TS 18661-1 defines macros for the width of integer types, intended for
use with the fromfp functions to convert from floating-point types to
integer types of any width, in any rounding mode and with control over
whether "inexact" is raised. Such macros are, of course, more
generally useful than just with those functions.
Those macros are added to <limits.h> and <stdint.h>. Having
previously added the <limits.h> macros, this patch adds the <stdint.h>
ones. I've also added these macros to GCC's headers for GCC 7, but
for glibc systems, the definitions in GCC's <stdint.h> will only be
used with -ffreestanding.
Tested for x86_64 and x86.
* sysdeps/generic/stdint.h: Define
__GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION and include
<bits/libc-header-start.h> instead of including <features.h>.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INT8_WIDTH): New macro.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINT8_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INT16_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINT16_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INT32_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINT32_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INT64_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINT64_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INT_LEAST8_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINT_LEAST8_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INT_LEAST16_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINT_LEAST16_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INT_LEAST32_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINT_LEAST32_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INT_LEAST64_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINT_LEAST64_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INT_FAST8_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINT_FAST8_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INT_FAST16_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINT_FAST16_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INT_FAST32_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINT_FAST32_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INT_FAST64_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINT_FAST64_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INTPTR_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINTPTR_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INTMAX_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINTMAX_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (PTRDIFF_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (SIG_ATOMIC_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (SIZE_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (WCHAR_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (WINT_WIDTH): Likewise.
* manual/arith.texi (Integers): Document these macros for types
specified by width properties.
* manual/lang.texi (Width of Type): Document these macros for
other standard typedefs.
* stdlib/tst-width-stdint.c: New file.
* stdlib/Makefile (tests): Add tst-width-stdint.
This requires adding a macro to synthesize the call
to __strto*_nan. Since this is likely to be the only
usage ever for strto* functions in generated libm
calls, a dedicated macro is defined for it.
Use the GCC builtin instead. With the exception of the
files built from a template, they are unused. This
is preparation for making the s_nanF objects generated.
This one is a little more tricky since it is built both for
libm and libc, and exports multiple aliases.
To simplify aliasing, a new macro is introduced which handles
aliasing to two symbols. By default, it just applies
declare_mgen_alias to both target symbols.
Likewise, the makefile is tweaked a little to generate
templates for shared files too, and a new rule is added
to build m_*.c objects from the objpfx directory.
Verified there are no symbol or code changes using a script
to diff the *_ldexp* object files on s390x, aarch64, arm,
x86_64, and ppc64.
This is only used for the float and double variants.
Instead, just add it to the type specific list of files,
and remove all stubs, and remove the declaration from
math_private.h.
I verified x86_64, i486, ia64, m68k, and ppc64 build.
The only difference is the usage of math_narrow_eval when
building s_fdiml.c. This should be harmless for long double,
but I did observe some code generation changes on m68k, but
lack the resources to test it.
Likewise, to more easily support overriding symbol generation,
the aliasing macros are always conditionally defined on their
absence to reduce boilerplate.
I also ran builds for i486, ppc64, sparcv9, aarch64,
s390x and observed no changes to s_fdim* objects.
This defines a new classes of libm objects. The
<func>_template.c file which is used in conjunction
with the new makefile hooks to derive variants for
each type supported by the target machine.
The headers math-type-macros-TYPE.h are used to supply
macros to a common implementation of a function in
a file named FUNC_template.c and glued togethor via
a generated file matching existing naming in the
build directory.
This has the properties of preserving the existing
override mechanism and not requiring any arcane
build system twiddling. Likewise, it enables machines
to override these files without any additional work.
I have verified the built objects for ppc64, x86_64,
alpha, arm, and m68k do not change in any meaningful
way with these changes using the Fedora cross toolchains.
I have verified the x86_64 and ppc64 changes still run.
I noticed that there was no meaningful test coverage for
fegetexceptflag and fesetexceptflag (one test ensures that calls to
them compile and link, but nothing to verify they work correctly).
This patch adds tests for these functions.
fesetexceptflag is meant to set the relevant exception flag bits to
the saved state without causing enabled traps to be taken. On some
architectures, it is not possible to set exception flag bits without
causing enabled traps to occur. Such architectures need to define
EXCEPTION_SET_FORCES_TRAP to 1 in their math-tests.h, as is done in
this patch for powerpc. x86 avoids needing to define this because the
traps resulting from setting exception bits don't occur until the next
floating-point operation or fwait instruction.
Tested for x86_64, x86 and powerpc. Note that test-fexcept fails for
powerpc because of a pre-existing bug in fesetexceptflag for powerpc,
which I'll fix separately.
* math/test-fexcept-traps.c: New file.
* math/test-fexcept.c: Likewise.
* math/Makefile (tests): Add test-fexcept and test-fexcept-traps.
* sysdeps/generic/math-tests.h (EXCEPTION_SET_FORCES_TRAP): New
macro.
* sysdeps/powerpc/math-tests.h [!__NO_FPRS__]
(EXCEPTION_SET_FORCES_TRAP): Likewise.
Presently sys/sysmacros.h is entirely defined in sysdeps. This would
mean that the deprecation logic coming up in the next patch would have
to be written twice (in generic/ and unix/sysv/linux/). To avoid that,
hoist all but the unavoidably system-dependent logic to misc/, leaving a
bits/ header behind. This also promotes the Linux-specific encoding of
dev_t, which accommodates 32-bit major and minor numbers in a 64-bit dev_t,
to generic, as glibc's dev_t is always 64 bits wide.
The former Linux implementation used inline functions to avoid evaluating
arguments more than once. After this change, all platforms use inline
functions, which means that three new symbols are added to the generic ABI.
(These symbols are in the user namespace, which is how they have always
been on Linux. They begin with "gnu_dev_", so collisions with user code
are pretty unlikely.)
New ports henceforth need only provide a bits/sysmacros.h defining
internal macros __SYSMACROS_{DECLARE,DEFINE}_{MAJOR,MINOR,MAKEDEV}.
This is only necessary if the kernel encoding is incompatible with
the now-generic encoding (for instance, it would be necessary for
FreeBSD).
While I was at it, I added a basic round-trip test for these functions.
* sysdeps/generic/sys/sysmacros.h: Delete file.
* sysdeps/unix/sysv/linux/makedev.c: Delete file.
* sysdeps/unix/sysv/linux/sys/sysmacros.h: Move file ...
* bits/sysmacros.h: ... here; this encoding is now the generic
encoding. Now defines only the following macros:
__SYSMACROS_DECLARE_MAJOR, __SYSMACROS_DEFINE_MAJOR,
__SYSMACROS_DECLARE_MINOR, __SYSMACROS_DEFINE_MINOR,
__SYSMACROS_DECLARE_MAKEDEV, __SYSMACROS_DEFINE_MAKEDEV.
* misc/sys/sysmacros.h, misc/makedev.c: New files that use
bits/sysmacros.h and the above new macros to generate the
public implementations of major, minor, and makedev.
* misc/tst-makedev.c: New test.
* include/sys/sysmacros.h: New wrapper.
* misc/Makefile (headers): Add sys/sysmacros.h, bits/sysmacros.h.
(routines): Add makedev.
(tests): Add tst-makedev.
* misc/Versions [GLIBC_2.25]: Add gnu_dev_major, gnu_dev_minor,
gnu_dev_makedev.
* posix/Makefile (headers): Remove sys/sysmacros.h.
* sysdeps/unix/sysv/linux/Makefile (sysdep_routines): Remove makedev.
* sysdeps/arm/nacl/libc.abilist: Add GLIBC_2.25,
gnu_dev_major, gnu_dev_makedev, gnu_dev_minor.
* sysdeps/unix/sysv/linux/aarch64/libc.abilist
* sysdeps/unix/sysv/linux/alpha/libc.abilist
* sysdeps/unix/sysv/linux/arm/libc.abilist
* sysdeps/unix/sysv/linux/hppa/libc.abilist
* sysdeps/unix/sysv/linux/i386/libc.abilist
* sysdeps/unix/sysv/linux/ia64/libc.abilist
* sysdeps/unix/sysv/linux/m68k/coldfire/libc.abilist
* sysdeps/unix/sysv/linux/m68k/m680x0/libc.abilist
* sysdeps/unix/sysv/linux/microblaze/libc.abilist
* sysdeps/unix/sysv/linux/mips/mips32/fpu/libc.abilist
* sysdeps/unix/sysv/linux/mips/mips32/nofpu/libc.abilist
* sysdeps/unix/sysv/linux/mips/mips64/n32/libc.abilist
* sysdeps/unix/sysv/linux/mips/mips64/n64/libc.abilist
* sysdeps/unix/sysv/linux/nios2/libc.abilist
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libc.abilist
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libc.abilist
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc-le.abilist
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc.abilist
* sysdeps/unix/sysv/linux/s390/s390-32/libc.abilist
* sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist
* sysdeps/unix/sysv/linux/sh/libc.abilist
* sysdeps/unix/sysv/linux/sparc/sparc32/libc.abilist
* sysdeps/unix/sysv/linux/sparc/sparc64/libc.abilist
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libc.abilist
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libc.abilist
* sysdeps/unix/sysv/linux/tile/tilepro/libc.abilist
* sysdeps/unix/sysv/linux/x86_64/64/libc.abilist
* sysdeps/unix/sysv/linux/x86_64/x32/libc.abilist:
Add GLIBC_2.25.
Instead of a flag which indicates the pointer can be freed, dtv_t
now includes the pointer which should be freed. Due to padding,
the size of dtv_t does not increase.
To avoid using memalign, the new allocate_dtv_entry function
allocates a sufficiently large buffer so that a sub-buffer
can be found in it which starts with an aligned pointer. Both
the aligned and original pointers are kept, the latter for calling
free later.
In a reference to PR ld/19908 make ld.so respect symbol export classes
aka visibility and treat STV_HIDDEN and STV_INTERNAL symbols as local,
preventing such symbols from preempting exported symbols.
According to the ELF gABI[1] neither STV_HIDDEN nor STV_INTERNAL symbols
are supposed to be present in linked binaries:
"A hidden symbol contained in a relocatable object must be either
removed or converted to STB_LOCAL binding by the link-editor when the
relocatable object is included in an executable file or shared object."
"An internal symbol contained in a relocatable object must be either
removed or converted to STB_LOCAL binding by the link-editor when the
relocatable object is included in an executable file or shared object."
however some GNU binutils versions produce such symbols in some cases.
PR ld/19908 is one and we also have this note in scripts/abilist.awk:
so clearly there is linked code out there which contains such symbols
which is prone to symbol table misinterpretation, and it'll be more
productive if we handle this gracefully, under the Robustness Principle:
"be liberal in what you accept, and conservative in what you produce",
especially as this is a simple (STV_HIDDEN|STV_INTERNAL) => STB_LOCAL
mapping.
References:
[1] "System V Application Binary Interface - DRAFT - 24 April 2001",
The Santa Cruz Operation, Inc., "Symbol Table",
<http://www.sco.com/developers/gabi/2001-04-24/ch4.symtab.html>
* sysdeps/generic/ldsodefs.h
(dl_symbol_visibility_binds_local_p): New inline function.
* elf/dl-addr.c (determine_info): Treat hidden and internal
symbols as local.
* elf/dl-lookup.c (do_lookup_x): Likewise.
* elf/dl-reloc.c (RESOLVE_MAP): Likewise.
This file was added to sysdeps/generic/bits in 2012. This appears to
have been an oversight, as the entire sysdeps/generic/bits directory was
moved to the top level in 2005. Accordingly the generic bits/hwcap.h
belongs there too.
* sysdeps/generic/bits/hwcap.h: Moved to ...
* bits/hwcap.h: Here.
* sysdeps/generic/ldsodefs.h (struct rtld_global_ro)
[!HAVE_AUX_VECTOR]: Do not define _dl_auxv field.
* misc/getauxval.c (__getauxval) [!HAVE_AUX_VECTOR]: Do not go through
GLRO(dl_auxv) list.
* sysdeps/generic/dl-fcntl.h: New file, adds attribute_hidden to __open
and __fcntl.
* sysdeps/mach/hurd/dl-fcntl.h: New file, adds attribute_hidden to
__fcntl only.
* include/fcntl.h [IS_IN (rtld)]: Include <dl-fcntl.h> instead of
adding attribute_hidden to __open and __fcntl.
As discussed in
https://sourceware.org/ml/libc-alpha/2015-10/msg00403.html
the setting of _STRING_ARCH_unaligned currently controls the external
GLIBC ABI as well as selecting the use of unaligned accesses withing
GLIBC.
Since _STRING_ARCH_unaligned was recently changed for AArch64, this
would potentially break the ABI in GLIBC 2.23, so split the uses and add
_STRING_INLINE_unaligned to select the string ABI. This setting must be
fixed for each target, while _STRING_ARCH_unaligned may be changed from
release to release. _STRING_ARCH_unaligned is used unconditionally in
glibc. But <bits/string.h>, which defines _STRING_ARCH_unaligned, isn't
included with -Os. Since _STRING_ARCH_unaligned is internal to glibc and
may change between glibc releases, it should be made private to glibc.
_STRING_ARCH_unaligned should defined in the new string_private.h heade
file which is included unconditionally from internal <string.h> for glibc
build.
[BZ #19462]
* bits/string.h (_STRING_ARCH_unaligned): Renamed to ...
(_STRING_INLINE_unaligned): This.
* include/string.h: Include <string_private.h>.
* string/bits/string2.h: Replace _STRING_ARCH_unaligned with
_STRING_INLINE_unaligned.
* sysdeps/aarch64/bits/string.h (_STRING_ARCH_unaligned): Removed.
(_STRING_INLINE_unaligned): New.
* sysdeps/aarch64/string_private.h: New file.
* sysdeps/generic/string_private.h: Likewise.
* sysdeps/m68k/m680x0/m68020/string_private.h: Likewise.
* sysdeps/s390/string_private.h: Likewise.
* sysdeps/x86/string_private.h: Likewise.
* sysdeps/m68k/m680x0/m68020/bits/string.h
(_STRING_ARCH_unaligned): Renamed to ...
(_STRING_INLINE_unaligned): This.
* sysdeps/s390/bits/string.h (_STRING_ARCH_unaligned): Renamed
to ...
(_STRING_INLINE_unaligned): This.
* sysdeps/sparc/bits/string.h (_STRING_ARCH_unaligned): Renamed
to ...
(_STRING_INLINE_unaligned): This.
* sysdeps/x86/bits/string.h (_STRING_ARCH_unaligned): Renamed
to ...
(_STRING_INLINE_unaligned): This.
I get some math test-failures on s390 for float/double/ldouble for
various lrint/lround functions like:
lrint (0x1p64): Exception "Inexact" set
lrint (-0x1p64): Exception "Inexact" set
lround (0x1p64): Exception "Inexact" set
lround (-0x1p64): Exception "Inexact" set
...
GCC emits "convert to fixed" instructions for casting floating point
values to integer values. These instructions raise invalid and inexact
exceptions if the floating point value exceeds the integer type ranges.
This patch enables the various FIX_DBL_LONG_CONVERT_OVERFLOW macros in
order to avoid a cast from floating point to integer type and raise the
invalid exception with feraiseexcept.
The ldbl-128 rint/round functions are now using the same logic.
ChangeLog:
[BZ #19486]
* sysdeps/s390/fix-fp-int-convert-overflow.h: New File.
* sysdeps/generic/fix-fp-int-convert-overflow.h
(FIX_LDBL_LONG_CONVERT_OVERFLOW,
FIX_LDBL_LLONG_CONVERT_OVERFLOW): New define.
* sysdeps/arm/fix-fp-int-convert-overflow.h: Likewise.
* sysdeps/mips/mips32/fpu/fix-fp-int-convert-overflow.h:
Likewise.
* sysdeps/ieee754/ldbl-128/s_lrintl.c (__lrintl):
Avoid conversions to long int where inexact exceptions
could be raised.
* sysdeps/ieee754/ldbl-128/s_lroundl.c (__lroundl):
Likewise.
* sysdeps/ieee754/ldbl-128/s_llrintl.c (__llrintl):
Avoid conversions to long long int where inexact exceptions
could be raised.
* sysdeps/ieee754/ldbl-128/s_llroundl.c (__llroundl):
Likewise.
Since internal unistd functions are only used internally in ld.so and
libc.so, they can be made hidden. __close, __getcwd, __getpid,
__libc_read and __libc_write can't be hidden in ld.so on Hurd since they
will be preempted by the ones in libc.so after bootstrap.
[BZ #19122]
* include/unistd.h [IS_IN (rtld)]: Include <dl-unistd.h>.
* sysdeps/generic/dl-unistd.h: New file.
* sysdeps/mach/hurd/dl-unistd.h: Likewise.
Since ld.so internal mmap functions are only used internally in ld.so,
they can be made hidden. Don't hide __mmap on Hurd, since __mmap in
ld.so will be preempted by the one in libc.so after bootstrap.
[BZ #19122]
* include/sys/mman.h [IS_IN (rtld)]: Include <dl-mman.h>.
* sysdeps/generic/dl-mman.h: New file.
* sysdeps/mach/hurd/dl-mman.h: Likewise.
This fixes build when _IO_funlockfile is a macro, fixes build where
_IO_acquire_lock_clear_flags2 is used, and fixes unlocking on unexpected
stack unwind.
* sysdeps/generic/stdio-lock.h [__EXCEPTIONS] (_IO_acquire_lock,
_IO_release_lock ): Use cleanup attribute on new
_IO_acquire_lock_file variable instead of assuming that
_IO_release_lock will be called.
[!__EXCEPTIONS] (_IO_acquire_lock): Define to non-existing
_IO_acquire_lock_needs_exceptions_enabled.
(_IO_acquire_lock_clear_flags2): New macro.
The new format lists the version on each line, as in:
VERSION SYMBOL TYPE [VALUE]
This makes it easier to process the files with line-oriented tools.
The abilist files were converted with this awk script:
/^[^ ]/ { version = $1 }
/^ / { print version, substr($0, 2) }
And sorted under the "C" locale with sort.
Since _dl_catch_error is only used internally in ld.so, it should be
declared in sysdeps/generic/ldsodefs.h, not include/dlfcn.h and it can
be made hidden.
[BZ #19122]
* include/dlfcn.h (_dl_catch_error): Moved to ...
* sysdeps/generic/ldsodefs.h (_dl_catch_error): Add
attribute_hidden.
Since internal _itoa functions are only used internally in ld.so and
libc.so, they can be made hidden.
[BZ #19122]
* sysdeps/generic/_itoa.h (_itoa): Add attribute_hidden.
(_itoa_word): Likewise.
Since _wordcopy_XXX functions are only used internally in ld.so and
libc.so, they can be made hidden.
[BZ #19122]
* sysdeps/generic/memcopy.h (_wordcopy_fwd_aligned): Add
attribute_hidden.
(_wordcopy_fwd_dest_aligned): Likewise.
(_wordcopy_bwd_aligned): Likewise.
(_wordcopy_bwd_dest_aligned): Likewise.
Honoring the LD_POINTER_GUARD environment variable in AT_SECURE mode
has security implications. This commit enables pointer guard
unconditionally, and the environment variable is now ignored.
[BZ #18928]
* sysdeps/generic/ldsodefs.h (struct rtld_global_ro): Remove
_dl_pointer_guard member.
* elf/rtld.c (_rtld_global_ro): Remove _dl_pointer_guard
initializer.
(security_init): Always set up pointer guard.
(process_envvars): Do not process LD_POINTER_GUARD.
For 32-bit MIPS and some other systems, various of the lrint, llrint,
lround, llround functions can be missing exceptions on overflow
because casts do not (in current GCC) result in the proper
exceptions. In the MIPS case there are two problems here: MIPS I code
generation uses an assembler macro that doesn't raise exceptions,
while the libgcc conversions of floating-point values to long long
also do not raise "invalid" on all overflow cases (and can raise
spurious "inexact").
This patch adds support in the generic code (only the functions for
which this problem has actually been seen) for forcing the "invalid"
exception in the problem cases, and enables that support for the
affected MIPS cases.
Tested for MIPS; also tested for x86_64 and x86 that installed
stripped shared libraries are unchanged by this patch.
[BZ #16399]
* sysdeps/generic/fix-fp-int-convert-overflow.h: New file.
* sysdeps/ieee754/dbl-64/s_llrint.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llrint) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_llround.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llround) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_lrint.c: Include
<fix-fp-int-convert-overflow.h>.
(__lrint) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_lround.c: Include
<fix-fp-int-convert-overflow.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_llrintf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llrintf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_llroundf.c: Include <fenv.h>,
<limits.h> and <fix-fp-int-convert-overflow.h>.
(__llroundf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_lrintf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__lrintf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_lroundf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__lroundf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/mips/mips32/fpu/fix-fp-int-convert-overflow.h: New file.
On powerpc32 hard-float, older processors (ones where fcfid is not
available for 32-bit code), GCC generates conversions from integers to
floating point that wrongly convert integer 0 to -0 instead of +0 in
FE_DOWNWARD mode. This in turn results in logb and a few other
functions wrongly returning -0 when they should return +0.
This patch works around this issue in glibc as I proposed in
<https://sourceware.org/ml/libc-alpha/2015-09/msg00728.html>, so that
the affected functions can be correct and the affected tests pass in
the absence of a GCC fix for this longstanding issue (GCC bug 67771 -
if fixed, of course we can put in GCC version conditionals, and
eventually phase out the workarounds). A new macro
FIX_INT_FP_CONVERT_ZERO is added in a new sysdeps header
fix-int-fp-convert-zero.h, and the powerpc32/fpu version of that
header defines the macro based on the results of a configure test for
whether such conversions use the fcfid instruction.
Tested for x86_64 (that installed stripped shared libraries are
unchanged by the patch) and powerpc (that HAVE_PPC_FCFID comes out to
0 as expected and that the relevant tests are fixed). Also tested a
build with GCC configured for -mcpu=power4 and verified that
HAVE_PPC_FCFID comes out to 1 in that case.
There are still some other issues to fix to get test-float and
test-double passing cleanly for older powerpc32 processors (apart from
the need for an ulps regeneration for powerpc). (test-ldouble will be
harder to get passing cleanly, but with a combination of selected
fixes to ldbl-128ibm code that don't involve significant performance
issues, allowing spurious underflow and inexact exceptions for that
format, and lots of XFAILing for the default case of unpatched libgcc,
it should be doable.)
[BZ #887]
[BZ #19049]
[BZ #19050]
* sysdeps/generic/fix-int-fp-convert-zero.h: New file.
* sysdeps/ieee754/dbl-64/e_log10.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log10): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/e_log2.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log2): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/s_erf.c: Include
<fix-int-fp-convert-zero.h>.
(__erfc): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/s_logb.c: Include
<fix-int-fp-convert-zero.h>.
(__logb): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/e_log10f.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log10f): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/e_log2f.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log2f): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/s_erff.c: Include
<fix-int-fp-convert-zero.h>.
(__erfcf): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/s_logbf.c: Include
<fix-int-fp-convert-zero.h>.
(__logbf): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/ldbl-128ibm/s_erfl.c: Include
<fix-int-fp-convert-zero.h>.
(__erfcl): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/ldbl-128ibm/s_logbl.c: Include
<fix-int-fp-convert-zero.h>.
(__logbl): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/powerpc/powerpc32/fpu/configure.ac: New file.
* sysdeps/powerpc/powerpc32/fpu/configure: New generated file.
* sysdeps/powerpc/powerpc32/fpu/fix-int-fp-convert-zero.h: New
file.
* config.h.in [_LIBC] (HAVE_PPC_FCFID): New macro.
For arguments with X^2 + Y^2 close to 1, clog and clog10 avoid large
errors from log(hypot) by computing X^2 + Y^2 - 1 in a way that avoids
cancellation error and then using log1p.
However, the thresholds for using that approach still result in log
being used on argument as large as sqrt(13/16) > 0.9, leading to
significant errors, in some cases above the 9ulp maximum allowed in
glibc libm. This patch arranges for the approach using log1p to be
used in any cases where |X|, |Y| < 1 and X^2 + Y^2 >= 0.5 (with the
existing allowance for cases where one of X and Y is very small),
adjusting the __x2y2m1 functions to work with the wider range of
inputs. This way, log only gets used on arguments below sqrt(1/2) (or
substantially above 1), where the error involved is much less.
Tested for x86_64, x86, mips64 and powerpc. For the ulps regeneration
I removed the existing clog and clog10 ulps before regenerating to
allow any reduced ulps to appear. Tests added include those found by
random test generation to produce large ulps either before or after
the patch, and some found by trying inputs close to the (0.75, 0.5)
threshold where the potential errors from using log are largest.
[BZ #19016]
* sysdeps/generic/math_private.h (__x2y2m1f): Update comment to
allow more cases with X^2 + Y^2 >= 0.5.
* sysdeps/ieee754/dbl-64/x2y2m1.c (__x2y2m1): Likewise. Add -1 as
normal element in sum instead of special-casing based on values of
arguments.
* sysdeps/ieee754/dbl-64/x2y2m1f.c (__x2y2m1f): Update comment.
* sysdeps/ieee754/ldbl-128/x2y2m1l.c (__x2y2m1l): Likewise. Add
-1 as normal element in sum instead of special-casing based on
values of arguments.
* sysdeps/ieee754/ldbl-128ibm/x2y2m1l.c (__x2y2m1l): Likewise.
* sysdeps/ieee754/ldbl-96/x2y2m1.c [FLT_EVAL_METHOD != 0]
(__x2y2m1): Update comment.
* sysdeps/ieee754/ldbl-96/x2y2m1l.c (__x2y2m1l): Likewise. Add -1
as normal element in sum instead of special-casing based on values
of arguments.
* math/s_clog.c (__clog): Handle more cases using log1p without
hypot.
* math/s_clog10.c (__clog10): Likewise.
* math/s_clog10f.c (__clog10f): Likewise.
* math/s_clog10l.c (__clog10l): Likewise.
* math/s_clogf.c (__clogf): Likewise.
* math/s_clogl.c (__clogl): Likewise.
* math/auto-libm-test-in: Add more tests of clog and clog10.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Various i386 libm functions return values with excess range and
precision; Wilco Dijkstra's patches to make isfinite etc. expand
inline cause this pre-existing issue to result in test failures (when
e.g. a result that overflows float but not long double gets counted as
overflowing for some purposes but not others).
This patch addresses those cases arising from functions defined in C,
adding a math_narrow_eval macro that forces values to memory to
eliminate excess precision if FLT_EVAL_METHOD indicates this is
needed, and is a no-op otherwise. I'll convert existing uses of
volatile and asm for this purpose to use the new macro later, once
i386 has clean test results again (which requires fixes for .S files
as well).
Tested for x86_64 and x86. Committed.
[BZ #18980]
* sysdeps/generic/math_private.h: Include <float.h>.
(math_narrow_eval): New macro.
[FLT_EVAL_METHOD != 0] (excess_precision): Likewise.
* sysdeps/ieee754/dbl-64/e_cosh.c (__ieee754_cosh): Use
math_narrow_eval on overflowing return value.
* sysdeps/ieee754/dbl-64/e_lgamma_r.c (__ieee754_lgamma_r):
Likewise.
* sysdeps/ieee754/dbl-64/e_sinh.c (__ieee754_sinh): Likewise.
* sysdeps/ieee754/flt-32/e_coshf.c (__ieee754_coshf): Likewise.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (__ieee754_lgammaf_r):
Likewise.
* sysdeps/ieee754/flt-32/e_sinhf.c (__ieee754_sinhf): Likewise.
It was noted in
<https://sourceware.org/ml/libc-alpha/2012-09/msg00305.html> that the
bits/*.h naming scheme should only be used for installed headers.
This patch renames bits/atomic.h to atomic-machine.h to follow that
convention.
This is the only change in this series that needs to change the
filename rather than simply removing a directory level (because both
atomic.h and bits/atomic.h exist at present).
Tested for x86_64 (testsuite, and that installed stripped shared
libraries are unchanged by the patch).
[BZ #14912]
* sysdeps/aarch64/bits/atomic.h: Move to ...
* sysdeps/aarch64/atomic-machine.h: ...here.
(_AARCH64_BITS_ATOMIC_H): Rename macro to
_AARCH64_ATOMIC_MACHINE_H.
* sysdeps/alpha/bits/atomic.h: Move to ...
* sysdeps/alpha/atomic-machine.h: ...here.
* sysdeps/arm/bits/atomic.h: Move to ...
* sysdeps/arm/atomic-machine.h: ...here. Update comments.
* bits/atomic.h: Move to ...
* sysdeps/generic/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/i386/bits/atomic.h: Move to ...
* sysdeps/i386/atomic-machine.h: ...here.
* sysdeps/ia64/bits/atomic.h: Move to ...
* sysdeps/ia64/atomic-machine.h: ...here.
* sysdeps/m68k/coldfire/bits/atomic.h: Move to ...
* sysdeps/m68k/coldfire/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/m68k/m680x0/m68020/bits/atomic.h: Move to ...
* sysdeps/m68k/m680x0/m68020/atomic-machine.h: ...here.
* sysdeps/microblaze/bits/atomic.h: Move to ...
* sysdeps/microblaze/atomic-machine.h: ...here.
* sysdeps/mips/bits/atomic.h: Move to ...
* sysdeps/mips/atomic-machine.h: ...here.
(_MIPS_BITS_ATOMIC_H): Rename macro to _MIPS_ATOMIC_MACHINE_H.
* sysdeps/powerpc/bits/atomic.h: Move to ...
* sysdeps/powerpc/atomic-machine.h: ...here. Update comments.
* sysdeps/powerpc/powerpc32/bits/atomic.h: Move to ...
* sysdeps/powerpc/powerpc32/atomic-machine.h: ...here. Update
comments. Include <atomic-machine.h> instead of <bits/atomic.h>.
* sysdeps/powerpc/powerpc64/bits/atomic.h: Move to ...
* sysdeps/powerpc/powerpc64/atomic-machine.h: ...here. Include
<atomic-machine.h> instead of <bits/atomic.h>.
* sysdeps/s390/bits/atomic.h: Move to ...
* sysdeps/s390/atomic-machine.h: ...here.
* sysdeps/sparc/sparc32/bits/atomic.h: Move to ...
* sysdeps/sparc/sparc32/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/sparc/sparc32/sparcv9/bits/atomic.h: Move to ...
* sysdeps/sparc/sparc32/sparcv9/atomic-machine.h: ...here.
* sysdeps/sparc/sparc64/bits/atomic.h: Move to ...
* sysdeps/sparc/sparc64/atomic-machine.h: ...here.
* sysdeps/tile/bits/atomic.h: Move to ...
* sysdeps/tile/atomic-machine.h: ...here.
* sysdeps/tile/tilegx/bits/atomic.h: Move to ...
* sysdeps/tile/tilegx/atomic-machine.h: ...here. Include
<sysdeps/tile/atomic-machine.h> instead of
<sysdeps/tile/bits/atomic.h>.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/tile/tilepro/bits/atomic.h: Move to ...
* sysdeps/tile/tilepro/atomic-machine.h: ...here. Include
<sysdeps/tile/atomic-machine.h> instead of
<sysdeps/tile/bits/atomic.h>.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/unix/sysv/linux/arm/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/arm/atomic-machine.h: ...here. Include
<sysdeps/arm/atomic-machine.h> instead of
<sysdeps/arm/bits/atomic.h>.
* sysdeps/unix/sysv/linux/hppa/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/hppa/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/unix/sysv/linux/m68k/coldfire/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/m68k/coldfire/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/unix/sysv/linux/nios2/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/nios2/atomic-machine.h: ...here.
(_NIOS2_BITS_ATOMIC_H): Rename macro to _NIOS2_ATOMIC_MACHINE_H.
* sysdeps/unix/sysv/linux/sh/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/sh/atomic-machine.h: ...here.
* sysdeps/x86_64/bits/atomic.h: Move to ...
* sysdeps/x86_64/atomic-machine.h: ...here.
* include/atomic.h: Include <atomic-machine.h> instead of
<bits/atomic.h>.
The existing implementations of lgamma functions (except for the ia64
versions) use the reflection formula for negative arguments. This
suffers large inaccuracy from cancellation near zeros of lgamma (near
where the gamma function is +/- 1).
This patch fixes this inaccuracy. For arguments above -2, there are
no zeros and no large cancellation, while for sufficiently large
negative arguments the zeros are so close to integers that even for
integers +/- 1ulp the log(gamma(1-x)) term dominates and cancellation
is not significant. Thus, it is only necessary to take special care
about cancellation for arguments around a limited number of zeros.
Accordingly, this patch uses precomputed tables of relevant zeros,
expressed as the sum of two floating-point values. The log of the
ratio of two sines can be computed accurately using log1p in cases
where log would lose accuracy. The log of the ratio of two gamma(1-x)
values can be computed using Stirling's approximation (the difference
between two values of that approximation to lgamma being computable
without computing the two values and then subtracting), with
appropriate adjustments (which don't reduce accuracy too much) in
cases where 1-x is too small to use Stirling's approximation directly.
In the interval from -3 to -2, using the ratios of sines and of
gamma(1-x) can still produce too much cancellation between those two
parts of the computation (and that interval is also the worst interval
for computing the ratio between gamma(1-x) values, which computation
becomes more accurate, while being less critical for the final result,
for larger 1-x). Because this can result in errors slightly above
those accepted in glibc, this interval is instead dealt with by
polynomial approximations. Separate polynomial approximations to
(|gamma(x)|-1)(x-n)/(x-x0) are used for each interval of length 1/8
from -3 to -2, where n (-3 or -2) is the nearest integer to the
1/8-interval and x0 is the zero of lgamma in the relevant half-integer
interval (-3 to -2.5 or -2.5 to -2).
Together, the two approaches are intended to give sufficient accuracy
for all negative arguments in the problem range. Outside that range,
the previous implementation continues to be used.
Tested for x86_64, x86, mips64 and powerpc. The mips64 and powerpc
testing shows up pre-existing problems for ldbl-128 and ldbl-128ibm
with large negative arguments giving spurious "invalid" exceptions
(exposed by newly added tests for cases this patch doesn't affect the
logic for); I'll address those problems separately.
[BZ #2542]
[BZ #2543]
[BZ #2558]
* sysdeps/ieee754/dbl-64/e_lgamma_r.c (__ieee754_lgamma_r): Call
__lgamma_neg for arguments from -28.0 to -2.0.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (__ieee754_lgammaf_r): Call
__lgamma_negf for arguments from -15.0 to -2.0.
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r):
Call __lgamma_negl for arguments from -48.0 or -50.0 to -2.0.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c (__ieee754_lgammal_r):
Call __lgamma_negl for arguments from -33.0 to -2.0.
* sysdeps/ieee754/dbl-64/lgamma_neg.c: New file.
* sysdeps/ieee754/dbl-64/lgamma_product.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_productf.c: Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_product.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_productl.c: Likewise.
* sysdeps/generic/math_private.h (__lgamma_negf): New prototype.
(__lgamma_neg): Likewise.
(__lgamma_negl): Likewise.
(__lgamma_product): Likewise.
(__lgamma_productl): Likewise.
* math/Makefile (libm-calls): Add lgamma_neg and lgamma_product.
* math/auto-libm-test-in: Add more tests of lgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
It was noted in
<https://sourceware.org/ml/libc-alpha/2012-09/msg00305.html> that the
bits/*.h naming scheme should only be used for installed headers.
This patch renames bits/linkmap.h to plain linkmap.h to follow that
convention.
Tested for x86_64 (testsuite, and that installed stripped shared
libraries are unchanged by the patch).
[BZ #14912]
* bits/linkmap.h: Move to ...
* sysdeps/generic/linkmap.h: ...here.
* sysdeps/aarch64/bits/linkmap.h: Move to ...
* sysdeps/aarch64/linkmap.h: ...here.
* sysdeps/arm/bits/linkmap.h: Move to ...
* sysdeps/arm/linkmap.h: ...here.
* sysdeps/hppa/bits/linkmap.h: Move to ...
* sysdeps/hppa/linkmap.h: ...here.
* sysdeps/ia64/bits/linkmap.h: Move to ...
* sysdeps/ia64/linkmap.h: ...here.
* sysdeps/mips/bits/linkmap.h: Move to ...
* sysdeps/mips/linkmap.h: ...here.
* sysdeps/s390/bits/linkmap.h: Move to ...
* sysdeps/s390/linkmap.h: ...here.
* sysdeps/sh/bits/linkmap.h: Move to ...
* sysdeps/sh/linkmap.h: ...here.
* sysdeps/x86/bits/linkmap.h: Move to ...
* sysdeps/x86/linkmap.h: ...here.
* include/link.h: Include <linkmap.h> instead of <bits/linkmap.h>.
It was noted in
<https://sourceware.org/ml/libc-alpha/2012-09/msg00305.html> that the
bits/*.h naming scheme should only be used for installed headers.
This patch renames bits/stdio-lock.h to plain stdio-lock.h to follow
that convention.
Tested for x86_64 (testsuite, and that installed stripped shared
libraries are unchanged by the patch).
[BZ #14912]
* bits/stdio-lock.h: Move to ...
* sysdeps/generic/stdio-lock.h: ...here.
(_BITS_STDIO_LOCK_H): Rename macro to _STDIO_LOCK_H.
* sysdeps/nptl/bits/stdio-lock.h: Move to ...
* sysdeps/nptl/stdio-lock.h: ...here.
(_BITS_STDIO_LOCK_H): Rename macro to _STDIO_LOCK_H.
* include/libio.h: Include <stdio-lock.h> instead of
<bits/stdio-lock.h>.
* sysdeps/nptl/fork.c: Likewise.
* sysdeps/pthread/flockfile.c: Likewise.
* sysdeps/pthread/ftrylockfile.c: Likewise.
* sysdeps/pthread/funlockfile.c: Likewise.
It was noted in
<https://sourceware.org/ml/libc-alpha/2012-09/msg00305.html> that the
bits/*.h naming scheme should only be used for installed headers.
This patch renames bits/libc-tsd.h to plain libc-tsd.h to follow that
convention.
Tested for x86_64 (testing, and that installed stripped shared
libraries are unchanged by the patch).
[BZ #14912]
* bits/libc-tsd.h: Move to ...
* sysdeps/generic/libc-tsd.h: ...here.
(_GENERIC_BITS_LIBC_TSD_H): Rename macro to _GENERIC_LIBC_TSD_H.
* sysdeps/mach/hurd/bits/libc-tsd.h: Move to ...
* sysdeps/mach/hurd/libc-tsd.h: ...here.
(_BITS_LIBC_TSD_H): Rename macro to _LIBC_TSD_H.
* include/ctype.h: Include <libc-tsd.h> instead of
<bits/libc-tsd.h>.
* include/rpc/rpc.h: Likewise.
* locale/localeinfo.h: Likewise.
* sunrpc/rpc_thread.c: Likewise.
* sysdeps/mach/hurd/malloc-machine.h: Likewise.
* sysdeps/nptl/malloc-machine.h: Likewise.
Building glibc on s390-32 with gcc option -mzarch produces the error due to
sysdeps/s390/jmpbuf-unwind.h:37:10: (void *) (_Unwind_GetCFA (_context):
cast to pointer from integer of different size [-Werror=int-to-pointer-cast]
Building on s390-32 in esa-mode or s390-64 is fine.
_Unwind_GetCFA returns an _Unwind_Word which is an unsigned
with a size of 4 bytes on s390-32 (esa-mode) and 8 bytes on s390-64.
On s390-32 (zarch-mode), _Unwind_Word has a size of 8 bytes, too.
_Unwind_Word is defined in sysdeps/generic/unwind.h as
typedef unsigned _Unwind_Word __attribute__((__mode__(__word__)));
In libgcc unwind header (<gcc-src>/libgcc/unwind-generic.h) this typedef has
changed to "typedef unsigned _Unwind_Word __attribute__((__mode__(__unwind_word__)));"
in June 2008.
With this mode, _Unwind_Word has a size of 4 bytes on s390-32 (zarch-mode).
The same change applies to _Unwind_Sword.
Thus this patch updates the unwind header according to these changes.
Afterwards, the int-to-pointer-cast-warning is gone away on s390-32 (zarch-mode)
and the testsuite runs with the same test-failures as s390-32 (esa-mode)
plus FAIL: c++-types-check. Here register_t is expected to has a size of 4 bytes,
but it has a size of 8 bytes due to:
posix/sys/types.h:205:typedef int register_t __attribute__ ((__mode__ (__word__)));
The libgcc-patch for gcc 4.4 can be found here:
"[PATCH, spu, unwind] Remove attribute ((mode (word))) from unwind.h"
https://gcc.gnu.org/ml/gcc-patches/2008-06/msg00969.html
ChangeLog:
* sysdeps/generic/unwind.h
(_Unwind_Word): Use __mode__(__unwind_word__)
instead of __mode__(__word__).
(_Unwind_Sword): Likewise.
With copy relocation, address of protected data defined in the shared
library may be external. When there is a relocation against the
protected data symbol within the shared library, we need to check if we
should skip the definition in the executable copied from the protected
data. This patch adds ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA and defines
it for x86. If ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA isn't 0, do_lookup_x
will skip the data definition in the executable from copy reloc.
[BZ #17711]
* elf/dl-lookup.c (do_lookup_x): When UNDEF_MAP is NULL, which
indicates it is called from do_lookup_x on relocation against
protected data, skip the data definion in the executable from
copy reloc.
(_dl_lookup_symbol_x): Pass ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA,
instead of ELF_RTYPE_CLASS_PLT, to do_lookup_x for
EXTERN_PROTECTED_DATA relocation against STT_OBJECT symbol.
* sysdeps/generic/ldsodefs.h * (ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA):
New. Defined to 4 if DL_EXTERN_PROTECTED_DATA is defined,
otherwise to 0.
* sysdeps/i386/dl-lookupcfg.h (DL_EXTERN_PROTECTED_DATA): New.
* sysdeps/i386/dl-machine.h (elf_machine_type_class): Set class
to ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA for R_386_GLOB_DAT.
* sysdeps/x86_64/dl-lookupcfg.h (DL_EXTERN_PROTECTED_DATA): New.
* sysdeps/x86_64/dl-machine.h (elf_machine_type_class): Set class
to ELF_RTYPE_CLASS_EXTERN_PROTECTED_DATA for R_X86_64_GLOB_DAT.
The ability to recursively call dlopen is useful for malloc
implementations that wish to load other dynamic modules that
implement reentrant/AS-safe functions to use in their own
implementation.
Given that a user malloc implementation may be called by an
ongoing dlopen to allocate memory the user malloc
implementation interrupts dlopen and if it calls dlopen again
that's a reentrant call.
This patch fixes the issues with the ld.so.cache mapping
and the _r_debug assertion which prevent this from working
as expected.
See:
https://sourceware.org/ml/libc-alpha/2014-12/msg00446.html
Concluding the fixes for C90 libm functions calling C99 fe* functions,
this patch fixes the case of feupdateenv by making it a weak alias for
__feupdateenv and making the affected code call __feupdateenv.
Tested for x86_64 (testsuite, and that installed stripped shared
libraries are unchanged by the patch). Also tested for ARM
(soft-float) that the math.h linknamespace tests now pass.
[BZ #17748]
* include/fenv.h (__feupdateenv): Use libm_hidden_proto.
* math/feupdateenv.c (__feupdateenv): Use libm_hidden_def.
* sysdeps/aarch64/fpu/feupdateenv.c (feupdateenv): Rename to
__feupdateenv and define as weak alias of __feupdateenv. Use
libm_hidden_weak.
* sysdeps/alpha/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/arm/feupdateenv.c (feupdateenv): Rename to __feupdateenv
and define as weak alias of __feupdateenv. Use libm_hidden_weak.
* sysdeps/hppa/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/i386/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/ia64/fpu/feupdateenv.c (feupdateenv): Rename to
__feupdateenv and define as weak alias of __feupdateenv. Use
libm_hidden_weak.
* sysdeps/m68k/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/mips/fpu/feupdateenv.c (feupdateenv): Rename to
__feupdateenv and define as weak alias of __feupdateenv. Use
libm_hidden_weak.
* sysdeps/powerpc/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/powerpc/nofpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/feupdateenv.c
(__feupdateenv): Likewise.
* sysdeps/s390/fpu/feupdateenv.c (feupdateenv): Rename to
__feupdateenv and define as weak alias of __feupdateenv. Use
libm_hidden_weak.
* sysdeps/sh/sh4/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/sparc/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/tile/math_private.h (__feupdateenv): New inline
function.
* sysdeps/x86_64/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/generic/math_private.h (default_libc_feupdateenv): Call
__feupdateenv instead of feupdateenv.
(default_libc_feupdateenv_test): Likewise.
(libc_feresetround_ctx): Likewise.
Continuing the fixes for C90 libm functions calling C99 fe* functions,
this patch fixes the case of fesetround by making it a weak alias of
__fesetround and making the affected code call __fesetround. An
existing __fesetround function in fenv_libc.h for powerpc is renamed
to __fesetround_inline.
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by the patch). Also tested for ARM
(soft-float) that fesetround failures disappear from the linknamespace
test results (feupdateenv remains to be addressed to complete fixing
bug 17748).
[BZ #17748]
* include/fenv.h (__fesetround): Declare. Use libm_hidden_proto.
* math/fesetround.c (fesetround): Rename to __fesetround and
define as weak alias of __fesetround. Use libm_hidden_weak.
* sysdeps/aarch64/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/alpha/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/arm/fesetround.c (fesetround): Likewise.
* sysdeps/hppa/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/i386/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/ia64/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/m68k/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/mips/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/powerpc/fpu/fenv_libc.h (__fesetround): Rename to
__fesetround_inline.
* sysdeps/powerpc/fpu/fenv_private.h (libc_fesetround_ppc): Call
__fesetround_inline instead of __fesetround.
* sysdeps/powerpc/fpu/fesetround.c (fesetround): Rename to
__fesetround and define as weak alias of __fesetround. Use
libm_hidden_weak. Call __fesetround_inline instead of
__fesetround.
* sysdeps/powerpc/nofpu/fesetround.c (fesetround): Rename to
__fesetround and define as weak alias of __fesetround. Use
libm_hidden_weak.
* sysdeps/powerpc/powerpc32/e500/nofpu/fesetround.c (fesetround):
Likewise.
* sysdeps/s390/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/sh/sh4/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/sparc/fpu/fesetround.c (fesetround): Likewise.
* sysdeps/tile/math_private.h (__fesetround): New inline function.
* sysdeps/x86_64/fpu/fesetround.c (fesetround): Rename to
__fesetround and define as weak alias of __fesetround. Use
libm_hidden_weak.
* sysdeps/generic/math_private.h (default_libc_fesetround): Call
__fesetround instead of fesetround.
(default_libc_feholdexcept_setround): Likewise.
(libc_feholdsetround_ctx): Likewise.
(libc_feholdsetround_noex_ctx): Likewise.
Continuing the fixes for C90 libm functions calling C99 fe* functions,
this patch fixes the case of fesetenv by making it a weak alias of
__fesetenv and making the affected code (including various copies of
feupdateenv which also gets called from C90 functions) call
__fesetenv.
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by the patch). Also tested for ARM
(soft-float) that fesetenv failures disappear from the linknamespace
test results (fsetround and feupdateenv remain to be addressed to
complete fixing bug 17748).
[BZ #17748]
* include/fenv.h (__fesetenv): Use libm_hidden_proto.
* math/fesetenv.c (__fesetenv): Use libm_hidden_def.
* sysdeps/aarch64/fpu/fesetenv.c (fesetenv): Rename to __fesetenv
and define as weak alias of __fesetenv. Use libm_hidden_weak.
* sysdeps/alpha/fpu/fesetenv.c (__fesetenv): Use libm_hidden_def.
* sysdeps/arm/fesetenv.c (fesetenv): Rename to __fesetenv and
define as weak alias of __fesetenv. Use libm_hidden_weak.
* sysdeps/hppa/fpu/fesetenv.c (fesetenv): Likewise.
* sysdeps/i386/fpu/fesetenv.c (__fesetenv): Use libm_hidden_def.
* sysdeps/ia64/fpu/fesetenv.c (fesetenv): Rename to __fesetenv and
define as weak alias of __fesetenv. Use libm_hidden_weak.
* sysdeps/m68k/fpu/fesetenv.c (__fesetenv): Use libm_hidden_def.
* sysdeps/mips/fpu/fesetenv.c (fesetenv): Rename to __fesetenv and
define as weak alias of __fesetenv. Use libm_hidden_weak.
* sysdeps/powerpc/fpu/fesetenv.c (__fesetenv): Use
libm_hidden_def.
* sysdeps/powerpc/nofpu/fesetenv.c (__fesetenv): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/fesetenv.c (__fesetenv):
Likewise.
* sysdeps/s390/fpu/fesetenv.c (fesetenv): Rename to __fesetenv and
define as weak alias of __fesetenv. Use libm_hidden_weak.
* sysdeps/sh/sh4/fpu/fesetenv.c (fesetenv): Likewise.
* sysdeps/sparc/fpu/fesetenv.c (__fesetenv): Use libm_hidden_def.
* sysdeps/tile/math_private.h (__fesetenv): New inline function.
* sysdeps/x86_64/fpu/fesetenv.c (fesetenv): Rename to __fesetenv
and define as weak alias of __fesetenv. Use libm_hidden_weak.
* sysdeps/generic/math_private.h (default_libc_fesetenv): Use
__fesetenv instead of fesetenv.
(libc_feresetround_noex_ctx): Likewise.
* sysdeps/alpha/fpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/hppa/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/i386/fpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/ia64/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/m68k/fpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/mips/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/powerpc/nofpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/feupdateenv.c
(__feupdateenv): Likewise.
* sysdeps/s390/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/sh/sh4/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/sparc/fpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/x86_64/fpu/feupdateenv.c (__feupdateenv): Likewise.
Continuing the fixes for C90 libm functions calling C99 fe* functions,
this patch fixes the case of feholdexcept by making it a weak alias of
__feholdexcept and making the affected code call __feholdexcept.
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by the patch). Also tested for ARM
(soft-float) that feholdexcept failures disappear from the
linknamespace test failures (fesetenv, fsetround and feupdateenv
remain to be addressed to complete fixing bug 17748).
[BZ #17748]
* include/fenv.h (__feholdexcept): Declare. Use
libm_hidden_proto.
* math/feholdexcpt.c (feholdexcept): Rename to __feholdexcept and
define as weak alias of __feholdexcept. Use libm_hidden_weak.
* sysdeps/aarch64/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/alpha/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/arm/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/hppa/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/i386/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/ia64/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/m68k/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/mips/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/powerpc/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/powerpc/nofpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/feholdexcpt.c
(feholdexcept): Likewise.
* sysdeps/s390/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/sh/sh4/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/sparc/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/x86_64/fpu/feholdexcpt.c (feholdexcept): Likewise.
* sysdeps/generic/math_private.h (default_libc_feholdexcept): Use
__feholdexcept instead of feholdexcept.
(default_libc_feholdexcept_setround): Likewise.
Some C90 libm functions call fegetenv via libc_feholdsetround*
functions in math_private.h. This patch makes them call __fegetenv
instead, making fegetenv into a weak alias for __fegetenv as needed.
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by the patch). Also tested for ARM
(soft-float) that fegetenv failures disappear from the linknamespace
test failures (however, similar fixes will also be needed for
fegetround, feholdexcept, fesetenv, fesetround and feupdateenv before
this set of namespace issues covered by bug 17748 is fully fixed and
those linknamespace tests start passing).
[BZ #17748]
* include/fenv.h (__fegetenv): Use libm_hidden_proto.
* math/fegetenv.c (__fegetenv): Use libm_hidden_def.
* sysdeps/aarch64/fpu/fegetenv.c (fegetenv): Rename to __fegetenv
and define as weak alias of __fegetenv. Use libm_hidden_weak.
* sysdeps/alpha/fpu/fegetenv.c (__fegetenv): Use libm_hidden_def.
* sysdeps/arm/fegetenv.c (fegetenv): Rename to __fegetenv and
define as weak alias of __fegetenv. Use libm_hidden_weak.
* sysdeps/hppa/fpu/fegetenv.c (fegetenv): Likewise.
* sysdeps/i386/fpu/fegetenv.c (__fegetenv): Use libm_hidden_def.
* sysdeps/ia64/fpu/fegetenv.c (fegetenv): Rename to __fegetenv and
define as weak alias of __fegetenv. Use libm_hidden_weak.
* sysdeps/m68k/fpu/fegetenv.c (__fegetenv): Use libm_hidden_def.
* sysdeps/mips/fpu/fegetenv.c (fegetenv): Rename to __fegetenv and
define as weak alias of __fegetenv. Use libm_hidden_weak.
* sysdeps/powerpc/fpu/fegetenv.c (__fegetenv): Use
libm_hidden_def.
* sysdeps/powerpc/nofpu/fegetenv.c (__fegetenv): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/fegetenv.c (__fegetenv):
Likewise.
* sysdeps/s390/fpu/fegetenv.c (fegetenv): Rename to __fegetenv and
define as weak alias of __fegetenv. Use libm_hidden_weak.
* sysdeps/sh/sh4/fpu/fegetenv.c (fegetenv): Likewise.
* sysdeps/sparc/fpu/fegetenv.c (__fegetenv): Use libm_hidden_def.
* sysdeps/tile/math_private.h (__fegetenv): New inline function.
* sysdeps/x86_64/fpu/fegetenv.c (fegetenv): Rename to __fegetenv
and define as weak alias of __fegetenv. Use libm_hidden_weak.
* sysdeps/generic/math_private.h (libc_feholdsetround_ctx): Use
__fegetenv instead of fegetenv.
(libc_feholdsetround_noex_ctx): Likewise.
__tls_get_addr/___tls_get_addr is always defined in ld.so. There is
no need to call them via PLT inside ld.so. This patch adds the hidden
__tls_get_addr/___tls_get_addr aliases and calls them directly from
_dl_tlsdesc_dynamic. There is no need to set up the EBX register in
i386 _dl_tlsdesc_dynamic when calling the hidden ___tls_get_addr.
* elf/dl-tls.c (__tls_get_addr): Provide the hidden definition
if not defined.
* sysdeps/i386/dl-tls.h (___tls_get_addr): Provide the hidden
definition.
* sysdeps/i386/dl-tlsdesc.S (_dl_tlsdesc_dynamic): Call the
hidden ___tls_get_addr.
* sysdeps/x86_64/dl-tlsdesc.S (_dl_tlsdesc_dynamic): Call the
hidden __tls_get_addr.
* sysdeps/generic/localplt.data (__tls_get_addr): Removed.
* sysdeps/unix/sysv/linux/i386/localplt.data (___tls_get_addr):
Likewise.
On ARM, where profil_counter is not static, it is brought in by
references to various standard functions, as noted in
<https://sourceware.org/ml/libc-alpha/2014-11/msg00890.html>, although
it is not a standard function itself. I don't know if this also
causes test failures on SPARC, although I see no reason for it not to
do so.
This patch fixes this namespace issue. profil_counter is renamed to
__profil_counter and made a weak alias on ARM and SPARC. Because of
the uses in profil.c / sprofil.c it seems simplest to make the rename
globally, including on the other architectures for which
profil_counter was static and so the change is of no substance. The
variant names profil_counter_* used in sprofil.c are also renamed to
start with __ so that undesired function names do not get exported in
static libc.
As I noted in bug 17726, profil_counter should probably be a compat
symbol on ARM and SPARC, so it wouldn't exist at all in static libc
even as a weak alias. Since defining a compat symbol still requires
an internal name as a target of an alias, this patch still seems
reasonable as an intermediate step towards that goal: it wouldn't be
possible for the function simply to be static profil_counter on ARM
and SPARC with profil_counter also being the exported compat symbol
name, so profil.c / sprofil.c would still need to be prepared to call
the function under another name (here, __profil_counter).
Tested for x86_64 (testsuite, and that stripped installed shared
libraries are unchanged by the patch) and ARM (ABI and linknamespace
tests - this patch reduces the number of linknamespace failures I see
on ARM from 227 to 5, the residue being math.h failures for fe*
functions and for j0l/j1n/jnl/y0l/y1l/ynl aliases).
2014-12-17 Joseph Myers <joseph@codesourcery.com>
[BZ #17725]
* sysdeps/generic/profil-counter.h (profil_counter): Rename to
__profil_counter.
* sysdeps/unix/sysv/linux/hppa/profil-counter.h (profil_counter):
Likewise.
* sysdeps/unix/sysv/linux/i386/profil-counter.h (profil_counter):
Likewise.
* sysdeps/unix/sysv/linux/ia64/profil-counter.h (profil_counter):
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/profil-counter.h
(profil_counter): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/profil-counter.h
(profil_counter): Likewise.
* sysdeps/unix/sysv/linux/sh/profil-counter.h (profil_counter):
Likewise.
* sysdeps/unix/sysv/linux/tile/profil-counter.h (profil_counter):
Likewise.
* sysdeps/unix/sysv/linux/x86_64/profil-counter.h
(profil_counter): Likewise.
* sysdeps/unix/sysv/linux/arm/profil-counter.h (profil_counter):
Likewise.
[!__profil_counter] (profil_counter): Define as weak alias of
__profil_counter.
* sysdeps/unix/sysv/linux/sparc/sparc32/profil-counter.h
(profil_counter): Rename to __profil_counter.
[!__profil_counter] (profil_counter): Define as weak alias of
__profil_counter.
* sysdeps/unix/sysv/linux/sparc/sparc64/profil-counter.h
(profil_counter): Rename to __profil_counter.
[!__profil_counter] (profil_counter): Define as weak alias of
__profil_counter.
* sysdeps/posix/profil.c: Update comment referring to
profil_counter.
(__profil): Use __profil_counter instead of profil_counter.
* sysdeps/posix/sprofil.c (profil_counter): Rename to
__profil_counter. Use __profil_counter_ushort and
__profil_counter_uint in definitions.
(__sprofil): Use __profil_counter_uint and __profil_counter_ushort
instead of profil_counter_uint and profil_counter_ushort.
For maximum paranoia we run ld.so through the normal set
of tests for all of the shared libraries. This includes
running ld.so through check-localplt, check-textrel, and
check-execstack. While none of these should trigger any
failures given the way ld.so is built, it might possibly
fail if a developer does something wrong. This paranoia
was triggered by a discussion over the use of __strcpy
vs. strcpy [1] and if the symbol could leak and use the
libc.so version.
The check-localplt test fails right away because localplt.data
needs updating for all arches. By default we add 6 new symbols:
__tls_get_addr, __libc_memalign, malloc, calloc, realloc and
free. Other machines like i386, power, and s390 require some
different symbol sets e.g. ___tls_get_addr vs. __tls_get_addr
for i386.
Verified for i386
Verified for x86_64
Verified for ppc32
Verified for ppc64
Verified for ppc64le
Verified for arm
Verified for aarch64
Verified for s390
Verified for s390x
Guessed for alpha
Guessed for ia64
Guessed for m68k
Guessed for microblaze
Guessed for sparc32
Guessed for sparc64
Defaults for sh
Defaults for mips
Defaults for hppa
Defaults for tile
Machine manintainers notified to double check the data
used in localplt.data.
[1] https://sourceware.org/ml/libc-alpha/2014-10/msg00548.html
Completing the removal of the obsolete INTDEF / INTUSE mechanism, this
patch removes the final use - that for _dl_starting_up - replacing it
by rtld_hidden_def / rtld_hidden_proto. Having removed the last use,
the mechanism itself is also removed.
Tested for x86_64 that installed stripped shared libraries are
unchanged by the patch. (This is not much of a test since this
variable is only defined and used in the !HAVE_INLINED_SYSCALLS case.)
[BZ #14132]
* include/libc-symbols.h (INTUSE): Remove macro.
(INTDEF): Likewise.
(INTVARDEF): Likewise.
(_INTVARDEF): Likewise.
(INTDEF2): Likewise.
(INTVARDEF2): Likewise.
* elf/rtld.c [!HAVE_INLINED_SYSCALLS] (_dl_starting_up): Use
rtld_hidden_def instead of INTVARDEF.
* sysdeps/generic/ldsodefs.h [IS_IN_rtld]
(_dl_starting_up_internal): Remove declaration.
(_dl_starting_up): Use rtld_hidden_proto.
* elf/dl-init.c [!HAVE_INLINED_SYSCALLS] (_dl_starting_up): Remove
declaration.
[!HAVE_INLINED_SYSCALLS] (_dl_starting_up_internal): Likewise.
(_dl_init) [!HAVE_INLINED_SYSCALLS]: Don't use INTUSE with
_dl_starting_up.
* elf/dl-writev.h (_dl_writev): Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.h [!HAVE_INLINED_SYSCALLS]
(DL_STARTING_UP_DEF): Use __GI__dl_starting_up instead of
_dl_starting_up_internal.
Continuing the removal of the obsolete INTDEF / INTUSE mechanism, this
patch replaces its use for _dl_mcount with use of rtld_hidden_def /
rtld_hidden_proto.
Tested for x86_64 that installed stripped shared libraries are
unchanged by the patch.
[BZ #14132]
* elf/dl-profile.c (_dl_mcount): Use rtld_hidden_def instead of
INTDEF.
* sysdeps/generic/ldsodefs.h (_dl_mcount_internal): Remove
declaration.
(_dl_mcount): Use rtld_hidden_proto.
* elf/dl-runtime.c (_dl_profile_fixup): Don't use INTUSE with
_dl_mcount.
* elf/rtld.c (_rtld_global_ro): Likewise.
Continuing the removal of the obsolete INTDEF / INTUSE mechanism, this
patch replaces its use for _dl_argv with rtld_hidden_data_def and
rtld_hidden_proto. Some places in .S files that previously used
_dl_argv_internal or INTUSE(_dl_argv) now use __GI__dl_argv directly
(there are plenty of existing examples of such direct use of __GI_*).
A single place in rtld.c previously used _dl_argv without INTUSE,
apparently accidentally, while the rtld_hidden_proto mechanism avoids
such accidential omissions. As a consequence, this patch *does*
change the contents of stripped ld.so. However, the installed
stripped shared libraries are identical to those you get if instead of
this patch you change that single _dl_argv use to use INTUSE, without
any other changes.
Tested for x86_64 (testsuite as well as comparison of installed
stripped shared libraries as described above).
[BZ #14132]
* sysdeps/generic/ldsodefs.h (_dl_argv): Use rtld_hidden_proto.
[IS_IN_rtld] (_dl_argv_internal): Do not declare.
(rtld_progname): Make macro definition unconditional.
* elf/rtld.c (_dl_argv): Use rtld_hidden_data_def instead of
INTDEF.
(dlmopen_doit): Do not use INTUSE with _dl_argv.
(dl_main): Likewise.
* elf/dl-sysdep.c (_dl_sysdep_start): Likewise.
* sysdeps/alpha/dl-machine.h (RTLD_START): Use __GI__dl_argv
instead of _dl_argv_internal.
* sysdeps/powerpc/powerpc32/dl-start.S (_dl_start_user): Use
__GI__dl_argv instead of INTUSE(_dl_argv).
* sysdeps/powerpc/powerpc64/dl-machine.h (RTLD_START): Use
__GI__dl_argv instead of _dl_argv_internal.
Continuing the removal of the obsolete INTDEF / INTUSE mechanism, this
patch replaces its use in unwind-dw2-fde.c with hidden_def and
hidden_proto.
Tested for x86. This patch does result in code generation differences
(for some reason GCC decides to partition __register_frame_info_bases
after the patch).
[BZ #14132]
* sysdeps/generic/unwind-dw2-fde.c
(__register_frame_info_bases_internal): Do not declare.
(__register_frame_info_table_bases_internal): Likewise.
(__deregister_frame_info_bases_internal): Likewise.
(__register_frame_info_bases): Declare and use hidden_proto before
definition. Use hidden_def instead of INTDEF.
(__register_frame_info_table_bases): Likewise.
(__deregister_frame_info_bases): Likewise.
(__register_frame_info): Do not use INTUSE.
(__register_frame): Likewise.
(__register_frame_info_table): Likewise.
(__register_frame_table): Likewise.
(__deregister_frame_info): Likewise.
(__deregister_frame): Likewise.
The PAGE_COPY_THRESHOLD macro is meant to be overridden by
architecture-specific pagecopy.h, but it is currently done only by
mach; all other architectures use the default. Check to see if the
macro is defined in addition to whether it is set to a non-zero value.
Define MEMCPY_OK_FOR_FWD_MEMMOVE in memcopy.h and let arch-specific
implementations of that file override the value if necessary. This
override is only useful for tile and moving this macro to memcopy.h
allows us to remove the tile-specific memmove.c.
This patch removes configure tests for assembler CFI support (and
thereby eliminates an architecture-specific case in the main
configure.ac), instead assuming that support is present
unconditionally.
The main test was added in 2003 around the time CFI support was added
to the assembler. cfi_personality and cfi_lsda support were added to
the assembler in 2006. cfi_sections support was added in 2009, a few
weeks before binutils 2.20 was released; it's in 2.20, the minimum
supported version, so even that configure test is obsolete.
Tested x86_64 that the installed shared libraries are unchanged by
this patch.
* configure.ac (libc_cv_asm_cfi_directives): Remove configure
test.
* configure: Regenerated.
* config.h.in (HAVE_ASM_CFI_DIRECTIVES): Remove macro undefine.
* sysdeps/arm/configure.ac (libc_cv_asm_cfi_directive_sections):
Remove configure test.
* sysdeps/arm/configure: Regenerated.
* sysdeps/nptl/configure.ac: Do not check
libc_cv_asm_cfi_directives.
* sysdeps/nptl/configure: Regenerated.
* sysdeps/x86_64/nptl/configure.ac: Remove file.
* sysdeps/x86_64/nptl/configure: Remove generated file.
* b/sysdeps/generic/sysdep.h [HAVE_ASM_CFI_DIRECTIVES]: Make code
unconditional.
[!HAVE_ASM_CFI_DIRECTIVES]: Remove conditional code.
This patch adds a generic implementation of HAVE_RM_CTX using standard
fenv calls. As a result math functions using SET_RESTORE_ROUND* macros
do not suffer from a large slowdown on targets which do not implement
optimized libc_fe*_ctx inline functions. Most of the libc_fe* inline
functions are now unused and could be removed in the future (there are
a few math functions left which use a mixture of standard fenv calls
and libc_fe* inline functions - they could be updated to use
SET_RESTORE_ROUND or improved to avoid expensive fenv manipulations
across just a few FP instructions).
libc_feholdsetround*_noex_ctx is added to enable better optimization of
SET_RESTORE_ROUND_NOEX* implementations.
Performance measurements on ARM and x86 of sin() show significant gains
over the current default, fairly close to a highly optimized fenv_private:
ARM x86
no fenv_private : 100% 100%
generic HAVE_RM_CTX : 250% 350%
fenv_private (CTX) : 250% 450%
2014-06-23 Will Newton <will.newton@linaro.org>
Wilco <wdijkstr@arm.com>
* sysdeps/generic/math_private.h: Add generic HAVE_RM_CTX
implementation. Include get-rounding-mode.h.
[!HAVE_RM_CTX]: Define HAVE_RM_CTX to zero.
[!libc_feholdsetround_noex_ctx]: Define
libc_feholdsetround_noex_ctx.
[!libc_feholdsetround_noexf_ctx]: Define
libc_feholdsetround_noexf_ctx.
[!libc_feholdsetround_noexl_ctx]: Define
libc_feholdsetround_noexl_ctx.
(libc_feholdsetround_ctx): New function.
(libc_feresetround_ctx): New function.
(libc_feholdsetround_noex_ctx): New function.
(libc_feresetround_noex_ctx): New function.
Add the missing fallback file for elide.h to fix non x86 builds.
Sorry about that. This is just a noop macro file that makes
all elision code to be optimized out.
ChangeLog:
2014-03-17 Will Newton <will.newton@linaro.org>
* sysdeps/generic/math_private.h: Check whether
HAVE_RM_CTX is defined with #ifdef rather
than #if.
ChangeLog:
2014-03-17 Will Newton <will.newton@linaro.org>
* sysdeps/generic/ldsodefs.h: Check whether
HP_SMALL_TIMING_AVAIL is defined with #ifdef rather
than #if.
This commit fixes a bug where the dynamic loader would crash
when loading audit libraries, via LD_AUDIT, where those libraries
used TLS. The dynamic loader was not considering that the audit
libraries would use TLS and failed to bump the TLS generation
counter leaving TLS usage inconsistent after loading the audit
libraries.
https://sourceware.org/ml/libc-alpha/2014-02/msg00569.html
This reverts commit 1f33d36a8a.
Conflicts:
elf/dl-misc.c
Also reverts the follow commits that were bug fixes to new code introduced
in the above commit:
063b2acbceb627fdd585e81c64bba1
On hppa and ia64, the macro DL_AUTO_FUNCTION_ADDRESS() uses the
variable fptr[2] in it's own scope.
The content of fptr[] is thus undefined right after the macro exits.
Newer gcc's (>= 4.7) reuse the stack space of this variable triggering
a segmentation fault in dl-init.c:69.
To fix this we rewrite the macros to make the call directly to init
and fini without needing to pass back a constructed function pointer.
Statically built binaries use __pointer_chk_guard_local,
while dynamically built binaries use __pointer_chk_guard.
Provide the right definition depending on the test case
we are building.
The pointer guard used for pointer mangling was not initialized for
static applications resulting in the security feature being disabled.
The pointer guard is now correctly initialized to a random value for
static applications. Existing static applications need to be
recompiled to take advantage of the fix.
The test tst-ptrguard1-static and tst-ptrguard1 add regression
coverage to ensure the pointer guards are sufficiently random
and initialized to a default value.
It has been a long practice for software using IEEE 754 floating-point
arithmetic run on MIPS processors to use an encoding of Not-a-Number
(NaN) data different to one used by software run on other processors.
And as of IEEE 754-2008 revision [1] this encoding does not follow one
recommended in the standard, as specified in section 6.2.1, where it
is stated that quiet NaNs should have the first bit (d1) of their
significand set to 1 while signalling NaNs should have that bit set to
0, but MIPS software interprets the two bits in the opposite manner.
As from revision 3.50 [2][3] the MIPS Architecture provides for
processors that support the IEEE 754-2008 preferred NaN encoding format.
As the two formats (further referred to as "legacy NaN" and "2008 NaN")
are incompatible to each other, tools have to provide support for the
two formats to help people avoid using incompatible binary modules.
The change is comprised of two functional groups of features, both of
which are required for correct support.
1. Dynamic linker support.
To enforce the NaN encoding requirement in dynamic linking a new ELF
file header flag has been defined. This flag is set for 2008-NaN
shared modules and executables and clear for legacy-NaN ones. The
dynamic linker silently ignores any incompatible modules it
encounters in dependency processing.
To avoid unnecessary processing of incompatible modules in the
presence of a shared module cache, a set of new cache flags has been
defined to mark 2008-NaN modules for the three ABIs supported.
Changes to sysdeps/unix/sysv/linux/mips/readelflib.c have been made
following an earlier code quality suggestion made here:
http://sourceware.org/ml/libc-ports/2009-03/msg00036.html
and are therefore a little bit more extensive than the minimum
required.
Finally a new name has been defined for the dynamic linker so that
2008-NaN and legacy-NaN binaries can coexist on a single system that
supports dual-mode operation and that a legacy dynamic linker that
does not support verifying the 2008-NaN ELF file header flag is not
chosen to interpret a 2008-NaN binary by accident.
2. Floating environment support.
IEEE 754-2008 features are controlled in the Floating-Point Control
and Status (FCSR) register and updates are needed to floating
environment support so that the 2008-NaN flag is set correctly and
the kernel default, inferred from the 2008-NaN ELF file header flag
at the time an executable is loaded, respected.
As the NaN encoding format is a property of GCC code generation that is
both a user-selected GCC configuration default and can be overridden
with GCC options, code that needs to know what NaN encoding standard it
has been configured for checks for the __mips_nan2008 macro that is
defined internally by GCC whenever the 2008-NaN mode has been selected.
This mode is determined at the glibc configuration time and therefore a
few consistency checks have been added to catch cases where compilation
flags have been overridden by the user.
The 2008 NaN set of features relies on kernel support as the in-kernel
floating-point emulator needs to be aware of the NaN encoding used even
on hard-float processors and configure the FPU context according to the
value of the 2008 NaN ELF file header flag of the executable being
started. As at this time work on kernel support is still in progress
and the relevant changes have not made their way yet to linux.org master
repository.
Therefore the minimum version supported has been artificially set to
10.0.0 so that 2008-NaN code is not accidentally run on a Linux kernel
that does not suppport it. It is anticipated that the version is
adjusted later on to the actual initial linux.org kernel version to
support this feature. Legacy NaN encoding support is unaffected, older
kernel versions remain supported.
[1] "IEEE Standard for Floating-Point Arithmetic", IEEE Computer
Society, IEEE Std 754-2008, 29 August 2008
[2] "MIPS Architecture For Programmers, Volume I-A: Introduction to the
MIPS32 Architecture", MIPS Technologies, Inc., Document Number:
MD00082, Revision 3.50, September 20, 2012
[3] "MIPS Architecture For Programmers, Volume I-A: Introduction to the
MIPS64 Architecture", MIPS Technologies, Inc., Document Number:
MD00083, Revision 3.50, September 20, 2012
Many Linux arches require fixed mmaps to be aligned higher than pagesize,
so use the SHMLBA define as it represents this quantity exactly.
This fixes spurious errors seen on those arches like:
cannot map archive header: Invalid argument
URL: http://sourceware.org/bugzilla/show_bug.cgi?id=10283
Reported-by: CHIKAMA Masaki <masaki.chikama@gmail.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
GCC 4.8 enables -ftree-loop-distribute-patterns at -O3 by default and
this optimization may transform loops into memset/memmove calls. Without
proper handling this may generate unexpected PLT calls on GLIBC.
This patch fixes by create memset/memmove alias to internal GLIBC
__GI_memset/__GI_memmove symbols.
The most common use case of math functions is with default rounding
mode, i.e. rounding to nearest. Setting and restoring rounding mode
is an unnecessary overhead for this, so I've added support for a
context, which does the set/restore only if the FP status needs a
change. The code is written such that only x86 uses these. Other
architectures should be unaffected by it, but would definitely benefit
if the set/restore has as much overhead relative to the rest of the
code, as the x86 bits do.
Here's a summary of the performance improvement due to these
improvements; I've only mentioned functions that use the set/restore
and have benchmark inputs for x86_64:
Before:
cos(): ITERS:4.69335e+08: TOTAL:28884.6Mcy, MAX:4080.28cy, MIN:57.562cy, 16248.6 calls/Mcy
exp(): ITERS:4.47604e+08: TOTAL:28796.2Mcy, MAX:207.721cy, MIN:62.385cy, 15543.9 calls/Mcy
pow(): ITERS:1.63485e+08: TOTAL:28879.9Mcy, MAX:362.255cy, MIN:172.469cy, 5660.86 calls/Mcy
sin(): ITERS:3.89578e+08: TOTAL:28900Mcy, MAX:704.859cy, MIN:47.583cy, 13480.2 calls/Mcy
tan(): ITERS:7.0971e+07: TOTAL:28902.2Mcy, MAX:1357.79cy, MIN:388.58cy, 2455.55 calls/Mcy
After:
cos(): ITERS:6.0014e+08: TOTAL:28875.9Mcy, MAX:364.283cy, MIN:45.716cy, 20783.4 calls/Mcy
exp(): ITERS:5.48578e+08: TOTAL:28764.9Mcy, MAX:191.617cy, MIN:51.011cy, 19071.1 calls/Mcy
pow(): ITERS:1.70013e+08: TOTAL:28873.6Mcy, MAX:689.522cy, MIN:163.989cy, 5888.18 calls/Mcy
sin(): ITERS:4.64079e+08: TOTAL:28891.5Mcy, MAX:6959.3cy, MIN:36.189cy, 16062.8 calls/Mcy
tan(): ITERS:7.2354e+07: TOTAL:28898.9Mcy, MAX:1295.57cy, MIN:380.698cy, 2503.7 calls/Mcy
So the improvements are:
cos: 27.9089%
exp: 22.6919%
pow: 4.01564%
sin: 19.1585%
tan: 1.96086%
The downside of the change is that it will have an adverse performance
impact on non-default rounding modes, but I think the tradeoff is
justified.
Resolves: #15465
The program name may be unavailable if the user application tampers
with argc and argv[]. Some parts of the dynamic linker caters for
this while others don't, so this patch consolidates the check and
fallback into a single macro and updates all users.
These prototypes are duplicated in many places. Add a dedicated
header for holding prototypes for program-specific functions to
avoid that.
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
ARM now supports loading unmarked objects from
the dynamic loader cache. Unmarked objects can
be used with the hard-float or soft-float ABI.
We must support loading unmarked objects during
the transition period from a binutils that does
not mark objects to one that does mark them with
the correct ELF flags.
Signed-off-by: Carlos O'Donell <carlos@redhat.com>
* sysdeps/generic/ldconfig.h (FLAG_AARCH64_LIB64): New macro.
* elf/cache.c (print_entry): Print ",AArch64" for
FLAG_AARCH64_LIB64.
Signed-off-by: Steve McIntyre <steve.mcintyre@linaro.org>
Reviewed-by: Carlos O'Donell <carlos@systemhalted.org>
* sysdeps/generic/ldconfig.h (FLAG_ARM_LIBHF): New macro.
* elf/cache.c (print_entry): Print ",hard-float" for
FLAG_ARM_LIBHF.
Signed-off-by: Steve McIntyre <steve.mcintyre@linaro.org>
Reviewed-by: Carlos O'Donell <carlos@systemhalted.org>
(__crypt_r, __crypt): Disable MD5 and DES if FIPS is enabled.
* crypt/md5c-test.c (main): Tolerate disabled MD5.
* sysdeps/unix/sysv/linux/fips-private.h: New file.
* sysdeps/generic/fips-private.h: New file, dummy fallback.
Using madvise with MADV_DONTNEED to release memory back to the kernel
is not sufficient to change the commit charge accounted against the
process on Linux. It is OK however, when overcommit is enabled or is
heuristic. However, when overcommit is restricted to a percentage of
memory setting the contents of /proc/sys/vm/overcommit_memory as 2, it
makes a difference since memory requests will fail. Hence, we do what
we do with secure exec binaries, which is to call mmap on the region
to be dropped with MAP_FIXED. This internally unmaps the pages in
question and reduces the amount of memory accounted against the
process.
[BZ #6794]
Following Joseph comments about bug 6794, here is a proposed fix. It turned out
to be a large fix mainly because I had to move some file along to follow libm
files/names conventions.
Basically I have added wrappers (w_ilogb.c, w_ilogbf.c, w_ilogbl.c) that now calls
the symbol '__ieee754_ilogb'. The wrappers checks for '__ieee754_ilogb' output and
set the errno and raise exceptions as expected.
The '__ieee754_ilogb' is implemented in sysdeps. I have moved the 's_ilogb[f|l]' files
to e_ilogb[f|l] and renamed the '__ilogb[f|l]' to '__ieee754_ilogb[f|l]'.
I also found out a bug in i386 and x86-64 assembly coded ilogb implementation where
it raises a FE_DIVBYZERO when argument is '0.0'. I corrected this issue as well.
Finally I added the errno and FE_INVALID tests for 0.0, NaN and +-InF argument. Tested
on i386, x86-64, ppc32 and ppc64.
It may sometimes be desirable to make the dynamic linker only pick up
libraries from the library path and rpath and not look at the
ld.so.cache that ldconfig generates. An example of such a use case is
the glibc testsuite where the dynamic linker must not be influenced by
any external paths or caches.
This change adds a new option --inhibit-ldcache that when used, tells
the dynamic linker to not use ld.so.cache even if it is available.