: Don’t include endian.h.
* sysdeps/mips/ieee754/ieee754.h: Use __LDBL_MANT_DIG__
in ifdefs, instead of LDBL_MANT_DIG. Only include float.h
when __LDBL_MANT_DIG__ is not predefined, in which case
define __LDBL_MANT_DIG__ to equal LDBL_MANT_DIG.
The resolution of C floating-point Clarification Request 25
<http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2397.htm#dr_25> is
that the totalorder and totalordermag functions should take pointer
arguments, and this has been adopted in C2X (with const added; note
that the integration of this change into C2X is present in the C
standard git repository but postdates the most recent public PDF
draft).
This patch updates glibc accordingly. As a defect resolution, the API
is changed unconditionally rather than supporting any sort of TS
18661-1 mode for compilation with the old version of the API. There
are compat symbols for existing binaries that pass floating-point
arguments directly. As a consequence of changing to pointer
arguments, there are no longer type-generic macros in tgmath.h for
these functions.
Because of the fairly complicated logic for creating libm function
aliases and determining the set of aliases to create in a given glibc
configuration, rather than duplicating all that in individual source
files to create the versioned and compat symbols, the source files for
the various versions of totalorder functions are set up to redefine
weak_alias before using libm_alias_* macros to create the symbols
required. In turn, this requires creating a separate alias for each
symbol version pointing to the same implementation (see binutils bug
<https://sourceware.org/bugzilla/show_bug.cgi?id=23840>), which is
done automatically using __COUNTER__. (As I noted in
<https://sourceware.org/ml/libc-alpha/2018-10/msg00631.html>, it might
well make sense for glibc's symbol versioning macros to do that alias
creation with __COUNTER__ themselves, which would somewhat simplify
the logic in the totalorder source files.)
It is of course desirable to test the compat symbols. I did this with
the generic libm-test machinery, but didn't wish to duplicate the
actual tables of test inputs and outputs, and thought it risky to
attempt to have a single object file refer to both default and compat
versions of the same function in order to test them together. Thus, I
created libm-test-compat_totalorder.inc and
libm-test-compat_totalordermag.inc which include the generated .c
files (with the processed version of those tables of inputs) from the
non-compat tests, and added appropriate dependencies. I think this
provides sufficient test coverage for the compat symbols without also
needing to make the special ldbl-96 and ldbl-128ibm tests (of
peculiarities relating to the representations of those formats that
can't be covered in the generic tests) run for the compat symbols.
Tests of compat symbols need to be internal tests, meaning _ISOMAC is
not defined. Making some libm-test tests into internal tests showed
up two other issues. GCC diagnoses duplicate macro definitions of
__STDC_* macros, including __STDC_WANT_IEC_60559_TYPES_EXT__; I added
an appropriate conditional and filed
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=91451> for this issue.
On ia64, include/setjmp.h ends up getting included indirectly from
libm-symbols.h, resulting in conflicting definitions of the STR macro
(also defined in libm-test-driver.c); I renamed the macros in
include/setjmp.h. (It's arguable that we should have common internal
headers used everywhere for stringizing and concatenation macros.)
Tested for x86_64 and x86, and with build-many-glibcs.py.
* math/bits/mathcalls.h
[__GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN]
(totalorder): Take pointer arguments.
[__GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN]
(totalordermag): Likewise.
* manual/arith.texi (totalorder): Likewise.
(totalorderf): Likewise.
(totalorderl): Likewise.
(totalorderfN): Likewise.
(totalorderfNx): Likewise.
(totalordermag): Likewise.
(totalordermagf): Likewise.
(totalordermagl): Likewise.
(totalordermagfN): Likewise.
(totalordermagfNx): Likewise.
* math/tgmath.h (__TGMATH_BINARY_REAL_RET_ONLY): Remove macro.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (totalorder): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (totalordermag): Likewise.
* math/Versions (GLIBC_2.31): Add totalorder, totalorderf,
totalorderl, totalordermag, totalordermagf, totalordermagl,
totalorderf32, totalorderf64, totalorderf32x, totalordermagf32,
totalordermagf64, totalordermagf32x, totalorderf64x,
totalordermagf64x, totalorderf128 and totalordermagf128.
* math/Makefile (libm-test-funcs-noauto): Add compat_totalorder
and compat_totalordermag.
(libm-test-funcs-compat): New variable.
(libm-tests-compat): Likewise.
(tests): Do not include compat tests.
(tests-internal): Add compat tests.
($(foreach t,$(libm-tests-base),
$(objpfx)$(t)-compat_totalorder.o)): Depend
on $(objpfx)libm-test-totalorder.c.
($(foreach t,$(libm-tests-base),
$(objpfx)$(t)-compat_totalordermag.o): Depend on
$(objpfx)libm-test-totalordermag.c.
(tgmath3-macros): Remove totalorder and totalordermag.
* math/libm-test-compat_totalorder.inc: New file.
* math/libm-test-compat_totalordermag.inc: Likewise.
* math/libm-test-driver.c (struct test_ff_i_data): Update comment.
(RUN_TEST_fpfp_b): New macro.
(RUN_TEST_LOOP_fpfp_b): Likewise.
* math/libm-test-totalorder.inc (totalorder_test_data): Use
TEST_fpfp_b.
(totalorder_test): Condition on [!COMPAT_TEST].
(do_test): Likewise.
* math/libm-test-totalordermag.inc (totalordermag_test_data): Use
TEST_fpfp_b.
(totalordermag_test): Condition on [!COMPAT_TEST].
(do_test): Likewise.
* math/gen-tgmath-tests.py (Tests.add_all_tests): Remove
totalorder and totalordermag.
* math/test-tgmath.c (NCALLS): Change to 132.
(F(compile_test)): Do not call totalorder or totalordermag.
(F(totalorder)): Remove.
(F(totalordermag)): Likewise.
* include/float.h (__STDC_WANT_IEC_60559_TYPES_EXT__): Do not
define if [__STDC_WANT_IEC_60559_TYPES_EXT__].
* include/setjmp.h [!_ISOMAC] (STR_HELPER): Rename to
SJSTR_HELPER.
[!_ISOMAC] (STR): Rename to SJSTR. Update call to STR_HELPER.
[!_ISOMAC] (TEST_SIZE): Update call to STR.
[!_ISOMAC] (TEST_ALIGN): Likewise.
[!_ISOMAC] (TEST_OFFSET): Likewise.
* sysdeps/ieee754/dbl-64/s_totalorder.c: Include <shlib-compat.h>
and <first-versions.h>.
(__totalorder): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/dbl-64/s_totalordermag.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermag): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalorder.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorder): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalordermag.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermag): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/float128/float128_private.h
(__totalorder_compatl): New macro.
(__totalordermag_compatl): Likewise.
* sysdeps/ieee754/flt-32/s_totalorderf.c: Include <shlib-compat.h>
and <first-versions.h>.
(__totalorderf): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/flt-32/s_totalordermagf.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagf): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-128/s_totalorderl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-128/s_totalordermagl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-128ibm/s_totalorderl.c: Include
<shlib-compat.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-128ibm/s_totalordermagl.c: Include
<shlib-compat.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-96/s_totalorderl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-96/s_totalordermagl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-opt/nldbl-totalorder.c (totalorderl): Take
pointer arguments.
* sysdeps/ieee754/ldbl-opt/nldbl-totalordermag.c (totalordermagl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/test-totalorderl-ldbl-128ibm.c
(do_test): Update calls to totalorderl and totalordermagl.
* sysdeps/ieee754/ldbl-96/test-totalorderl-ldbl-96.c (do_test):
Update calls to totalorderl and totalordermagl.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/csky/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/be/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/le/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
- The resulting binary difference on 32 bits architecture is
minimum. On i686-linux-gnu (with architecture optimization
routine removed) there is no different using logb benchtests
- It helps wordsize-64 architectures that use ldbl-opt.
- It add some code simplification with reduction of duplicated
implementations.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/ieee754/dbl-64/wordsize-64/s_logb.c: Move to ...
* sysdeps/ieee754/dbl-64/s_logb.c: ... here. Add work around for
powerpc32 integer 0 converting to -0.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
- math.h will use compiler builtin for gcc 4.4 when built without
-fsignaling-nans and the builtin is expanded inline for all
support architectures. As an example, there is no intra finite
call on libm for the architecture I checked, x86, arm, aarch64,
and powerpc.
- The resulting binary difference on 32 bits architecture is minimum
for the non hotspot symbol.
- It helps wordsize-64 architectures that use ldbl-opt.
- It add some code simplification with reduction of duplicated
implementations.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/ieee754/dbl-64/wordsize-64/s_finite.c: Move to ...
* sysdeps/ieee754/dbl-64/s_finite.c: ... here and format code.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
- math.h will use compiler builtin for gcc 4.4 when built without
-fsignaling-nans and the builtin is expanded inline for all
support architectures. As an example, there is no intra isinf
call on libm for the architecture I checked, x86, arm, aarch64,
and powerpc.
- The resulting binary difference on 32 bits architecture is minimum
for the non hotspot symbol.
- It helps wordsize-64 architectures that use ldbl-opt.
- It add some code simplification with reduction of duplicated
implementations.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/ieee754/dbl-64/wordsize-64/s_isinf.c: Move to ...
* sysdeps/ieee754/dbl-64/s_isinf.c: ... here and format code.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
- math.h will use compiler builtin for gcc 4.4 when built without
-fsignaling-nans and the builtin is expanded inline for all
support architectures. As an example, there is no intra isnan
call on libm for the architecture I checked, x86, arm, aarch64,
and powerpc.
- The resulting binary difference on 32 bits architecture is minimum
for the non hotspot symbol.
- It helps wordsize-64 architectures that use ldbl-opt.
- It add some code simplification with reduction of duplicated
implementations.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/ieee754/dbl-64/wordsize-64/s_isnan.c: Move to ...
* sysdeps/ieee754/dbl-64/s_isnan.c: ... here and format code.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
Complementing commit 4a06ceea33 ("sysdeps/ieee754/soft-fp: ignore
maybe-uninitialized with -O [BZ #19444]") and commit 27c5e756a2
("sysdeps/ieee754: prevent maybe-uninitialized errors with -O [BZ
#19444]") also fix compilation errors observed at -O1 in `__ddivl' and
`__fdivl' with GCC 9 and RISC-V targets:
In file included from ../soft-fp/soft-fp.h:318,
from ../sysdeps/ieee754/soft-fp/s_fdivl.c:27:
../sysdeps/ieee754/soft-fp/s_fdivl.c: In function '__fdivl':
../soft-fp/op-2.h:108:9: error: 'R_f1' may be used uninitialized in this function [-Werror=maybe-uninitialized]
108 | : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N)))) \
| ^
../sysdeps/ieee754/soft-fp/s_fdivl.c:37:14: note: 'R_f1' was declared here
37 | FP_DECL_Q (R);
| ^
../soft-fp/op-common.h:39:3: note: in expansion of macro '_FP_FRAC_DECL_2'
39 | _FP_FRAC_DECL_##wc (X)
| ^~~~~~~~~~~~~~
../soft-fp/quad.h:226:24: note: in expansion of macro '_FP_DECL'
226 | # define FP_DECL_Q(X) _FP_DECL (2, X)
| ^~~~~~~~
../sysdeps/ieee754/soft-fp/s_fdivl.c:37:3: note: in expansion of macro 'FP_DECL_Q'
37 | FP_DECL_Q (R);
| ^~~~~~~~~
../soft-fp/op-2.h:109:8: error: 'R_f0' may be used uninitialized in this function [-Werror=maybe-uninitialized]
109 | | X##_f0) != 0)); \
| ^
../sysdeps/ieee754/soft-fp/s_fdivl.c:37:14: note: 'R_f0' was declared here
37 | FP_DECL_Q (R);
| ^
../soft-fp/op-common.h:39:3: note: in expansion of macro '_FP_FRAC_DECL_2'
39 | _FP_FRAC_DECL_##wc (X)
| ^~~~~~~~~~~~~~
../soft-fp/quad.h:226:24: note: in expansion of macro '_FP_DECL'
226 | # define FP_DECL_Q(X) _FP_DECL (2, X)
| ^~~~~~~~
../sysdeps/ieee754/soft-fp/s_fdivl.c:37:3: note: in expansion of macro 'FP_DECL_Q'
37 | FP_DECL_Q (R);
| ^~~~~~~~~
In file included from ../soft-fp/soft-fp.h:318,
from ../sysdeps/ieee754/soft-fp/s_ddivl.c:31:
../sysdeps/ieee754/soft-fp/s_ddivl.c: In function '__ddivl':
../soft-fp/op-2.h:98:25: error: 'R_f1' may be used uninitialized in this function [-Werror=maybe-uninitialized]
98 | X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) \
| ^~
../sysdeps/ieee754/soft-fp/s_ddivl.c:41:14: note: 'R_f1' was declared here
41 | FP_DECL_Q (R);
| ^
../soft-fp/op-2.h:37:36: note: in definition of macro '_FP_FRAC_DECL_2'
37 | _FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT
| ^
../soft-fp/quad.h:226:24: note: in expansion of macro '_FP_DECL'
226 | # define FP_DECL_Q(X) _FP_DECL (2, X)
| ^~~~~~~~
../sysdeps/ieee754/soft-fp/s_ddivl.c:41:3: note: in expansion of macro 'FP_DECL_Q'
41 | FP_DECL_Q (R);
| ^~~~~~~~~
../soft-fp/op-2.h:101:17: error: 'R_f0' may be used uninitialized in this function [-Werror=maybe-uninitialized]
101 | : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \
| ^~
../sysdeps/ieee754/soft-fp/s_ddivl.c:41:14: note: 'R_f0' was declared here
41 | FP_DECL_Q (R);
| ^
../soft-fp/op-2.h:37:14: note: in definition of macro '_FP_FRAC_DECL_2'
37 | _FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT
| ^
../soft-fp/quad.h:226:24: note: in expansion of macro '_FP_DECL'
226 | # define FP_DECL_Q(X) _FP_DECL (2, X)
| ^~~~~~~~
../sysdeps/ieee754/soft-fp/s_ddivl.c:41:3: note: in expansion of macro 'FP_DECL_Q'
41 | FP_DECL_Q (R);
| ^~~~~~~~~
cc1: all warnings being treated as errors
make[2]: *** [.../sysd-rules:587: .../math/s_fdivl.o] Error 1
make[2]: *** Waiting for unfinished jobs....
cc1: all warnings being treated as errors
make[2]: *** [.../sysd-rules:587: .../math/s_ddivl.o] Error 1
This comes from cases in _FP_DIV that return a result described as
FP_CLS_ZERO or FP_CLS_INF and do not initialize the fractional part,
which is then operated on unconditionally in FP_TRUNC_COOKED before
being ignored by _FP_PACK_CANONICAL.
Clearly at this optimization level GCC cannot guarantee to be able to
determine that the fractional part is ultimately unused, so ignore the
error as with the earlier commits referred, letting compilation proceed.
[BZ #19444]
* sysdeps/ieee754/soft-fp/s_ddivl.c (__ddivl): Ignore errors
from `-Wmaybe-uninitialized'.
* sysdeps/ieee754/soft-fp/s_fdivl.c (__fdivl): Likewise.
This patch adds test cases for the compatibility versions of the
functions: err, errx, verr, verrx, warn, warnx, vwarn, vwarnx (from
err.h), error, and error_at_line (from error.h), when long double has
the same format as double (-mlong-double-64).
Tested for powerpc, powerpc64 and powerpc64le.
On platforms where long double may have the same format as double
(-mlong-double-64), error and error_at_line do not take that into
account and might produce wrong output if a long double conversion is
requested by the format string ('%Lf'). This patch adds compatibility
functions for this situation and redirects calls via header magic.
Tested for powerpc, powerpc64 and powerpc64le.
When support for long double format with 128-bits (-mlong-double-128)
was added for platforms where long double had the same format as double,
such as powerpc, compatibility versions for the functions listed in the
commit title were missed. Since the older format of long double can
still be used (with -mlong-double-64), using these functions with a
format string that requests the printing of long double variables will
produce wrong outputs.
This patch adds the missing compatibility functions and header magic to
redirect calls to them when -mlong-double-64 is in use.
Tested for powerpc, powerpc64 and powerpc64le.
The test case tst-ldbl-argp checks that the conversion specifier '%Lf'
correctly prints long double values with the default long double format
for a platform. This patch reuses the test case for long double with
the same format as double (-mlong-double-64).
Tested for powerpc, powerpc64 and powerpc64le.
The functions argp_error and argp_failure are missing support for
printing long double values when long double has the same format as
double. This patch adds the new functions __nldbl_argp_error and
__nldbl_argp_failure, as well as header magic to redirect calls to them
when -mlong-double-64 is in use.
Tested for powerpc, powerpc64 and powerpc64le.
One group of warnings seen with -Wextra is warnings for static or
inline not at the start of a declaration (-Wold-style-declaration).
This patch fixes various such cases for inline, ensuring it comes at
the start of the declaration (after any static). A common case of the
fix is "static inline <type> __always_inline"; the definition of
__always_inline starts with __inline, so the natural change is to
"static __always_inline <type>". Other cases of the warning may be
harder to fix (one pattern is a function definition that gets
rewritten to be static by an including file, "#define funcname static
wrapped_funcname" or similar), but it seems worth fixing these cases
with inline anyway.
Tested for x86_64.
* elf/dl-load.h (_dl_postprocess_loadcmd): Use __always_inline
before return type, without separate inline.
* elf/dl-tunables.c (maybe_enable_malloc_check): Likewise.
* elf/dl-tunables.h (tunable_is_name): Likewise.
* malloc/malloc.c (do_set_trim_threshold): Likewise.
(do_set_top_pad): Likewise.
(do_set_mmap_threshold): Likewise.
(do_set_mmaps_max): Likewise.
(do_set_mallopt_check): Likewise.
(do_set_perturb_byte): Likewise.
(do_set_arena_test): Likewise.
(do_set_arena_max): Likewise.
(do_set_tcache_max): Likewise.
(do_set_tcache_count): Likewise.
(do_set_tcache_unsorted_limit): Likewise.
* nis/nis_subr.c (count_dots): Likewise.
* nptl/allocatestack.c (advise_stack_range): Likewise.
* sysdeps/ieee754/dbl-64/s_sin.c (do_cos): Likewise.
(do_sin): Likewise.
(reduce_sincos): Likewise.
(do_sincos): Likewise.
* sysdeps/unix/sysv/linux/x86/elision-conf.c
(do_set_elision_enable): Likewise.
(TUNABLE_CALLBACK_FNDECL): Likewise.
With -O included in CFLAGS it fails to build with:
../sysdeps/ieee754/ldbl-96/e_jnl.c: In function '__ieee754_jnl':
../sysdeps/ieee754/ldbl-96/e_jnl.c:146:20: error: 'temp' may be used uninitialized in this function [-Werror=maybe-uninitialized]
b = invsqrtpi * temp / sqrtl (x);
~~~~~~~~~~^~~~~~
../sysdeps/ieee754/ldbl-96/e_jnl.c: In function '__ieee754_ynl':
../sysdeps/ieee754/ldbl-96/e_jnl.c:375:16: error: 'temp' may be used uninitialized in this function [-Werror=maybe-uninitialized]
b = invsqrtpi * temp / sqrtl (x);
~~~~~~~~~~^~~~~~
../sysdeps/ieee754/dbl-64/e_jn.c: In function '__ieee754_jn':
../sysdeps/ieee754/dbl-64/e_jn.c:113:20: error: 'temp' may be used uninitialized in this function [-Werror=maybe-uninitialized]
b = invsqrtpi * temp / sqrt (x);
~~~~~~~~~~^~~~~~
../sysdeps/ieee754/dbl-64/e_jn.c: In function '__ieee754_yn':
../sysdeps/ieee754/dbl-64/e_jn.c:320:16: error: 'temp' may be used uninitialized in this function [-Werror=maybe-uninitialized]
b = invsqrtpi * temp / sqrt (x);
~~~~~~~~~~^~~~~~
Build tested with Yocto for ARM, AARCH64, X86, X86_64, PPC, MIPS, MIPS64
with -O, -O1, -Os.
For AARCH64 it needs one more fix in locale for -Os:
https://sourceware.org/ml/libc-alpha/2018-09/msg00539.html
[BZ #19444]
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Use
__builtin_unreachable for default case in switch.
(__ieee754_yn): Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
(__ieee754_ynl): Likewise.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
(__ieee754_ynl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
(__ieee754_ynl): Likewise.
The only difference between noncompliant and C99-compliant scanf is
that the former accepts the archaic GNU extension '%as' (also %aS and
%a[...]) meaning to allocate space for the input string with malloc.
This extension conflicts with C99's use of %a as a format _type_
meaning to read a floating-point number; POSIX.1-2008 standardized
equivalent functionality using the modifier letter 'm' instead (%ms,
%mS, %m[...]).
The extension was already disabled in most conformance modes:
specifically, any mode that doesn't involve _GNU_SOURCE and _does_
involve either strict conformance to C99 or loose conformance to both
C99 and POSIX.1-2001 would get the C99-compliant scanf. With
compilers new enough to use -std=gnu11 instead of -std=gnu89, or
equivalent, that includes the default mode.
With this patch, we now provide C99-compliant scanf in all
configurations except when _GNU_SOURCE is defined *and*
__STDC_VERSION__ or __cplusplus (whichever is relevant) indicates
C89/C++98. This leaves the old scanf available under e.g. -std=c89
-D_GNU_SOURCE, but removes it from e.g. -std=gnu11 -D_GNU_SOURCE (it
was already not present under -std=gnu11 without -D_GNU_SOURCE) and
from -std=gnu89 without -D_GNU_SOURCE.
There needs to be an internal override so we can compile the
noncompliant scanf itself. This is the same problem we had when we
removed 'gets' from _GNU_SOURCE and it's dealt with the same way:
there's a new __GLIBC_USE symbol, DEPRECATED_SCANF, which defaults to
off under the appropriate conditions for external code, but can be
overridden by individual files within stdio.
We also run into problems with PLT bypass for internal uses of sscanf,
because libc_hidden_proto uses __REDIRECT and so does the logic in
stdio.h for choosing which implementation of scanf to use; __REDIRECT
isn't transitive, so include/stdio.h needs to bridge the gap with a
macro. As far as I can tell, sscanf is the only function in this
family that's internally called by unrelated code.
Finally, there are several tests in stdio-common that use the
extension. bug21.c is a regression test for a crash; it still
exercises the relevant code when changed to use %ms instead of %as.
scanf14.c through scanf17.c are more complicated since they are
actually testing the subtleties of the extension - under what
circumstances is 'a' treated as a modifier letter, etc. I changed all
of them to use %ms instead of %as as well, but duplicated scanf14.c
and scanf16.c as scanf14a.c and scanf16a.c. These still use %as and
are compiled with -std=gnu89 to access the old extension. A bunch of
diagnostic overrides and manual workarounds for the old stdio.h
behavior become unnecessary. Yay!
* include/features.h (__GLIBC_USE_DEPRECATED_SCANF): New __GLIBC_USE
parameter. Only use deprecated scanf when __USE_GNU is defined
and __STDC_VERSION__ is less than 199901L or __cplusplus is less
than 201103L, whichever is relevant for the language being compiled.
* libio/stdio.h, libio/bits/stdio-ldbl.h: Decide whether to redirect
scanf, fscanf, sscanf, vscanf, vfscanf, and vsscanf to their
__isoc99_ variants based only on __GLIBC_USE (DEPRECATED_SCANF).
* wcsmbs/wchar.h: wcsmbs/bits/wchar-ldbl.h: Likewise for
wscanf, fwscanf, swscanf, vwscanf, vfwscanf, and vswscanf.
* libio/iovsscanf.c
* libio/fwscanf.c
* libio/iovswscanf.c
* libio/swscanf.c
* libio/vscanf.c
* libio/vwscanf.c
* libio/wscanf.c
* stdio-common/fscanf.c
* stdio-common/scanf.c
* stdio-common/vfscanf.c
* stdio-common/vfwscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-compat.c
* sysdeps/ieee754/ldbl-opt/nldbl-fscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-fwscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-iovfscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-scanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-sscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-swscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-vfscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-vfwscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-vscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-vsscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-vswscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-vwscanf.c
* sysdeps/ieee754/ldbl-opt/nldbl-wscanf.c:
Override __GLIBC_USE_DEPRECATED_SCANF to 1.
* stdio-common/sscanf.c: Likewise. Remove ldbl_hidden_def for __sscanf.
* stdio-common/isoc99_sscanf.c: Add libc_hidden_def for __isoc99_sscanf.
* include/stdio.h: Provide libc_hidden_proto for __isoc99_sscanf,
not sscanf.
[!__GLIBC_USE (DEPRECATED_SCANF)]: Define sscanf as __isoc99_scanf
with a preprocessor macro.
* stdio-common/bug21.c, stdio-common/scanf14.c:
Use %ms instead of %as, %mS instead of %aS, %m[] instead of %a[];
remove DIAG_IGNORE_NEEDS_COMMENT for -Wformat.
* stdio-common/scanf16.c: Likewise. Add __attribute__ ((format (scanf)))
to xscanf, xfscanf, xsscanf.
* stdio-common/scanf14a.c: New copy of scanf14.c which still uses
%as, %aS, %a[]. Remove DIAG_IGNORE_NEEDS_COMMENT for -Wformat.
* stdio-common/scanf16a.c: New copy of scanf16.c which still uses
%as, %aS, %a[]. Add __attribute__ ((format (scanf))) to xscanf,
xfscanf, xsscanf.
* stdio-common/scanf15.c, stdio-common/scanf17.c: No need to
override feature selection macros or provide definitions of u_char etc.
* stdio-common/Makefile (tests): Add scanf14a and scanf16a.
(CFLAGS-scanf15.c, CFLAGS-scanf17.c): Remove.
(CFLAGS-scanf14a.c, CFLAGS-scanf16a.c): New. Compile these files
with -std=gnu89.
Add <sincosf_poly.h> and include it in s_sincosf.h to allow vectorized
sincosf_poly. Add x86 sincosf_poly.h to vectorize sincosf_poly. On
Broadwell, bench-sincosf shows:
Before After Improvement
max 160.273 114.198 40%
min 6.25 5.625 11%
mean 13.0325 10.6462 22%
Vectorized sincosf_poly shows
Before After Improvement
max 138.653 114.198 21%
min 5.004 5.625 -11%
mean 11.5934 10.6462 9%
Tested on x86-64 and i686 as well as with build-many-glibcs.py.
* sysdeps/ieee754/flt-32/s_sincosf.h: Include <sincosf_poly.h>.
(sincos_t, sincosf_poly, sinf_poly): Moved to ...
* sysdeps/ieee754/flt-32/sincosf_poly.h: Here. New file.
* sysdeps/x86/fpu/s_sincosf_data.c: New file.
* sysdeps/x86/fpu/sincosf_poly.h: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_sincosf-fma.c: Just include
<sysdeps/ieee754/flt-32/s_sincosf.c>.
The threshold value at which powf overflows depends on the rounding mode
and the current check did not take this into account. So when the result
was rounded away from zero it could become infinity without setting
errno to ERANGE.
Example: pow(0x1.7ac7cp+5, 23) is 0x1.fffffep+127 + 0.1633ulp
If the result goes above 0x1.fffffep+127 + 0.5ulp then errno is set,
which is fine in nearest rounding mode, but
powf(0x1.7ac7cp+5, 23) is inf in upward rounding mode
powf(-0x1.7ac7cp+5, 23) is -inf in downward rounding mode
and the previous implementation did not set errno in these cases.
The fix tries to avoid affecting the common code path or calling a
function that may introduce a stack frame, so float arithmetics is used
to check the rounding mode and the threshold is selected accordingly.
[BZ #23961]
* math/auto-libm-test-in: Add new test case.
* math/auto-libm-test-out-pow: Regenerated.
* sysdeps/ieee754/flt-32/e_powf.c (__powf): Fix overflow check.
After all that prep work, nldbl-compat.c can now use PRINTF_LDBL_IS_DBL
instead of __no_long_double to control the behavior of printf-like
functions; this is the last thing we needed __no_long_double for, so it
can go away entirely.
Tested for powerpc and powerpc64le.
The _chk variants of all of the printf functions become much simpler.
This is the last thing that we needed _IO_acquire_lock_clear_flags2
for, so it can go as well. I took the opportunity to make the headers
included and the names of all local variables consistent across all the
affected files.
Since we ultimately want to get rid of __no_long_double as well, it
must be possible to get all of the nontrivial effects of the _chk
functions by calling the _internal functions with appropriate flags.
For most of the __(v)xprintf_chk functions, this is covered by
PRINTF_FORTIFY plus some up-front argument checks that can be
duplicated. However, __(v)sprintf_chk installs a custom jump table so
that it can crash instead of overflowing the output buffer. This
functionality is moved to __vsprintf_internal, which now has a
'maxlen' argument like __vsnprintf_internal; to get the unsafe
behavior of ordinary (v)sprintf, pass -1 for that argument.
obstack_printf_chk and obstack_vprintf_chk are no longer in the same
file.
As a side-effect of the unification of both fortified and non-fortified
vdprintf initialization, this patch fixes bug 11319 for __dprintf_chk
and __vdprintf_chk, which was previously fixed only for dprintf and
vdprintf by the commit
commit 7ca890b88e
Author: Ulrich Drepper <drepper@redhat.com>
Date: Wed Feb 24 16:07:57 2010 -0800
Fix reporting of I/O errors in *dprintf functions.
This patch adds a test case to avoid regressions.
Tested for powerpc and powerpc64le.
__nldbl___vsyslog_chk will ultimately want to pass PRINTF_LDBL_IS_DBL
down to __vfprintf_internal *as well as* possibly setting PRINTF_FORTIFY.
To make that possible, we need a __vsyslog_internal that takes the
same flags as printf. The code in misc/syslog.c does also get a
little simpler.
Tested for powerpc and powerpc64le.
There are a lot more printf variants than there are scanf variants,
and the code for setting up and tearing down their custom FILE
variants around the call to __vf(w)printf is more complicated and
variable. Therefore, I have added _internal versions of all the
v*printf variants, rather than introducing helper routines so that
they can all directly call __vf(w)printf_internal, as was done with
scanf.
As with the scanf changes, in this patch the _internal functions still
look at the environmental mode bits and all callers pass 0 for the
flags parameter.
Several of the affected public functions had _IO_ name aliases that
were not exported (but, in one case, appeared in libio.h anyway);
I was originally planning to leave them as aliases to avoid having
to touch internal callers, but it turns out ldbl_*_alias only work
for exported symbols, so they've all been removed instead. It also
turns out there were hardly any internal callers. _IO_vsprintf and
_IO_vfprintf *are* exported, so those two stick around.
Summary for the changes to each of the affected symbols:
_IO_vfprintf, _IO_vsprintf:
All internal calls removed, thus the internal declarations, as well
as uses of libc_hidden_proto and libc_hidden_def, were also removed.
The external symbol is now exposed via uses of ldbl_strong_alias
to __vfprintf_internal and __vsprintf_internal, respectively.
_IO_vasprintf, _IO_vdprintf, _IO_vsnprintf,
_IO_vfwprintf, _IO_vswprintf,
_IO_obstack_vprintf, _IO_obstack_printf:
All internal calls removed, thus declaration in internal headers
were also removed. They were never exported, so there are no
aliases tying them to the internal functions. I.e.: entirely gone.
__vsnprintf:
Internal calls were always preceded by macros such as
#define __vsnprintf _IO_vsnprintf, and
#define __vsnprintf vsnprintf
The macros were removed and their uses replaced with calls to the
new internal function __vsnprintf_internal. Since there were no
internal calls, the internal declaration was also removed. The
external symbol is preserved with ldbl_weak_alias to ___vsnprintf.
__vfwprintf:
All internal calls converted into calls to __vfwprintf_internal,
thus the internal declaration was removed. The function is now a
wrapper that calls __vfwprintf_internal. The external symbol is
preserved.
__vswprintf:
Similarly, but no external symbol.
__vasprintf, __vdprintf, __vfprintf, __vsprintf:
New internal wrappers. Not exported.
vasprintf, vdprintf, vfprintf, vsprintf, vsnprintf,
vfwprintf, vswprintf,
obstack_vprintf, obstack_printf:
These functions used to be aliases to the respective _IO_* function,
they are now aliases to their respective __* functions.
Tested for powerpc and powerpc64le.
Change the callers of __vfscanf_internal and __vfwscanf_internal that
want to treat 'long double' as another name for 'double' (all of which
happen to be in sysdeps/ieee754/ldbl-opt/nldbl-compat.c) to communicate
this via the new flags argument, instead of the per-thread variable
__no_long_double and its __ldbl_is_dbl wrapper macro.
Tested for powerpc and powerpc64le.
There are two flags currently defined: SCANF_LDBL_IS_DBL is the mode
used by __nldbl_ scanf variants, and SCANF_ISOC99_A is the mode used
by __isoc99_ scanf variants. In this patch, the new functions honor
these flag bits if they're set, but they still also look at the
corresponding bits of environmental state, and callers all pass zero.
The new functions do *not* have the "errp" argument possessed by
_IO_vfscanf and _IO_vfwscanf. All internal callers passed NULL for
that argument. External callers could theoretically exist, so I
preserved wrappers, but they are flagged as compat symbols and they
don't preserve the three-way distinction among types of errors that
was formerly exposed. These functions probably should have been in
the list of deprecated _IO_ symbols in 2.27 NEWS -- they're not just
aliases for vfscanf and vfwscanf.
(It was necessary to introduce ldbl_compat_symbol for _IO_vfscanf.
Please check that part of the patch very carefully, I am still not
confident I understand all of the details of ldbl-opt.)
This patch also introduces helper inlines in libio/strfile.h that
encapsulate the process of initializing an _IO_strfile object for
reading. This allows us to call __vfscanf_internal directly from
sscanf, and __vfwscanf_internal directly from swscanf, without
duplicating the initialization code. (Previously, they called their
v-counterparts, but that won't work if we want to control *both* C99
mode and ldbl-is-dbl mode using the flags argument to__vfscanf_internal.)
It's still a little awkward, especially for wide strfiles, but it's
much better than what we had.
Tested for powerpc and powerpc64le.
Introduce new pow symbol version that doesn't do SVID compatible error
handling. The standard errno and fp exception based error handling is
inline in the new code and does not have significant overhead.
The wrapper is disabled for sysdeps/ieee754/dbl-64 by using empty
w_pow.c and enabled for targets with their own pow implementation or
ifunc dispatch on __ieee754_pow by including math/w_pow.c.
The compatibility symbol version still uses the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously powl was an alias of pow, now it points to
the compatibility symbol with the wrapper, because it still need the
SVID compatible error handling. This affects NO_LONG_DOUBLE (e.g. arm)
and LONG_DOUBLE_COMPAT (e.g. alpha) targets as well.
The __pow_finite symbol is now an alias of pow. Both __pow_finite and
pow set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
On x86_64 #include <math.h> was added before macro definitions that
may affect that header.
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add pow.
* math/w_pow_compat.c (__pow_compat): Change to versioned compat
symbol.
* math/w_pow.c: New file.
* sysdeps/i386/fpu/w_pow.c: New file.
* sysdeps/ia64/fpu/e_pow.S: Add versioned symbols.
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Rename to __pow
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_pow.c: New file.
* sysdeps/m68k/m680x0/fpu/w_pow.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
* sysdeps/x86_64/fpu/multiarch/e_pow-fma.c (__ieee754_pow): Rename to
__pow.
* sysdeps/x86_64/fpu/multiarch/e_pow-fma4.c (__ieee754_pow): Likewise.
* sysdeps/x86_64/fpu/multiarch/e_pow.c (__ieee754_pow): Likewise.
* sysdeps/x86_64/fpu/multiarch/w_pow.c: New file.
Introduce new log2 symbol version that doesn't do SVID compatible error
handling. The standard errno and fp exception based error handling is
inline in the new code and does not have significant overhead.
The wrapper is disabled for sysdeps/ieee754/dbl-64 by using empty
w_log2.c and enabled for targets with their own log2 implementation by
including math/w_log2.c.
The compatibility symbol version still uses the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously log2l was an alias of log2, now it points to
the compatibility symbol with the wrapper, because it still need the
SVID compatible error handling. This affects NO_LONG_DOUBLE (e.g. arm)
and LONG_DOUBLE_COMPAT (e.g. alpha) targets as well.
The __log2_finite symbol is now an alias of log2. Both __log2_finite
and log2 set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add log2.
* math/w_log2_compat.c (__log2_compat): Change to versioned compat
symbol.
* math/w_log2.c: New file.
* sysdeps/i386/fpu/w_log2.c: New file.
* sysdeps/ia64/fpu/e_log2.S: Add versioned symbols.
* sysdeps/ieee754/dbl-64/e_log2.c (__ieee754_log2): Rename to __log2
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_log2.c: New file.
* sysdeps/m68k/m680x0/fpu/w_log2.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
Introduce new log symbol version that doesn't do SVID compatible error
handling. The standard errno and fp exception based error handling is
inline in the new code and does not have significant overhead.
The wrapper is disabled for sysdeps/ieee754/dbl-64 by using empty
w_log.c and enabled for targets with their own log implementation by
including math/w_log.c.
The compatibility symbol version still uses the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously logl was an alias of log, now it points to
the compatibility symbol with the wrapper, because it still need the
SVID compatible error handling. This affects NO_LONG_DOUBLE (e.g. arm)
and LONG_DOUBLE_COMPAT (e.g. alpha) targets as well.
The __log_finite symbol is now an alias of log. Both __log_finite and
log set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
On x86_64 #include <math.h> was added before macro definitions that may
affect that header.
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add log.
* math/w_log_compat.c (__log_compat): Change to versioned compat
symbol.
* math/w_log.c: New file.
* sysdeps/i386/fpu/w_log.c: New file.
* sysdeps/ia64/fpu/e_log.S: Update.
* sysdeps/ieee754/dbl-64/e_log.c (__ieee754_log): Rename to __log
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_log.c: New file.
* sysdeps/m68k/m680x0/fpu/w_log.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
* sysdeps/x86_64/fpu/multiarch/e_log-avx.c (__ieee754_log): Rename to
__log.
* sysdeps/x86_64/fpu/multiarch/e_log-fma.c (__ieee754_log): Likewise.
* sysdeps/x86_64/fpu/multiarch/e_log-fma4.c (__ieee754_log): Likewise.
* sysdeps/x86_64/fpu/multiarch/e_log.c (__ieee754_log): Likewise.
* sysdeps/x86_64/fpu/multiarch/w_log.c: New file.
Introduce new exp and exp2 symbol version that don't do SVID compatible
error handling. The standard errno and fp exception based error handling
is inline in the new code and does not have significant overhead.
The double precision wrappers are disabled for sysdeps/ieee754/dbl-64
by using empty w_exp.c and w_exp2.c files, the math/w_exp.c and
math/w_exp2.c files use the wrapper template and can be included by
targets that have their own exp and exp2 implementations or use ifunc
on the glibc internal __ieee754_exp symbol.
The compatibility symbol versions still use the wrapper with SVID error
handling around the new code. There is no new symbol version nor
compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
On targets where previously expl and exp2l were aliases of exp and exp2,
now they point to the compatibility symbols with the wrapper, because
they still need the SVID compatible error handling. This affects
NO_LONG_DOUBLE (e.g arm) and LONG_DOUBLE_COMPAT (e.g. alpha) targets
as well.
The _finite symbols are now aliases of the standard symbols (they have
no performance advantage anymore). Both the standard symbols and
_finite symbols set errno and thus not const functions.
The ia64 asm is changed so the compat and new symbol versions map to the
same address.
On x86_64 #include <math.h> was added before macro definitions that may
affect that header (the new macro name is __exp instead of __ieee754_exp
which breaks some math.h macros).
Tested with build-many-glibcs.py.
* math/Versions (GLIBC_2.29): Add exp and exp2.
* math/w_exp2_compat.c (__exp2_compat): Change to versioned compat
symbol, handle NO_LONG_DOUBLE and LONG_DOUBLE_COMPAT explicitly.
* math/w_exp_compat.c (__exp_compat): Likewise.
* math/w_exp.c: New file.
* math/w_exp2.c: New file.
* sysdeps/i386/fpu/w_exp.c: New file.
* sysdeps/i386/fpu/w_exp2.c: New file.
* sysdeps/ia64/fpu/e_exp.S: Add versioned symbols.
* sysdeps/ia64/fpu/e_exp2.S: Likewise.
* sysdeps/ieee754/dbl-64/e_exp.c (__ieee754_exp): Rename to __exp
and add necessary aliases.
* sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Rename to __exp2
and add necessary aliases.
* sysdeps/ieee754/dbl-64/w_exp.c: New file.
* sysdeps/ieee754/dbl-64/w_exp2.c: New file.
* sysdeps/m68k/m680x0/fpu/w_exp.c: New file.
* sysdeps/m68k/m680x0/fpu/w_exp2.c: New file.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Update.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Update.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Update.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update.
* sysdeps/x86_64/fpu/multiarch/e_exp-avx.c (__exp1): Remove.
(__ieee754_exp): Rename to __exp.
* sysdeps/x86_64/fpu/multiarch/e_exp-fma.c (__exp1): Remove.
(__ieee754_exp): Rename to __exp.
* sysdeps/x86_64/fpu/multiarch/e_exp-fma4.c (__exp1): Remove.
(__ieee754_exp): Rename to __exp.
* sysdeps/x86_64/fpu/multiarch/e_exp.c (__ieee754_exp): Rename to
__exp.
* sysdeps/x86_64/fpu/multiarch/w_exp.c: New file.
On platforms where long double used to have the same format as double,
but later switched to a different format (alpha, s390, sparc, and
powerpc), accessing the older behavior is possible and it happens via
__nldbl_* functions (not on the API, but accessible from header
redirection and from compat symbols). These functions write to the
global flag __ldbl_is_dbl, which tells other functions that long double
variables should be handled as double. This patch takes the first step
towards removing this global flag and creates __vstrfmon_l_internal,
which takes an explicit flags parameter.
This change arguably makes the generated code slightly worse on
architectures where __ldbl_is_dbl is never true; right now, on those
architectures, it's a compile-time constant; after this change, the
compiler could theoretically prove that __vstrfmon_l_internal was
never called with a nonzero flags argument, but it would probably need
LTO to do it. This is not performance critical code and I tend to
think that the maintainability benefits of removing action at a
distance are worth it. However, we _could_ wrap the runtime flag
check with a macro that was defined to ignore its argument and always
return false on architectures where __ldbl_is_dbl is never true, if
people think the codegen benefits are important.
Tested for powerpc and powerpc64le.
The redirection of built-in functions such as sqrt in include/math.h
applies when the wrappers for those functions in libnldbl_nonshared.a
are built, resulting in references to internal names such as
__ieee754_sqrt that aren't actually exported from the shared libm.
(This applies for sqrt in 2.28, also for the round-to-integer
functions in current master because of my changes there.) This patch
arranges for NO_MATH_REDIRECT to be used for all the affected
functions, and adds a test for those functions in
libnldbl_nonshared.a.
(We could of course choose to obsolete libnldbl_nonshared.a and
require that people building with -mlong-double-64 either include the
relevant headers and have a compiler supporting asm redirection, or
have some other means of achieving that redirection at compile time if
not including those headers. But while we have libnldbl_nonshared.a,
it seems appropriate to fix such bugs in it.)
Tested for powerpc, and with build-many-glibcs.py.
[BZ #23735]
* sysdeps/ieee754/ldbl-opt/nldbl-compat.h (NO_MATH_REDIRECT):
Define.
* sysdeps/ieee754/ldbl-opt/test-nldbl-redirect.c: New file.
* sysdeps/ieee754/ldbl-opt/Makefile [$(subdir) = math] (tests):
Add test-nldbl-redirect.
[$(subdir) = math] (CFLAGS-test-nldbl-redirect.c): New variable.
[$(subdir) = math] ($(objpfx)test-nldbl-redirect): Depend on
$(objpfx)libnldbl_nonshared.a.
* with -O, -O1, -Os it fails with:
In file included from ../soft-fp/soft-fp.h:318,
from ../sysdeps/ieee754/soft-fp/s_fdiv.c:28:
../sysdeps/ieee754/soft-fp/s_fdiv.c: In function '__fdiv':
../soft-fp/op-2.h:98:25: error: 'R_f1' may be used uninitialized in this function [-Werror=maybe-uninitialized]
X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) \
^~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:14: note: 'R_f1' was declared here
FP_DECL_D (R);
^
../soft-fp/op-2.h:37:36: note: in definition of macro '_FP_FRAC_DECL_2'
_FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT
^
../soft-fp/double.h:95:24: note: in expansion of macro '_FP_DECL'
# define FP_DECL_D(X) _FP_DECL (2, X)
^~~~~~~~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:3: note: in expansion of macro 'FP_DECL_D'
FP_DECL_D (R);
^~~~~~~~~
../soft-fp/op-2.h:101:17: error: 'R_f0' may be used uninitialized in this function [-Werror=maybe-uninitialized]
: (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \
^~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:14: note: 'R_f0' was declared here
FP_DECL_D (R);
^
../soft-fp/op-2.h:37:14: note: in definition of macro '_FP_FRAC_DECL_2'
_FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT
^
../soft-fp/double.h:95:24: note: in expansion of macro '_FP_DECL'
# define FP_DECL_D(X) _FP_DECL (2, X)
^~~~~~~~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:3: note: in expansion of macro 'FP_DECL_D'
FP_DECL_D (R);
^~~~~~~~~
Build tested with Yocto for ARM, AARCH64, X86, X86_64, PPC, MIPS, MIPS64
with -O, -O1, -Os.
For AARCH64 it needs one more fix in locale for -Os.
[BZ #19444]
* sysdeps/ieee754/soft-fp/s_fdiv.c: Include <libc-diag.h> and use
DIAG_PUSH_NEEDS_COMMENT, DIAG_IGNORE_NEEDS_COMMENT and
DIAG_POP_NEEDS_COMMENT to disable -Wmaybe-uninitialized.
After my changes to move various macros, inlines and other content
from math_private.h to more specific headers, many files including
math_private.h no longer need to do so. Furthermore, since the
optimized inlines of various functions have been moved to
include/fenv.h or replaced by use of function names GCC inlines
automatically, a missing math_private.h include where one is
appropriate will reliably cause a build failure rather than possibly
causing code to be less well optimized while still building
successfully. Thus, this patch removes includes of math_private.h
that are now unnecessary. In the case of two RISC-V files, the
include is replaced by one of stdbool.h because the files in question
were relying on math_private.h to get a definition of bool.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* math/fromfp.h: Do not include <math_private.h>.
* math/s_cacosh_template.c: Likewise.
* math/s_casin_template.c: Likewise.
* math/s_casinh_template.c: Likewise.
* math/s_ccos_template.c: Likewise.
* math/s_cproj_template.c: Likewise.
* math/s_fdim_template.c: Likewise.
* math/s_fmaxmag_template.c: Likewise.
* math/s_fminmag_template.c: Likewise.
* math/s_iseqsig_template.c: Likewise.
* math/s_ldexp_template.c: Likewise.
* math/s_nextdown_template.c: Likewise.
* math/w_log1p_template.c: Likewise.
* math/w_scalbln_template.c: Likewise.
* sysdeps/aarch64/fpu/feholdexcpt.c: Likewise.
* sysdeps/aarch64/fpu/fesetround.c: Likewise.
* sysdeps/aarch64/fpu/fgetexcptflg.c: Likewise.
* sysdeps/aarch64/fpu/ftestexcept.c: Likewise.
* sysdeps/aarch64/fpu/s_llrint.c: Likewise.
* sysdeps/aarch64/fpu/s_llrintf.c: Likewise.
* sysdeps/aarch64/fpu/s_lrint.c: Likewise.
* sysdeps/aarch64/fpu/s_lrintf.c: Likewise.
* sysdeps/i386/fpu/s_atanl.c: Likewise.
* sysdeps/i386/fpu/s_f32xaddf64.c: Likewise.
* sysdeps/i386/fpu/s_f32xsubf64.c: Likewise.
* sysdeps/i386/fpu/s_fdim.c: Likewise.
* sysdeps/i386/fpu/s_logbl.c: Likewise.
* sysdeps/i386/fpu/s_rintl.c: Likewise.
* sysdeps/i386/fpu/s_significandl.c: Likewise.
* sysdeps/ia64/fpu/s_matherrf.c: Likewise.
* sysdeps/ia64/fpu/s_matherrl.c: Likewise.
* sysdeps/ieee754/dbl-64/s_atan.c: Likewise.
* sysdeps/ieee754/dbl-64/s_cbrt.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fma.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fmaf.c: Likewise.
* sysdeps/ieee754/flt-32/s_cbrtf.c: Likewise.
* sysdeps/ieee754/k_standardf.c: Likewise.
* sysdeps/ieee754/k_standardl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_copysignl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_finitel.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_fpclassifyl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_isinfl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_isnanl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_signbitl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_cbrtl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
* sysdeps/ieee754/s_signgam.c: Likewise.
* sysdeps/powerpc/power5+/fpu/s_modf.c: Likewise.
* sysdeps/powerpc/power5+/fpu/s_modff.c: Likewise.
* sysdeps/powerpc/power7/fpu/s_logbf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_ceil.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_floor.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_nearbyint.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_round.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_roundeven.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_trunc.c: Likewise.
* sysdeps/riscv/rvd/s_finite.c: Likewise.
* sysdeps/riscv/rvd/s_fmax.c: Likewise.
* sysdeps/riscv/rvd/s_fmin.c: Likewise.
* sysdeps/riscv/rvd/s_fpclassify.c: Likewise.
* sysdeps/riscv/rvd/s_isinf.c: Likewise.
* sysdeps/riscv/rvd/s_isnan.c: Likewise.
* sysdeps/riscv/rvd/s_issignaling.c: Likewise.
* sysdeps/riscv/rvf/fegetround.c: Likewise.
* sysdeps/riscv/rvf/feholdexcpt.c: Likewise.
* sysdeps/riscv/rvf/fesetenv.c: Likewise.
* sysdeps/riscv/rvf/fesetround.c: Likewise.
* sysdeps/riscv/rvf/feupdateenv.c: Likewise.
* sysdeps/riscv/rvf/fgetexcptflg.c: Likewise.
* sysdeps/riscv/rvf/ftestexcept.c: Likewise.
* sysdeps/riscv/rvf/s_ceilf.c: Likewise.
* sysdeps/riscv/rvf/s_finitef.c: Likewise.
* sysdeps/riscv/rvf/s_floorf.c: Likewise.
* sysdeps/riscv/rvf/s_fmaxf.c: Likewise.
* sysdeps/riscv/rvf/s_fminf.c: Likewise.
* sysdeps/riscv/rvf/s_fpclassifyf.c: Likewise.
* sysdeps/riscv/rvf/s_isinff.c: Likewise.
* sysdeps/riscv/rvf/s_isnanf.c: Likewise.
* sysdeps/riscv/rvf/s_issignalingf.c: Likewise.
* sysdeps/riscv/rvf/s_nearbyintf.c: Likewise.
* sysdeps/riscv/rvf/s_roundevenf.c: Likewise.
* sysdeps/riscv/rvf/s_roundf.c: Likewise.
* sysdeps/riscv/rvf/s_truncf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_rint.c: Include <stdbool.h> instead of
<math_private.h>.
* sysdeps/riscv/rvf/s_rintf.c: Likewise.
Continuing the move to use, within libm, public names for libm
functions that can be inlined as built-in functions on many
architectures, this patch moves calls to __round functions to call the
corresponding round names instead, with asm redirection to __round
when the calls are not inlined.
An additional complication arises in
sysdeps/ieee754/ldbl-128ibm/e_expl.c, where a call to roundl, with the
result converted to int, gets converted by the compiler to call
lroundl in the case of 32-bit long, so resulting in localplt test
failures. It's logically correct to let the compiler make such an
optimization; an appropriate asm redirection of lroundl to __lroundl
is thus added to that file (it's not needed anywhere else).
Tested for x86_64, and with build-many-glibcs.py.
* include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ &&
__FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (round): Redirect
using MATH_REDIRECT.
* sysdeps/aarch64/fpu/s_round.c: Define NO_MATH_REDIRECT before
header inclusion.
* sysdeps/aarch64/fpu/s_roundf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_round.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_round.c: Likewise.
* sysdeps/ieee754/float128/s_roundf128.c: Likewise.
* sysdeps/ieee754/flt-32/s_roundf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_roundl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_roundl.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_round.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_roundf.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_round.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_roundf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_round.c: Likewise.
* sysdeps/riscv/rvf/s_roundf.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_roundl.c: Likewise.
(round): Redirect to __round.
(__roundl): Call round instead of __round.
* sysdeps/powerpc/fpu/math_private.h [_ARCH_PWR5X] (__round):
Remove macro.
[_ARCH_PWR5X] (__roundf): Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c (gamma_positive): Use round
functions instead of __round variants.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (gammaf_positive): Likewise.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (gammal_positive):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (gammal_positive):
Likewise.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (gammal_positive):
Likewise.
* sysdeps/x86/fpu/powl_helper.c (__powl_helper): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_expl.c (lroundl): Redirect to
__lroundl.
(__ieee754_expl): Call roundl instead of __roundl.
The algorithm is exp(y * log(x)), where log(x) is computed with about
1.3*2^-68 relative error (1.5*2^-68 without fma), returning the result
in two doubles, and the exp part uses the same algorithm (and lookup
tables) as exp, but takes the input as two doubles and a sign (to handle
negative bases with odd integer exponent). The __exp1 internal symbol
is no longer necessary.
There is separate code path when fma is not available but the worst case
error is about 0.54 ULP in both cases. The lookup table and consts for
log are 4168 bytes. The .rodata+.text is decreased by 37908 bytes on
aarch64. The non-nearest rounding error is less than 1 ULP.
Improvements on Cortex-A72 compared to current glibc master:
pow thruput: 2.40x in [0.01 11.1]x[0.01 11.1]
pow latency: 1.84x in [0.01 11.1]x[0.01 11.1]
Tested on
aarch64-linux-gnu (defined __FP_FAST_FMA, TOINT_INTRINSICS) and
arm-linux-gnueabihf (!defined __FP_FAST_FMA, !TOINT_INTRINSICS) and
x86_64-linux-gnu (!defined __FP_FAST_FMA, !TOINT_INTRINSICS) and
powerpc64le-linux-gnu (defined __FP_FAST_FMA, !TOINT_INTRINSICS) targets.
* NEWS: Mention pow improvements.
* math/Makefile (type-double-routines): Add e_pow_log_data.
* sysdeps/generic/math_private.h (__exp1): Remove.
* sysdeps/i386/fpu/e_pow_log_data.c: New file.
* sysdeps/ia64/fpu/e_pow_log_data.c: New file.
* sysdeps/ieee754/dbl-64/Makefile (CFLAGS-e_pow.c): Allow fma
contraction.
* sysdeps/ieee754/dbl-64/e_exp.c (__exp1): Remove.
(exp_inline): Remove.
(__ieee754_exp): Only single double input is handled.
* sysdeps/ieee754/dbl-64/e_pow.c: Rewrite.
* sysdeps/ieee754/dbl-64/e_pow_log_data.c: New file.
* sysdeps/ieee754/dbl-64/math_config.h (issignaling_inline): Define.
(__pow_log_data): Define.
* sysdeps/ieee754/dbl-64/upow.h: Remove.
* sysdeps/ieee754/dbl-64/upow.tbl: Remove.
* sysdeps/m68k/m680x0/fpu/e_pow_log_data.c: New file.
* sysdeps/x86_64/fpu/multiarch/Makefile (CFLAGS-e_pow-fma.c): Allow fma
contraction.
(CFLAGS-e_pow-fma4.c): Likewise.
The ldbl-128ibm implementations of ceill and floorl call the
corresponding double functions. This patch fixes those
implementations to call those functions as ceil and floor rather than
as __ceil and __floor, so that the proper inlining takes place when
possible, while including local asm redirections for when the
functions are not inlined since NO_MATH_REDIRECT applies to the double
functions as well as to the long double ones.
Tested with build-many-glibcs.py for all its powerpc configurations.
* sysdeps/ieee754/ldbl-128ibm/s_ceill.c (ceil): Redirect to
__ceil.
(__ceill): Call ceil instead of __ceil.
* sysdeps/ieee754/ldbl-128ibm/s_floorl.c (floor): Redirect to
__floor.
(__floorl): Call floor instead of __floor.
Continuing the move to use, within libm, public names for libm
functions that can be inlined as built-in functions on many
architectures, this patch moves calls to __rint functions to call the
corresponding rint names instead, with asm redirection to __rint when
the calls are not inlined. The x86_64 math_private.h is removed as no
longer useful after this patch.
This patch is relative to a tree with my floor patch
<https://sourceware.org/ml/libc-alpha/2018-09/msg00148.html> applied,
and much the same considerations arise regarding possibly replacing an
IFUNC call with a direct inline expansion.
Tested for x86_64, and with build-many-glibcs.py.
* include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ &&
__FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (rint): Redirect
using MATH_REDIRECT.
* sysdeps/aarch64/fpu/s_rint.c: Define NO_MATH_REDIRECT before
header inclusion.
* sysdeps/aarch64/fpu/s_rintf.c: Likewise.
* sysdeps/alpha/fpu/s_rint.c: Likewise.
* sysdeps/alpha/fpu/s_rintf.c: Likewise.
* sysdeps/i386/fpu/s_rintl.c: Likewise.
* sysdeps/ieee754/dbl-64/s_rint.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_rint.c: Likewise.
* sysdeps/ieee754/float128/s_rintf128.c: Likewise.
* sysdeps/ieee754/flt-32/s_rintf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_rintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_rintl.c: Likewise.
* sysdeps/m68k/coldfire/fpu/s_rint.c: Likewise.
* sysdeps/m68k/coldfire/fpu/s_rintf.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_rint.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_rintf.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_rintl.c: Likewise.
* sysdeps/powerpc/fpu/s_rint.c: Likewise.
* sysdeps/powerpc/fpu/s_rintf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_rint.c: Likewise.
* sysdeps/riscv/rvf/s_rintf.c: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_rint.c: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_rintf.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_rint.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_rintf.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_rint.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_rintf.c: Likewise.
* sysdeps/x86_64/fpu/math_private.h: Remove file.
* math/e_scalb.c (invalid_fn): Use rint functions instead of
__rint variants.
* math/e_scalbf.c (invalid_fn): Likewise.
* math/e_scalbl.c (invalid_fn): Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c (__ieee754_gamma_r):
Likewise.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (__ieee754_gammaf_r):
Likewise.
* sysdeps/ieee754/k_standard.c (__kernel_standard): Likewise.
* sysdeps/ieee754/k_standardl.c (__kernel_standard_l): Likewise.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/powerpc/powerpc32/fpu/s_llrint.c (__llrint): Likewise.
* sysdeps/powerpc/powerpc32/fpu/s_llrintf.c (__llrintf): Likewise.
Similar to the changes that were made to call sqrt functions directly
in glibc, instead of __ieee754_sqrt variants, so that the compiler
could inline them automatically without needing special inline
definitions in lots of math_private.h headers, this patch makes libm
code call floor functions directly instead of __floor variants,
removing the inlines / macros for x86_64 (SSE4.1) and powerpc
(POWER5).
The redirection used to ensure that __ieee754_sqrt does still get
called when the compiler doesn't inline a built-in function expansion
is refactored so it can be applied to other functions; the refactoring
is arranged so it's not limited to unary functions either (it would be
reasonable to use this mechanism for copysign - removing the inline in
math_private_calls.h but also eliminating unnecessary local PLT entry
use in the cases (powerpc soft-float and e500v1, for IBM long double)
where copysign calls don't get inlined).
The point of this change is that more architectures can get floor
calls inlined where they weren't previously (AArch64, for example),
without needing special inline definitions in their math_private.h,
and existing such definitions in math_private.h headers can be
removed.
Note that it's possible that in some cases an inline may be used where
an IFUNC call was previously used - this is the case on x86_64, for
example. I think the direct calls to floor are still appropriate; if
there's any significant performance cost from inline SSE2 floor
instead of an IFUNC call ending up with SSE4.1 floor, that indicates
that either the function should be doing something else that's faster
than using floor at all, or it should itself have IFUNC variants, or
that the compiler choice of inlining for generic tuning should change
to allow for the possibility that, by not inlining, an SSE4.1 IFUNC
might be called at runtime - but not that glibc should avoid calling
floor internally. (After all, all the same considerations would apply
to any user program calling floor, where it might either be inlined or
left as an out-of-line call allowing for a possible IFUNC.)
Tested for x86_64, and with build-many-glibcs.py.
* include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ &&
__FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT):
New macro.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (MATH_REDIRECT_LDBL): Likewise.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (MATH_REDIRECT_F128): Likewise.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (MATH_REDIRECT_UNARY_ARGS): Likewise.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (sqrt): Redirect using MATH_REDIRECT.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (floor): Likewise.
* sysdeps/aarch64/fpu/s_floor.c: Define NO_MATH_REDIRECT before
header inclusion.
* sysdeps/aarch64/fpu/s_floorf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_floor.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_floor.c: Likewise.
* sysdeps/ieee754/float128/s_floorf128.c: Likewise.
* sysdeps/ieee754/flt-32/s_floorf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_floorl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_floorl.c: Likewise.
* sysdeps/m68k/m680x0/fpu/s_floor_template.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floor.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floorf.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_floor.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_floorf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_floor.c: Likewise.
* sysdeps/riscv/rvf/s_floorf.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floor.c: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floorf.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_floor.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/s_floorf.c: Likewise.
* sysdeps/powerpc/fpu/math_private.h [_ARCH_PWR5X] (__floor):
Remove macro.
[_ARCH_PWR5X] (__floorf): Likewise.
* sysdeps/x86_64/fpu/math_private.h [__SSE4_1__] (__floor): Remove
inline function.
[__SSE4_1__] (__floorf): Likewise.
* math/w_lgamma_main.c (LGFUNC (__lgamma)): Use floor functions
instead of __floor variants.
* math/w_lgamma_r_compat.c (__lgamma_r): Likewise.
* math/w_lgammaf_main.c (LGFUNC (__lgammaf)): Likewise.
* math/w_lgammaf_r_compat.c (__lgammaf_r): Likewise.
* math/w_lgammal_main.c (LGFUNC (__lgammal)): Likewise.
* math/w_lgammal_r_compat.c (__lgammal_r): Likewise.
* math/w_tgamma_compat.c (__tgamma): Likewise.
* math/w_tgamma_template.c (M_DECL_FUNC (__tgamma)): Likewise.
* math/w_tgammaf_compat.c (__tgammaf): Likewise.
* math/w_tgammal_compat.c (__tgammal): Likewise.
* sysdeps/ieee754/dbl-64/e_lgamma_r.c (sin_pi): Likewise.
* sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2):
Likewise.
* sysdeps/ieee754/dbl-64/lgamma_neg.c (__lgamma_neg): Likewise.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (sin_pif): Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c (__lgamma_negf): Likewise.
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_negl.c (__lgamma_negl):
Likewise.
* sysdeps/ieee754/ldbl-128/s_expm1l.c (__expm1l): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_lgammal_r.c (__ieee754_lgammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c (__lgamma_negl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_truncl.c (__truncl): Likewise.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c (sin_pi): Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_negl.c (__lgamma_negl): Likewise.
* sysdeps/powerpc/power5+/fpu/s_modf.c (__modf): Likewise.
* sysdeps/powerpc/power5+/fpu/s_modff.c (__modff): Likewise.
Similar algorithm is used as in log: log2(2^k x) = k + log2(c) + log2(x/c)
where the last term is approximated by a polynomial of x/c - 1, the first
order coefficient is about 1/ln2 in this case.
There is separate code path when fma instruction is not available for
computing x/c - 1 precisely, for which the table size is doubled.
The worst case error is 0.547 ULP (0.55 without fma), the read only
global data size is 1168 bytes (2192 without fma) on aarch64. The
non-nearest rounding error is less than 1 ULP.
Improvements on Cortex-A72 compared to current glibc master:
log2 thruput: 2.00x in [0.01 11.1]
log2 latency: 2.04x in [0.01 11.1]
log2 thruput: 2.17x in [0.999 1.001]
log2 latency: 2.88x in [0.999 1.001]
Tested on
aarch64-linux-gnu (defined __FP_FAST_FMA)
arm-linux-gnueabihf (!defined __FP_FAST_FMA)
x86_64-linux-gnu (!defined __FP_FAST_FMA)
powerpc64le-linxu-gnu (defined __FP_FAST_FMA)
targets.
* NEWS: Mention log2 improvements.
* math/Makefile (type-double-routines): Add e_log2_data.
* sysdeps/i386/fpu/e_log2_data.c: New file.
* sysdeps/ia64/fpu/e_log2_data.c: New file.
* sysdeps/ieee754/dbl-64/e_log2.c: Rewrite.
* sysdeps/ieee754/dbl-64/e_log2_data.c: New file.
* sysdeps/ieee754/dbl-64/math_config.h (__log2_data): Add.
* sysdeps/ieee754/dbl-64/wordsize-64/e_log2.c: Remove.
* sysdeps/m68k/m680x0/fpu/e_log2_data.c: New file.
Optimized log using carefully generated lookup table with 1/c and log(c)
values for small intervalls around 1. The log(c) is very near a double
precision value, it has about 62 bits precision. The algorithm is
log(2^k x) = k log(2) + log(c) + log(x/c), where the last term is
approximated by a polynomial of x/c - 1. Near 1 a single polynomial of
x - 1 is used.
There is separate code path when fma instruction is not available for
computing x/c - 1 precisely, in which case the table size is doubled.
The code uses __builtin_fma under __FP_FAST_FMA to ensure it is inlined
as an instruction.
With the default configuration settings the worst case error is 0.519 ULP
(and 0.520 without fma), the rodata size is 2192 bytes (4240 without fma).
The non-nearest rounding error is less than 1 ULP.
Improvements on Cortex-A72 compared to current glibc master:
log thruput: 3.28x in [0.01 11.1]
log latency: 2.23x in [0.01 11.1]
log thruput: 1.56x in [0.999 1.001]
log latency: 1.57x in [0.999 1.001]
Tested on
aarch64-linux-gnu (defined __FP_FAST_FMA)
arm-linux-gnueabihf (!defined __FP_FAST_FMA)
x86_64-linux-gnu (!defined __FP_FAST_FMA)
powerpc64le-linux-gnu (defined __FP_FAST_FMA)
targets.
* NEWS: Mention log improvement.
* math/Makefile (type-double-routines): Add e_log_data.
* sysdeps/i386/fpu/e_log_data.c: New file.
* sysdeps/ia64/fpu/e_log_data.c: New file.
* sysdeps/ieee754/dbl-64/e_log.c: Rewrite.
* sysdeps/ieee754/dbl-64/e_log_data.c: New file.
* sysdeps/ieee754/dbl-64/math_config.h (__log_data): Add.
* sysdeps/ieee754/dbl-64/ulog.h: Remove.
* sysdeps/ieee754/dbl-64/ulog.tbl: Remove.
* sysdeps/m68k/m680x0/fpu/e_log_data.c: New file.
Optimized exp and exp2 implementations using a lookup table for
fractional powers of 2. There are several variants, see e_exp_data.c,
they can be selected by modifying math_config.h allowing different
tradeoffs.
The default selection should be acceptable as generic libm code.
Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on
aarch64 the rodata size is 2160 bytes, shared between exp and exp2.
On aarch64 .text + .rodata size decreased by 24912 bytes.
The non-nearest rounding error is less than 1 ULP even on targets
without efficient round implementation (although the error rate is
higher in that case). Targets with single instruction, rounding mode
independent, to nearest integer rounding and conversion can use them
by setting TOINT_INTRINSICS and adding the necessary code to their
math_private.h.
The __exp1 code uses the same algorithm, so the error bound of pow
increased a bit.
New double precision error handling code was added following the
style of the single precision error handling code.
Improvements on Cortex-A72 compared to current glibc master:
exp thruput: 1.61x in [-9.9 9.9]
exp latency: 1.53x in [-9.9 9.9]
exp thruput: 1.13x in [0.5 1]
exp latency: 1.30x in [0.5 1]
exp2 thruput: 2.03x in [-9.9 9.9]
exp2 latency: 1.64x in [-9.9 9.9]
For small (< 1) inputs the current exp code uses a separate algorithm
so the speed up there is less.
Was tested on
aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and
arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and
x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and
powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets,
only non-nearest rounding ulp errors increase and they are within
acceptable bounds (ulp updates are in separate patches).
* NEWS: Mention exp and exp2 improvements.
* math/Makefile (libm-support): Remove t_exp.
(type-double-routines): Add math_err and e_exp_data.
* sysdeps/aarch64/libm-test-ulps: Update.
* sysdeps/arm/libm-test-ulps: Update.
* sysdeps/i386/fpu/e_exp_data.c: New file.
* sysdeps/i386/fpu/math_err.c: New file.
* sysdeps/i386/fpu/t_exp.c: Remove.
* sysdeps/ia64/fpu/e_exp_data.c: New file.
* sysdeps/ia64/fpu/math_err.c: New file.
* sysdeps/ia64/fpu/t_exp.c: Remove.
* sysdeps/ieee754/dbl-64/e_exp.c: Rewrite.
* sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite.
* sysdeps/ieee754/dbl-64/e_exp_data.c: New file.
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound.
* sysdeps/ieee754/dbl-64/eexp.tbl: Remove.
* sysdeps/ieee754/dbl-64/math_config.h: New file.
* sysdeps/ieee754/dbl-64/math_err.c: New file.
* sysdeps/ieee754/dbl-64/t_exp.c: Remove.
* sysdeps/ieee754/dbl-64/t_exp2.h: Remove.
* sysdeps/ieee754/dbl-64/uexp.h: Remove.
* sysdeps/ieee754/dbl-64/uexp.tbl: Remove.
* sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file.
* sysdeps/m68k/m680x0/fpu/math_err.c: New file.
* sysdeps/m68k/m680x0/fpu/t_exp.c: Remove.
* sysdeps/powerpc/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
<fenv_private.h> has inline versions of various <fenv.h> functions,
and their __fe* variants, for systems (generally soft-float) without
support for floating-point exceptions, rounding modes or both.
Having these inlines in a separate header introduces a risk of a
source file including <fenv.h> and compiling OK on x86_64, but failing
to compile (because the feraiseexcept inline is actually a macro that
discards its argument, to avoid the need for #ifdef FE_INVALID
conditionals), or not being properly optimized, on systems without the
exceptions and rounding modes support (when these inlines were in
math_private.h, we had a few cases where this broke the build because
there was no obvious reason for a file to need math_private.h and it
didn't need that header on x86_64). By moving those inlines to
include/fenv.h, this risk can be avoided, and fenv_private.h becomes
more clearly defined as specifically the header for the internal
libc_fe* and SET_RESTORE_ROUND* interfaces.
This patch makes that move, removing fenv_private.h includes that are
no longer needed (or replacing them by fenv.h includes in a few cases
that didn't already have such an include).
Tested for x86_64 and x86, and tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by the patch.
* sysdeps/generic/fenv_private.h [FE_ALL_EXCEPT == 0]: Move this
code ....
[!FE_HAVE_ROUNDING_MODES]: And this code ....
* include/fenv.h [!_ISOMAC]: ... to here.
* math/fraiseexcpt.c (__feraiseexcept): Undefine as macro.
(feraiseexcept): Likewise.
* math/fromfp.h: Do not include <fenv_private.h>.
* math/s_cexp_template.c: Likewise.
* math/s_csin_template.c: Likewise.
* math/s_csinh_template.c: Likewise.
* math/s_ctan_template.c: Likewise.
* math/s_ctanh_template.c: Likewise.
* math/s_iseqsig_template.c: Likewise.
* math/w_acos_compat.c: Likewise.
* math/w_acosf_compat.c: Likewise.
* math/w_acosl_compat.c: Likewise.
* math/w_asin_compat.c: Likewise.
* math/w_asinf_compat.c: Likewise.
* math/w_asinl_compat.c: Likewise.
* math/w_j0_compat.c: Likewise.
* math/w_j0f_compat.c: Likewise.
* math/w_j0l_compat.c: Likewise.
* math/w_j1_compat.c: Likewise.
* math/w_j1f_compat.c: Likewise.
* math/w_j1l_compat.c: Likewise.
* math/w_jn_compat.c: Likewise.
* math/w_jnf_compat.c: Likewise.
* math/w_log10_compat.c: Likewise.
* math/w_log10f_compat.c: Likewise.
* math/w_log10l_compat.c: Likewise.
* math/w_log2_compat.c: Likewise.
* math/w_log2f_compat.c: Likewise.
* math/w_log2l_compat.c: Likewise.
* math/w_log_compat.c: Likewise.
* math/w_logf_compat.c: Likewise.
* math/w_logl_compat.c: Likewise.
* sysdeps/ieee754/dbl-64/s_llrint.c: Likewise.
* sysdeps/ieee754/dbl-64/s_llround.c: Likewise.
* sysdeps/ieee754/dbl-64/s_lrint.c: Likewise.
* sysdeps/ieee754/dbl-64/s_lround.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Likewise.
* sysdeps/ieee754/flt-32/s_llrintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_llroundf.c: Likewise.
* sysdeps/ieee754/flt-32/s_lrintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_lroundf.c: Likewise.
* sysdeps/ieee754/k_standardl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_expl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_llrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_llroundl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_lrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_lroundl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nearbyintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_llrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_llroundl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_lrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_lroundl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_llrintl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_llroundl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_lrintl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_lroundl.c: Likewise.
* math/w_ilogb_template.c: Include <fenv.h> instead of
<fenv_private.h>.
* math/w_llogb_template.c: Likewise.
* sysdeps/powerpc/fpu/e_sqrt.c: Likewise.
* sysdeps/powerpc/fpu/e_sqrtf.c: Likewise.
Continuing the clean-up related to the catch-all math_private.h
header, this patch stops math_private.h from including fenv_private.h.
Instead, fenv_private.h is included directly from those users of
math_private.h that also used interfaces from fenv_private.h. No
attempt is made to remove unused includes of math_private.h, but that
is a natural followup.
(However, since math_private.h sometimes defines optimized versions of
math.h interfaces or __* variants thereof, as well as defining its own
interfaces, I think it might make sense to get all those optimized
versions included from include/math.h, not requiring a separate header
at all, before eliminating unused math_private.h includes - that
avoids a file quietly becoming less-optimized if someone adds a call
to one of those interfaces without restoring a math_private.h include
to that file.)
There is still a pitfall that if code uses plain fe* and __fe*
interfaces, but only includes fenv.h and not fenv_private.h or (before
this patch) math_private.h, it will compile on platforms with
exceptions and rounding modes but not get the optimized versions (and
possibly not compile) on platforms without exception and rounding mode
support, so making it easy to break the build for such platforms
accidentally.
I think it would be most natural to move the inlines / macros for fe*
and __fe* in the case of no exceptions and rounding modes into
include/fenv.h, so that all code including fenv.h with _ISOMAC not
defined automatically gets them. Then fenv_private.h would be purely
the header for the libc_fe*, SET_RESTORE_ROUND etc. internal
interfaces and the risk of breaking the build on other platforms than
the one you tested on because of a missing fenv_private.h include
would be much reduced (and there would be some unused fenv_private.h
includes to remove along with unused math_private.h includes).
Tested for x86_64 and x86, and tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by this patch.
* sysdeps/generic/math_private.h: Do not include <fenv_private.h>.
* math/fromfp.h: Include <fenv_private.h>.
* math/math-narrow.h: Likewise.
* math/s_cexp_template.c: Likewise.
* math/s_csin_template.c: Likewise.
* math/s_csinh_template.c: Likewise.
* math/s_ctan_template.c: Likewise.
* math/s_ctanh_template.c: Likewise.
* math/s_iseqsig_template.c: Likewise.
* math/w_acos_compat.c: Likewise.
* math/w_acosf_compat.c: Likewise.
* math/w_acosl_compat.c: Likewise.
* math/w_asin_compat.c: Likewise.
* math/w_asinf_compat.c: Likewise.
* math/w_asinl_compat.c: Likewise.
* math/w_ilogb_template.c: Likewise.
* math/w_j0_compat.c: Likewise.
* math/w_j0f_compat.c: Likewise.
* math/w_j0l_compat.c: Likewise.
* math/w_j1_compat.c: Likewise.
* math/w_j1f_compat.c: Likewise.
* math/w_j1l_compat.c: Likewise.
* math/w_jn_compat.c: Likewise.
* math/w_jnf_compat.c: Likewise.
* math/w_llogb_template.c: Likewise.
* math/w_log10_compat.c: Likewise.
* math/w_log10f_compat.c: Likewise.
* math/w_log10l_compat.c: Likewise.
* math/w_log2_compat.c: Likewise.
* math/w_log2f_compat.c: Likewise.
* math/w_log2l_compat.c: Likewise.
* math/w_log_compat.c: Likewise.
* math/w_logf_compat.c: Likewise.
* math/w_logl_compat.c: Likewise.
* sysdeps/aarch64/fpu/feholdexcpt.c: Likewise.
* sysdeps/aarch64/fpu/fesetround.c: Likewise.
* sysdeps/aarch64/fpu/fgetexcptflg.c: Likewise.
* sysdeps/aarch64/fpu/ftestexcept.c: Likewise.
* sysdeps/ieee754/dbl-64/e_atan2.c: Likewise.
* sysdeps/ieee754/dbl-64/e_exp.c: Likewise.
* sysdeps/ieee754/dbl-64/e_exp2.c: Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c: Likewise.
* sysdeps/ieee754/dbl-64/e_jn.c: Likewise.
* sysdeps/ieee754/dbl-64/e_pow.c: Likewise.
* sysdeps/ieee754/dbl-64/e_remainder.c: Likewise.
* sysdeps/ieee754/dbl-64/e_sqrt.c: Likewise.
* sysdeps/ieee754/dbl-64/gamma_product.c: Likewise.
* sysdeps/ieee754/dbl-64/lgamma_neg.c: Likewise.
* sysdeps/ieee754/dbl-64/s_atan.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fma.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fmaf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_llrint.c: Likewise.
* sysdeps/ieee754/dbl-64/s_llround.c: Likewise.
* sysdeps/ieee754/dbl-64/s_lrint.c: Likewise.
* sysdeps/ieee754/dbl-64/s_lround.c: Likewise.
* sysdeps/ieee754/dbl-64/s_nearbyint.c: Likewise.
* sysdeps/ieee754/dbl-64/s_sin.c: Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c: Likewise.
* sysdeps/ieee754/dbl-64/s_tan.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_nearbyint.c: Likewise.
* sysdeps/ieee754/dbl-64/x2y2m1.c: Likewise.
* sysdeps/ieee754/float128/float128_private.h: Likewise.
* sysdeps/ieee754/flt-32/e_gammaf_r.c: Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c: Likewise.
* sysdeps/ieee754/flt-32/e_jnf.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c: Likewise.
* sysdeps/ieee754/flt-32/s_llrintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_llroundf.c: Likewise.
* sysdeps/ieee754/flt-32/s_lrintf.c: Likewise.
* sysdeps/ieee754/flt-32/s_lroundf.c: Likewise.
* sysdeps/ieee754/flt-32/s_nearbyintf.c: Likewise.
* sysdeps/ieee754/k_standardl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_expl.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_j1l.c: Likewise.
* sysdeps/ieee754/ldbl-128/e_jnl.c: Likewise.
* sysdeps/ieee754/ldbl-128/gamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_llrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_llroundl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_lrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_lroundl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_nearbyintl.c: Likewise.
* sysdeps/ieee754/ldbl-128/x2y2m1l.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_expl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_j1l.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_llrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_llroundl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_lrintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_lroundl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_rintl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/x2y2m1l.c: Likewise.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c: Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c: Likewise.
* sysdeps/ieee754/ldbl-96/gamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_llrintl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_llroundl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_lrintl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_lroundl.c: Likewise.
* sysdeps/ieee754/ldbl-96/x2y2m1l.c: Likewise.
* sysdeps/powerpc/fpu/e_sqrt.c: Likewise.
* sysdeps/powerpc/fpu/e_sqrtf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_ceil.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_floor.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_nearbyint.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_round.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_roundeven.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_trunc.c: Likewise.
* sysdeps/riscv/rvd/s_finite.c: Likewise.
* sysdeps/riscv/rvd/s_fmax.c: Likewise.
* sysdeps/riscv/rvd/s_fmin.c: Likewise.
* sysdeps/riscv/rvd/s_fpclassify.c: Likewise.
* sysdeps/riscv/rvd/s_isinf.c: Likewise.
* sysdeps/riscv/rvd/s_isnan.c: Likewise.
* sysdeps/riscv/rvd/s_issignaling.c: Likewise.
* sysdeps/riscv/rvf/fegetround.c: Likewise.
* sysdeps/riscv/rvf/feholdexcpt.c: Likewise.
* sysdeps/riscv/rvf/fesetenv.c: Likewise.
* sysdeps/riscv/rvf/fesetround.c: Likewise.
* sysdeps/riscv/rvf/feupdateenv.c: Likewise.
* sysdeps/riscv/rvf/fgetexcptflg.c: Likewise.
* sysdeps/riscv/rvf/ftestexcept.c: Likewise.
* sysdeps/riscv/rvf/s_ceilf.c: Likewise.
* sysdeps/riscv/rvf/s_finitef.c: Likewise.
* sysdeps/riscv/rvf/s_floorf.c: Likewise.
* sysdeps/riscv/rvf/s_fmaxf.c: Likewise.
* sysdeps/riscv/rvf/s_fminf.c: Likewise.
* sysdeps/riscv/rvf/s_fpclassifyf.c: Likewise.
* sysdeps/riscv/rvf/s_isinff.c: Likewise.
* sysdeps/riscv/rvf/s_isnanf.c: Likewise.
* sysdeps/riscv/rvf/s_issignalingf.c: Likewise.
* sysdeps/riscv/rvf/s_nearbyintf.c: Likewise.
* sysdeps/riscv/rvf/s_roundevenf.c: Likewise.
* sysdeps/riscv/rvf/s_roundf.c: Likewise.
* sysdeps/riscv/rvf/s_truncf.c: Likewise.
Speedup tanf range reduction by using the new sincosf range
reduction algorithm. Overall code quality is improved due to
inlining, so there is a speedup even if no range reduction is
required.
tanf throughput gains on Cortex-A72:
* |x| < M_PI_4 : 1.1x
* |x| < M_PI_2 : 1.2x
* |x| < 2 * M_PI: 1.5x
* |x| < 120.0 : 1.6x
* |x| < Inf : 12.1x
* sysdeps/ieee754/flt-32/s_tanf.c (__tanf): Use fast range reduction.
The internal functions __kernel_sinf and __kernel_cosf are used only by
lgammaf_r. Removing the internal functions and using the generic sinf
and cosf is better overall. Benchmarking on Cortex-A72 shows the generic
sinf and cosf are 1.4x and 2.3x faster in the range |x| < PI/4, and 0.66x
and 1.1x for |x| < PI/2, so it should make lgammaf_r faster on average.
GLIBC regression tests pass on AArch64.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (sin_pif): Use __sinf/__cosf.
* sysdeps/ieee754/flt-32/k_cosf.c (__kernel_cosf): Remove all code.
* sysdeps/ieee754/flt-32/k_sinf.c (__kernel_sinf): Likewise.
The second patch improves performance of sinf and cosf using the same
algorithms and polynomials. The returned values are identical to sincosf
for the same input. ULP definitions for AArch64 and x64 are updated.
sinf/cosf througput gains on Cortex-A72:
* |x| < 0x1p-12 : 1.2x
* |x| < M_PI_4 : 1.8x
* |x| < 2 * M_PI: 1.7x
* |x| < 120.0 : 2.3x
* |x| < Inf : 3.0x
* NEWS: Mention sinf, cosf, sincosf.
* sysdeps/aarch64/libm-test-ulps: Update ULP for sinf, cosf, sincosf.
* sysdeps/x86_64/fpu/libm-test-ulps: Update ULP for sinf and cosf.
* sysdeps/x86_64/fpu/multiarch/s_sincosf-fma.c: Add definitions of
constants rather than including generic sincosf.h.
* sysdeps/x86_64/fpu/s_sincosf_data.c: Remove.
* sysdeps/ieee754/flt-32/s_cosf.c (cosf): Rewrite.
* sysdeps/ieee754/flt-32/s_sincosf.h (reduced_sin): Remove.
(reduced_cos): Remove.
(sinf_poly): New function.
* sysdeps/ieee754/flt-32/s_sinf.c (sinf): Rewrite.
This patch is a complete rewrite of sincosf. The new version is
significantly faster, as well as simple and accurate.
The worst-case ULP is 0.5607, maximum relative error is 0.5303 * 2^-23 over
all 4 billion inputs. In non-nearest rounding modes the error is 1ULP.
The algorithm uses 3 main cases: small inputs which don't need argument
reduction, small inputs which need a simple range reduction and large inputs
requiring complex range reduction. The code uses approximate integer
comparisons to quickly decide between these cases.
The small range reducer uses a single reduction step to handle values up to
120.0. It is fastest on targets which support inlined round instructions.
The large range reducer uses integer arithmetic for simplicity. It does a
32x96 bit multiply to compute a 64-bit modulo result. This is more than
accurate enough to handle the worst-case cancellation for values close to
an integer multiple of PI/4. It could be further optimized, however it is
already much faster than necessary.
sincosf throughput gains on Cortex-A72:
* |x| < 0x1p-12 : 1.6x
* |x| < M_PI_4 : 1.7x
* |x| < 2 * M_PI: 1.5x
* |x| < 120.0 : 1.8x
* |x| < Inf : 2.3x
* math/Makefile: Add s_sincosf_data.c.
* sysdeps/ia64/fpu/s_sincosf_data.c: New file.
* sysdeps/ieee754/flt-32/s_sincosf.h (abstop12): Add new function.
(sincosf_poly): Likewise.
(reduce_small): Likewise.
(reduce_large): Likewise.
* sysdeps/ieee754/flt-32/s_sincosf.c (sincosf): Rewrite.
* sysdeps/ieee754/flt-32/s_sincosf_data.c: New file with sincosf data.
* sysdeps/m68k/m680x0/fpu/s_sincosf_data.c: New file.
* sysdeps/x86_64/fpu/s_sincosf_data.c: New file.
This patch currently only affects aarch64.
The roundtoint and converttoint internal functions are only called with small
values, so 32 bit result is enough for converttoint and it is a signed int
conversion so the return type is changed to int32_t.
The original idea was to help the compiler keeping the result in uint64_t,
then it's clear that no sign extension is needed and there is no accidental
undefined or implementation defined signed int arithmetics.
But it turns out gcc does a good job with inlining so changing the type has
no overhead and the semantics of the conversion is less surprising this way.
Since we want to allow the asuint64 (x + 0x1.8p52) style conversion, the top
bits were never usable and the existing code ensures that only the bottom
32 bits of the conversion result are used.
On aarch64 the neon intrinsics (which round ties to even) are changed to
round and lround (which round ties away from zero) this does not affect the
results in a significant way, but more portable (relies on round and lround
being inlined which works with -fno-math-errno).
The TOINT_SHIFT and TOINT_RINT macros were removed, only keep separate code
paths for TOINT_INTRINSICS and !TOINT_INTRINSICS.
* sysdeps/aarch64/fpu/math_private.h (roundtoint): Use round.
(converttoint): Use lround.
* sysdeps/ieee754/flt-32/math_config.h (roundtoint): Declare and
document the semantics when TOINT_INTRINSICS is set.
(converttoint): Likewise.
(TOINT_RINT): Remove.
(TOINT_SHIFT): Remove.
* sysdeps/ieee754/flt-32/e_expf.c (__expf): Remove the TOINT_RINT code
path.
Since the addition of the _Float128 API, strfromf128 and printf_size use
__printf_fp to print _Float128 values. This is achieved by setting the
'is_binary128' member of the 'printf_info' structure to one. Now that
the format of long double on powerpc64le is getting a third option, this
mechanism is reused for long double values that have binary128 format
(i.e.: when -mabi=ieeelongdouble).
This patch adds __printf_sizeieee128 as an exported symbol, but doesn't
provide redirections from printf_size, yet. All redirections will be
installed in a future commit, once all other functions that print or
read long double values with binary128 format are ready. In
__printf_fp, when 'is_binary128' is one, the floating-point argument is
treated as if it was of _Float128 type, regardless of the value of
'is_long_double', thus __printf_sizeieee128 sets 'is_binary128' to the
same value of 'is_long_double'. Otherwise, double values would not be
printed correctly.
Tested for powerpc64le.
Ideally sign should be bool, but sometimes (e.g. in powf) it's more
efficient to pass a non-zero value than 1 to indicate that the sign
should be set. The fixed size int is less ambigous than unsigned
long.
* sysdeps/ieee754/flt-32/e_powf.c (__powf): Use uint32_t.
(exp2f_inline): Likewise.
* sysdeps/ieee754/flt-32/math_config.h (__math_oflowf): Likewise.
(__math_uflowf): Likewise.
(__math_may_uflowf): Likewise.
(__math_divzerof): Likewise.
(__math_invalidf): Likewise.
* sysdeps/ieee754/flt-32/math_errf.c (xflowf): Likewise.
(__math_oflowf): Likewise.
(__math_uflowf): Likewise.
(__math_may_uflowf): Likewise.
(__math_divzerof): Likewise.
(__math_invalidf): Likewise.
This patch adds __*ieee128 symbols for strfrom, strtold, strtold_l, wcstold
and wcstold_l functions. Redirection from *l to *ieee128 will be handled
in separate patch once we start building these new files.
2018-06-28 Rajalakshmi Srinivasaraghavan <raji@linux.vnet.ibm.com>
* sysdeps/ieee754/ldbl-128ibm-compat/Versions: Add __strfromieee128,
__strtoieee128, __strtoieee128_l,__wcstoieee128 and __wcstoieee128_l.
* sysdeps/ieee754/ldbl-128ibm-compat/strfromf128.c: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/strtof128.c: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/strtof128_l.c: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/wcstof128.c: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/wcstof128_l.c: New file.
Add a new libm-alias-float128.h in order to provide the __*ieee128
aliases for the existing *f128 that do not have a globally exported
symbol.
* sysdeps/ieee754/ldbl-128ibm-compat/Versions: New file.
* sysdeps/ieee754/ldbl-128ibm-compat/libm-alias-float128.h: New file.
As reported in bug 23272, the ldbl-96 implementation of fma (fma for
double, in terms of ldbl-96 as the internal arithmetic type, as used
on 32-bit x86) is missing some of the special-case handling for
non-finite arguments, resulting in incorrect NaN results when the
first two arguments are infinities, the third is finite and so the
infinities go through the logic for finite arguments. This patch
fixes it by handling all cases of non-finite arguments up front, with
additional fma tests for the problem cases being added to the
testsuite.
Tested for x86_64 and x86.
[BZ #23272]
* sysdeps/ieee754/ldbl-96/s_fma.c (__fma): Start by handling all
cases of non-finite arguments.
* math/libm-test-fma.inc (fma_test_data): Add more tests.