* bits/sched.h: Include <bits/types/struct_sched_param.h> and move struct
sched_param definition to it.
* sysdeps/unix/sysv/linux/bits/sched.h: Likewise.
* bits/types/struct_sched_param.h: New file.
* sysdeps/htl/bits/types/struct___pthread_attr.h: Include
<bits/types/struct_sched_param.h> instead of <sched.h>.
* posix/Makefile (headers): Add bits/types/struct_sched_param.h.
Fix commit 298d0e3 for mips64n32, checked on a mips64n32-linux-gnu build.
* sysdeps/unix/sysv/linux/mips/mips64/getdents64.c (__getdents64):
Only alias to __getdents for _DIRENT_MATCHES_DIRENT64.
* bits/in.h [!__USE_MISC]: Do not define struct ip_opts.
* conform/data/netinet/in.h-data: Allow sin_ and sin6_ prefix.
* sysdeps/gnu/bits/msq.h (struct msqid_ds): Use __wait_queue struct
instead of wait_queue.
* sysdeps/gnu/bits/shm.h (struct shmid_ds): Use __vm_area_struct
instead of vm_area_struct.
This patch consolidates Linux getdents{64} implementation on just
the default sysdeps/unix/sysv/linux/getdents{64}{_r}.c ones.
Although this symbol is used only internally, the non-LFS version
still need to be build due the non-LFS getdirentries which requires
its semantic.
The non-LFS default implementation now uses the wordsize-32 as base
which uses getdents64 syscall plus adjustment for overflow (it allows
to use the same code for architectures that does not support non-LFS
getdents syscall). It has two main differences to wordsize-32 one:
- DIRENT_SET_DP_INO is added to handle alpha requirement to zero
the padding.
- alloca is removed by allocating a bounded temporary buffer (it
increases stack usage by roughly 276 bytes).
The default implementation handle the Linux requirements:
* getdents is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* getdents64 is always built and aliased to getdents for ABIs
that define _DIRENT_MATCHES_DIRENT64 to 1.
* A compat symbol is added for getdents64 for ABI that used to
export the old non-LFS version.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/unix/sysv/linux/alpha/getdents.c: Add comments with alpha
requirements.
(_DIRENT_MATCHES_DIRENT64): Undef
* sysdeps/unix/sysv/linux/alpha/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/arm/getdents64.c: Remove file.
* sysdeps/unix/sysv/linux/generic/getdents.c: Likewise.
* sysdeps/unix/sysv/linux/generic/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/getdents.c: Likewise.
* sysdeps/unix/sysv/linux/getdents.c: Simplify implementation by
use getdents64 syscalls as base.
* sysdeps/unix/sysv/linux/getdents64.c: Likewise and add compatibility
symbol if required.
* sysdeps/unix/sysv/linux/hppa/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/getdents.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/getdents64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/get_clockfreq.c
(__get_clockfreq_via_proc_openprom): Use __getdents64.
* sysdeps/unix/sysv/linux/mips/mips64/getdents64.c: New file.
If e.g. the testcase nptl/test-mutex-printers is run
with enabled lock-elision, it fails on s390x with:
Error: Response does not match the expected pattern.
Command: print *mutex
Expected pattern: pthread_mutex_t
Response: No symbol "mutex" in current context.
(gdb)
See https://www.sourceware.org/ml/libc-alpha/2018-03/msg00583.html
for more details.
In fact the mutex pretty printer tests rely on looking at the
internal details of the lock, thus we disable it by setting up
the GLIB_TUNABLES environment variable inside gdb.
ChangeLog:
* scripts/test_printers_common.py (init_test): Disable lock elision.
If build with -Os on s390x, the test-tgmath fails with:
float functions not called often enough (-10000)
Within compile_testf(), the counter (count_float) is saved
before the complex functions are called.
Afterwards the saved counter differs to the current-counter.
But the tests with the complex functions do not increment count_float!
Instead count_float is saved to a register before calling totalorder
and totalordermag which both increment count_float.
The compiler is allowed to do that as totalorderf and totalordermagf
is declared with __attribute__ ((__const__)) in math/bits/mathcalls.h.
Thus this patch adjusts the global counters to be volatile.
Then count_float is saved after totalordermag.
ChangeLog:
* math/test-tgmath.c (count_double, count_float,
count_ldouble, count_cdouble, count_cfloat,
count_cldouble): Use volatile int.
* sysdeps/mach/hurd/bits/statfs.h (struct statfs): Make f_bsize,
f_namemax, f_frsize, and f_flag fields unsigned long int instead of
unsigned int.
(struct statfs64): Likewise.
Standards require that the f_bsize, f_frsize, f_flag and f_namemax fields be
unsigned long. They used to be only unsigned on hurd, which happens to be
compatible with unsigned long on the only existing, 32bit, port. We can
thus merely fix the type.
* sysdeps/mach/hurd/bits/statvfs.h (struct statvfs): Make f_bsize,
f_namemax, f_frsize, and f_flag fields unsigned long int instead of
unsigned int.
(struct statvfs64): Likewise.
The powerpcspe GCC port has been obsoleted in GCC 8 for not having had
the removal of code for non-SPE processors completed. This patch
accordingly arranges for build-many-glibcs.py to configure GCC with
--enable-obsolete for affected configurations. This is temporary;
either the port gets cleaned up and unobsoleted in GCC and the
configure option can be removed, or the port gets removed in GCC and
we should remove the corresponding glibc support.
Tested with build-many-glibcs.py for the affected configurations.
* scripts/build-many-glibcs.py (Context.add_all_configs): Use
--enable-obsolete for powerpc-linux-gnuspe.
* sysdeps/mach/include/lock-intern.h: Move to include/.
* sysdeps/mach/include/mach.h: Move to include/.
* sysdeps/mach/include/mach/mig_support.h: Move to include/mach/.
* sysdeps/mach/include/mach_error.h: Move to include/.
This patch removes the ununsed ARM code path for armv6t2 memchr and
strlen and armv7 memch and strcmp. In all implementation, the ARM
code is not used in any possible build (unless glibc is explicit
build with the non-documented NO_THUMB compiler flag) and for armv7
the resulting code either produces wrong results (memchr) and throw
build error (strcmp).
Checked on arm-linux-gnueabihf built targeting both armv6 and
armv7.
* sysdeps/arm/armv6t2/memchr.S (memchr): Remove ARM code path.
* sysdeps/arm/armv6t2/strlen.S (memchr): Likewise.
* sysdeps/arm/armv7/multiarch/memchr_neon.S (memchr): Likewise.
* sysdeps/arm/armv7/strcmp.S (strcmp): Likewise.
Adds a fast path to e_exp.c when |x| < 1.03972053527832.
When values are tested in isolation, reduction in execution
time is: aarch 30%, sparc 18%, x86 37%.
When comparing benchtests/bench.out which includes values
outside that range, the gains are:
aarch 8%, sparc 5%, x86 9%.
make check is clean (no increase in ulp for any math test).
Testing 20M values for each rounding mode in that range shows
approximately one in 200 values is off by 1 ulp. No value tested
for exp(x) changed by 2 or more ulp.
No observed change in performance or accuracy for x outside
fast path range.
These changes will be active for all platforms that don't provide
their own exp() routines. They will also be active for ieee754
versions of ccos, ccosh, cosh, csin, csinh, sinh, exp10, gamma, and
erf.
Linux 4.16 does not add any new syscalls; this patch updates the
version number in syscall-names.list to reflect that it's still
current for 4.16.
Tested for x86_64 (compilation with build-many-glibcs.py, using Linux
4.16).
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 4.16.
The recent commit b4a5d26d88
"linux: Consolidate sigaction implementation" changed the definition
of struct sigaction for s390 (31bit). Unfortunately the order of the
fields were wrong.
This leads to blocking testcases e.g. nptl/tst-sem11.
A thread which blocks due to sem_wait() is cancelled via pthread_cancel()
and the signal-handler sigcancel_handler (see <glibc-src>/nptl/nptl-init.c
is called.
But it just returns as the siginfo_t argument is not setup by the kernel.
Then the main-thread is blocking due to pthread_join().
The flag SA_SIGINFO is set in sa_flags in struct sigaction and
is copied to the "kernel_sigaction.h" struct by the sigaction() call,
but due to the wrong ordering of the struct fields,
the kernel does not recognize it.
This patch consolidates Linux readdir{64}{_r} implementation on just
the default sysdeps/unix/sysv/linux/readdir{64}{_r}.c ones. The
default implementation handle the Linux requirements:
* readdir{_r} is only built for _DIRENT_MATCHES_DIRENT64 being 0.
* readdir64{_r} is always built and aliased to readdir{_r} for
ABI that define _DIRENT_MATCHES_DIRENT64.
* A compat symbol is added for readdir64{_r} for ABI that used to
export the old non-LFS version.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/posix/readdir.c (__READDIR, __GETDENTS, DIRENTY_TYPE,
__READDIR_ALIAS): Undefine after usage.
* sysdeps/posix/readdir_r.c (__READDIR_R, __GETDENTS, DIRENT_TYPE,
__READDIR_R_ALIAS): Likewise.
* sysdeps/unix/sysv/linux/arm/readdir64.c: Remove file.
* sysdeps/unix/sysv/linux/arm/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/m68k/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/i386/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/i386/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir64.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir64_r.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/readdir_r.c: Likewise.
* sysdeps/unix/sysv/linux/readdir.c: New file.
* sysdeps/unix/sysv/linux/readdir_r.c: Likewise.
* sysdeps/unix/sysv/linux/readdir64.c: Add compat symbol if required.
* sysdeps/unix/sysv/linux/readdir64_r.c: Likewise.
This patch consolidates all Linux sigaction implementations on the default
sysdeps/unix/sysv/linux/sigaction.c. The idea is remove redundant code
and simplify new ports addition by following the current generic
Linux User API (UAPI).
The UAPI for new ports defines a generic extensible sigaction struct as:
struct sigaction
{
__sighandler_t sa_handler;
unsigned long sa_flags;
#ifdef SA_RESTORER
void (*sa_restorer) (void);
#endif
sigset_t sa_mask;
};
Where SA_RESTORER is just placed for compatibility reasons (news ports
should not add it). A similar definition is used on generic
kernel_sigaction.h.
The user exported sigaction definition is not changed, so for most
architectures it requires an adjustment to kernel expected one for the
syscall.
The main changes are:
- All architectures now define and use a kernel_sigaction struct meant
for the syscall, even for the architectures where the user sigaction
has the same layout of the kernel expected one (s390-64 and ia64).
Although it requires more work for these architectures, it simplifies
the generic implementation. Also, sigaction is hardly a hotspot where
micro optimization would play an important role.
- The generic kernel_sigaction definition is now aligned with expected
UAPI one for newer ports, where SA_RESTORER and sa_restorer are not
expected to be defined. This means adding kernel_sigaction for
current architectures that does define it (m68k, nios2, powerpc, s390,
sh, sparc, and tile) and which rely on previous generic definition.
- Remove old MIPS usage of sa_restorer. This was removed since 2.6.27
(2957c9e61ee9c - "[MIPS] IRIX: Goodbye and thanks for all the fish").
- The remaining arch-specific sigaction.c are to handle ABI idiosyncrasies
(like SPARC kernel ABI for rt_sigaction that requires an additional
stub argument).
So for new ports the generic implementation should work if its uses
Linux UAPI. If SA_RESTORER is still required (due some architecture
limitation), it should define its own kernel_sigaction.h, define it and
include generic header (assuming it still uses the default generic kernel
layout).
Checked on x86_64-linux-gnu, i686-linux-gnu, arm-linux-gnueabihf,
aarch64-linux-gnu, sparc64-linux-gnu, sparcv9-linux-gnu, powerpc-linux-gnu,
powerpc64-linux-gnu, ia64-linux-gnu and alpha-linux-gnu. I also checked the
build on all remaining affected ABIs.
* sysdeps/unix/sysv/linux/aarch64/sigaction.c: Use default Linux version
as base implementation.
* sysdeps/unix/sysv/linux/arm/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/i386/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/x86_64/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/alpha/kernel_sigaction.h: Add include guards,
remove unrequired definitions and update comments.
* sysdeps/unix/sysv/linux/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/mips/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/kernel_sigaction.h: New file.
* sysdeps/unix/sysv/linux/m68k/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/kernel_sigaction: Likewise.
* sysdeps/unix/sysv/linux/s390/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/sh/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/tile/kernel_sigaction.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/sigaction.c: Remove file.
* sysdeps/unix/sysv/linux/mips/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/sigaction.c: Likewise.
* sysdeps/unix/sysv/linux/sigaction.c: Add STUB, SET_SA_RESTORER,
and RESET_SA_RESTORER hooks.
The example did not work because the null byte was not converted, and
mbrtowc was called with a zero-length input string. This results in a
(size_t) -2 return value, so the function always returns NULL.
The size computation for the heap allocation of the result was
incorrect because it did not deal with integer overflow.
Error checking was missing, and the allocated memory was not freed on
error paths. All error returns now set errno. (Note that there is an
assumption that free does not clobber errno.)
The slightly unportable comparision against (size_t) -2 to catch both
(size_t) -1 and (size_t) -2 return values is gone as well.
A null wide character needs to be stored in the result explicitly, to
terminate it.
The description in the manual is updated to deal with these finer
points. The (size_t) -2 behavior (consuming the input bytes) matches
what is specified in ISO C11.
* sysdeps/powerpc/fpu/libm-test-ulps: Increase double-precision
sin, cos and sincos to 1 ULP.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Do not relocate absolute symbols by the base address. Such symbols have
SHN_ABS as the section index and their value is not supposed to be
affected by relocation as per the ELF gABI[1]:
"SHN_ABS
The symbol has an absolute value that will not change because of
relocation."
The reason for our non-conformance here seems to be an old SysV linker
bug causing symbols like _DYNAMIC to be incorrectly emitted as absolute
symbols[2]. However in a previous discussion it was pointed that this
is seriously flawed by preventing the lone purpose of the existence of
absolute symbols from being used[3]:
"On the contrary, the only interpretation that makes sense to me is that
it will not change because of relocation at link time or at load time.
Absolute symbols, from the days of the earliest linking loaders, have
been used to represent addresses that are outside the address space of
the module (e.g., memory-mapped addresses or kernel gateway pages).
They've even been used to represent true symbolic constants (e.g.,
system entry point numbers, sizes, version numbers). There's no other
way to represent a true absolute symbol, while the meaning you seek is
easily represented by giving the symbol a non-negative st_shndx value."
and we ought to stop supporting our current broken interpretation.
Update processing for dladdr(3) and dladdr1(3) so that SHN_ABS symbols
are ignored, because under the corrected interpretation they do not
represent addresses within a mapped file and therefore are not supposed
to be considered.
References:
[1] "System V Application Binary Interface - DRAFT - 19 October 2010",
The SCO Group, Section "Symbol Table",
<http://www.sco.com/developers/gabi/2012-12-31/ch4.symtab.html>
[2] Alan Modra, "Absolute symbols"
<https://sourceware.org/ml/binutils/2012-05/msg00019.html>
[3] Cary Coutant, "Re: Absolute symbols"
<https://sourceware.org/ml/binutils/2012-05/msg00020.html>
[BZ #19818]
* sysdeps/generic/ldsodefs.h (SYMBOL_ADDRESS): Handle SHN_ABS
symbols.
* elf/dl-addr.c (determine_info): Ignore SHN_ABS symbols.
* elf/tst-absolute-sym.c: New file.
* elf/tst-absolute-sym-lib.c: New file.
* elf/tst-absolute-sym-lib.lds: New file.
* elf/Makefile (tests): Add `tst-absolute-sym'.
(modules-names): Add `tst-absolute-sym-lib'.
(LDLIBS-tst-absolute-sym-lib.so): New variable.
($(objpfx)tst-absolute-sym-lib.so): New dependency.
($(objpfx)tst-absolute-sym): New dependency.
Wrap symbol address run-time calculation into a macro and use it
throughout, replacing inline calculations.
There are a couple of variants, most of them different in a functionally
insignificant way. Most calculations are right following RESOLVE_MAP,
at which point either the map or the symbol returned can be checked for
validity as the macro sets either both or neither. In some places both
the symbol and the map has to be checked however.
My initial implementation therefore always checked both, however that
resulted in code larger by as much as 0.3%, as many places know from
elsewhere that no check is needed. I have decided the size growth was
unacceptable.
Having looked closer I realized that it's the map that is the culprit.
Therefore I have modified LOOKUP_VALUE_ADDRESS to accept an additional
boolean argument telling it to access the map without checking it for
validity. This in turn has brought quite nice results, with new code
actually being smaller for i686, and MIPS o32, n32 and little-endian n64
targets, unchanged in size for x86-64 and, unusually, marginally larger
for big-endian MIPS n64, as follows:
i686:
text data bss dec hex filename
152255 4052 192 156499 26353 ld-2.27.9000-base.so
152159 4052 192 156403 262f3 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/el:
text data bss dec hex filename
142906 4396 260 147562 2406a ld-2.27.9000-base.so
142890 4396 260 147546 2405a ld-2.27.9000-elf-symbol-value.so
MIPS/n32/el:
text data bss dec hex filename
142267 4404 260 146931 23df3 ld-2.27.9000-base.so
142171 4404 260 146835 23d93 ld-2.27.9000-elf-symbol-value.so
MIPS/n64/el:
text data bss dec hex filename
149835 7376 408 157619 267b3 ld-2.27.9000-base.so
149787 7376 408 157571 26783 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/eb:
text data bss dec hex filename
142870 4396 260 147526 24046 ld-2.27.9000-base.so
142854 4396 260 147510 24036 ld-2.27.9000-elf-symbol-value.so
MIPS/n32/eb:
text data bss dec hex filename
142019 4404 260 146683 23cfb ld-2.27.9000-base.so
141923 4404 260 146587 23c9b ld-2.27.9000-elf-symbol-value.so
MIPS/n64/eb:
text data bss dec hex filename
149763 7376 408 157547 2676b ld-2.27.9000-base.so
149779 7376 408 157563 2677b ld-2.27.9000-elf-symbol-value.so
x86-64:
text data bss dec hex filename
148462 6452 400 155314 25eb2 ld-2.27.9000-base.so
148462 6452 400 155314 25eb2 ld-2.27.9000-elf-symbol-value.so
[BZ #19818]
* sysdeps/generic/ldsodefs.h (LOOKUP_VALUE_ADDRESS): Add `set'
parameter.
(SYMBOL_ADDRESS): New macro.
[!ELF_FUNCTION_PTR_IS_SPECIAL] (DL_SYMBOL_ADDRESS): Use
SYMBOL_ADDRESS for symbol address calculation.
* elf/dl-runtime.c (_dl_fixup): Likewise.
(_dl_profile_fixup): Likewise.
* elf/dl-symaddr.c (_dl_symbol_address): Likewise.
* elf/rtld.c (dl_main): Likewise.
* sysdeps/aarch64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/alpha/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/arm/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/hppa/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/hppa/dl-symaddr.c (_dl_symbol_address): Likewise.
* sysdeps/i386/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/ia64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/m68k/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/microblaze/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/mips/dl-machine.h (ELF_MACHINE_BEFORE_RTLD_RELOC):
Likewise.
(elf_machine_reloc): Likewise.
(elf_machine_got_rel): Likewise.
* sysdeps/mips/dl-trampoline.c (__dl_runtime_resolve): Likewise.
* sysdeps/nios2/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/riscv/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/s390/s390-32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/s390/s390-64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sh/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/tile/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Three of the functions defined by internal-signals.h were not actually
fulfilling their contracts when the sysdeps/generic version of that
file was used. Also, the Linux version included several more headers
than the generic version, which is the root cause of a build failure
on Hurd (already addressed in another way, but I think it is proper to
make the headers match).
* sysdeps/generic/internal-signals.h: Include signal.h,
sigsetops.h, and stdbool.h.
(__libc_signal_block_all): Actually block all signals.
(__libc_signal_block_app): Likewise.
(__libc_signal_restore_set): Actually restore the signal mask.
This patch filters out the internal NPTL signals (SIGCANCEL/SIGTIMER and
SIGSETXID) from signal functions. GLIBC on Linux requires both signals to
proper implement pthread cancellation, posix timers, and set*id posix
thread synchronization.
And not filtering out the internal signal is troublesome:
- A conformant program on a architecture that does not filter out the
signals might inadvertently disable pthread asynchronous cancellation,
set*id synchronization or posix timers.
- It might also to security issues if SIGSETXID is masked and set*id
functions are called (some threads might have effective user or group
id different from the rest).
The changes are basically:
- Change __is_internal_signal to bool and used on all signal function
that has a signal number as input. Also for signal function which accepts
signals sets (sigset_t) it assumes that canonical function were used to
add/remove signals which lead to some input simplification.
- Fix tst-sigset.c to avoid check for SIGCANCEL/SIGTIMER and SIGSETXID.
It is rewritten to check each signal indidually and to check realtime
signals using canonical macros.
- Add generic __clear_internal_signals and __is_internal_signal
version since both symbols are used on generic implementations.
- Remove superflous sysdeps/nptl/sigfillset.c.
- Remove superflous SIGTIMER handling on Linux __is_internal_signal
since it is the same of SIGCANCEL.
- Remove dangling define and obvious comment on nptl/sigaction.c.
Checked on x86_64-linux-gnu.
[BZ #22391]
* nptl/sigaction.c (__sigaction): Use __is_internal_signal to
check for internal nptl signals.
* nptl/sigaction.c (__sigaction): Likewise.
* signal/sigaddset.c (sigaddset): Likewise.
* signal/sigdelset.c (sigdelset): Likewise.
* sysdeps/posix/signal.c (__bsd_signal): Likewise.
* sysdeps/posix/sigset.c (sigset): Call and check sigaddset return
value.
* signal/sigfillset.c (sigfillset): User __clear_internal_signals
to filter out internal nptl signals.
* signal/tst-sigset.c (do_test): Check ech signal indidually and
also check realtime signals using standard macros.
* sysdeps/generic/internal-signals.h (__clear_internal_signals,
__is_internal_signal, __libc_signal_block_all,
__libc_signal_block_app, __libc_signal_restore_set): New functions.
* sysdeps/nptl/sigfillset.c: Remove file.
* sysdeps/unix/sysv/linux/internal-signals.h (__is_internal_signal):
Change return to bool.
(__clear_internal_signals): Remove SIGTIMER clean since it is
equal to SIGCANEL on Linux.
* sysdeps/unix/sysv/linux/sigtimedwait.c (__sigtimedwait): Assume
signal set was constructed using standard functions.
Reported-by: Yury Norov <ynorov@caviumnetworks.com>
Refactor the sincos implementation - rather than rely on odd partial inlining
of preprocessed portions from sin and cos, explicitly write out the cases.
This makes sincos much easier to maintain and provides an additional 16-20%
speedup between 0 and 2^27. The overall speedup of sincos is 48% over this range.
Between 0 and PI it is 66% faster.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Cleanup ifdefs.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sin.c (__sincos): Refactor using the same
logic as sin and cos.
Refactor duplicated code into do_sin. Since all calls to do_sin use copysign to
set the sign of the result, move it inside do_sin. Small inputs use a separate
polynomial, so move this into do_sin as well (the check is based on the more
conservative case when doing large range reduction, but could be relaxed).
* sysdeps/ieee754/dbl-64/s_sin.c (do_sin): Use TAYLOR_SIN for small
inputs. Return correct sign.
(do_sincos): Remove small input check before do_sin, let do_sin set
the sign.
(__sin): Likewise.
(__cos): Likewise.
For huge inputs use the improved do_sincos function as well. Now no cases use
the correction factor returned by do_sin, do_cos and TAYLOR_SIN, so remove it.
* sysdeps/ieee754/dbl-64/s_sin.c (TAYLOR_SIN): Remove cor parameter.
(do_cos): Remove corp parameter and calculations.
(do_sin): Likewise.
(do_sincos): Remove cor variable.
(__sin): Use do_sincos for huge inputs.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Likewise.
(reduce_and_compute_sincos): Remove unused function.
This patch improves the accuracy of the range reduction. When the input is
large (2^27) and very close to a multiple of PI/2, using 110 bits of PI is not
enough. Improve range reduction accuracy to 136 bits. As a result the special
checks for results close to zero can be removed. The ULP of the polynomials is
at worst 0.55ULP, so there is no reason for the slow functions, and they can be
removed.
* sysdeps/ieee754/dbl-64/s_sin.c (reduce_sincos_1): Rename to
reduce_sincos, improve accuracy to 136 bits.
(do_sincos_1): Rename to do_sincos, remove fallbacks to slow functions.
(__sin): Use improved reduction and simplified do_sincos calculation.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Likewise.
This patch removes the large range reduction code and defers to the huge range
reduction code. The first level range reducer supports inputs up to 2^27,
which is way too large given that inputs for sin/cos are typically small
(< 10), and optimizing for a smaller range would give a significant speedup.
Input values above 2^27 are practically never used, so there is no reason for
supporting range reduction between 2^27 and 2^48. Removing it significantly
simplifies code and enables further speedups. There is about a 2.3x slowdown
in this range due to __branred being extremely slow (a better algorithm could
easily more than double performance).
* sysdeps/ieee754/dbl-64/s_sin.c (reduce_sincos_2): Remove function.
(do_sincos_2): Likewise.
(__sin): Remove middle range reduction case.
(__cos): Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Remove middle range
reduction case.
This series of patches removes the slow patchs from sin, cos and sincos.
Besides greatly simplifying the implementation, the new version is also much
faster for inputs up to PI (41% faster) and for large inputs needing range
reduction (27% faster).
ULP is ~0.55 with no errors found after testing 1.6 billion inputs across most
of the range with mpsin and mpcos. The number of incorrectly rounded results
(ie. ULP >0.5) is at most ~2750 per million inputs between 0.125 and 0.5,
the average is ~850 per million between 0 and PI.
Tested on AArch64 and x86_64 with no regressions.
The first patch removes the slow paths for the cases where the input is small
and doesn't require range reduction. Update ULP tables for sin, cos and sincos
on AArch64 and x86_64.
* sysdeps/aarch64/libm-test-ulps: Update ULP for sin, cos, sincos.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Remove slow paths for small
inputs.
(__cos): Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Update ULP for sin, cos, sincos.
This patch assumes O_DIRECTORY works as defined by POSIX on opendir
implementation (aligning with other glibc code, for instance pwd). This
allows remove both the fallback code to handle system with missing or
broken O_DIRECTORY along with the Linux specific opendir.c which just
advertise the working flag.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, i686-linux-gnu,
sparcv9-linux-gnu, sparc64-linux-gnu, powerpc-linux-gnu, and
powerpc64le-linux-gnu.
* sysdeps/posix/opendir.c (o_directory_works, tryopen_o_directory):
Remove definitions.
(opendir_oflags): Use O_DIRECTORY regardless.
(__opendir, __opendirat): Remove need_isdir_precheck usage.
* sysdeps/unix/sysv/linux/opendir.c: Remove file.
* htl/cthreads-compat.c (__cthread_detach): Call __pthread_detach
instead of pthread_detach.
(__cthread_fork): Call __pthread_create instead of pthread_create.
(__cthread_keycreate): Call __pthread_key_create instead of
pthread_key_create.
(__cthread_getspecific): Call __pthread_getspecific instead of
pthread_getspecific.
(__cthread_setspecific): Call __pthread_setspecific instead of
pthread_setspecific.
* htl/pt-alloc.c (__pthread_alloc): Call __pthread_mutex_lock and
__pthread_mutex_unlock instead of pthread_mutex_lock and
pthread_mutex_unlock.
* htl/pt-cleanup.c (__pthread_get_cleanup_stack): Rename to
___pthread_get_cleanup_stack.
(__pthread_get_cleanup_stack): New strong alias.
* htl/pt-create.c: Include <pthreadP.h>.
(entry_point): Call __pthread_exit instead of pthread_exit.
(pthread_create): Rename to __pthread_create.
(pthread_create): New strong alias.
* htl/pt-detach.c (pthread_detach): Rename to __pthread_detach.
(pthread_detach): New strong alias.
(__pthread_detach): Call __pthread_cond_broadcast instead of
pthread_cond_broadcast.
* htl/pt-exit.c (__pthread_exit): Call __pthread_setcancelstate
instead of pthread_setcancelstate.
* htl/pt-testcancel.c: Include <pthreadP.h>.
(pthread_testcancel): Call __pthread_exit instead of pthread_exit.
* sysdeps/htl/pt-attr-getstack.c: Include <pthreadP.h>
(__pthread_attr_getstack): Call __pthread_attr_getstackaddr and
__pthread_attr_getstacksize instead of pthread_attr_getstackaddr and
pthread_attr_getstacksize.
* sysdeps/htl/pt-attr-getstackaddr.c (pthread_attr_getstackaddr):
Rename to __pthread_attr_getstackaddr.
(pthread_attr_getstackaddr): New strong alias.
* sysdeps/htl/pt-attr-getstacksize.c (pthread_attr_getstacksize):
Rename to __pthread_attr_getstacksize.
(pthread_attr_getstacksize): New strong alias.
* sysdeps/htl/pt-attr-setstack.c: Include <pthreadP.h>.
(pthread_attr_setstack): Rename to __pthread_attr_setstack.
(pthread_attr_setstack): New strong alias.
(__pthread_attr_setstack): Call __pthread_attr_getstacksize,
__pthread_attr_setstacksize and __pthread_attr_setstackaddr instead of
pthread_attr_getstacksize, pthread_attr_setstacksize and
pthread_attr_setstackaddr.
* sysdeps/htl/pt-attr-setstackaddr.c (pthread_attr_setstackaddr):
Rename to __pthread_attr_setstackaddr.
(pthread_attr_setstackaddr): New strong alias.
* sysdeps/htl/pt-attr-setstacksize.c (pthread_attr_setstacksize):
Rename to __pthread_attr_setstacksize.
(pthread_attr_setstacksize): New strong alias.
* sysdeps/htl/pt-cond-timedwait.c: Include <pthreadP.h>.
(__pthread_cond_timedwait_internal): Use __pthread_exit instead of
pthread_exit.
* sysdeps/htl/pt-key-create.c: Include <pthreadP.h>.
(__pthread_key_create): New hidden def.
* sysdeps/htl/pt-key.h: Include <pthreadP.h>.
* sysdeps/htl/pthreadP.h (_pthread_mutex_init,
__pthread_cond_broadcast, __pthread_create, __pthread_detach,
__pthread_exit, __pthread_key_create, __pthread_getspecific,
__pthread_setspecific, __pthread_setcancelstate,
__pthread_attr_getstackaddr, __pthread_attr_setstackaddr,
__pthread_attr_getstacksize, __pthread_attr_setstacksize,
__pthread_attr_setstack, ___pthread_get_cleanup_stack): New
declarations.
(__pthread_key_create, _pthread_mutex_init): New hidden declarations.
* sysdeps/mach/hurd/htl/pt-attr-setstackaddr.c
(pthread_attr_setstackaddr): Rename to __pthread_attr_setstackaddr.
(pthread_attr_setstackaddr): New strong alias.
* sysdeps/mach/hurd/htl/pt-attr-setstacksize.c
(pthread_attr_setstacksize): Rename to __pthread_attr_setstacksize.
(pthread_attr_setstacksize): New strong alias.
* sysdeps/mach/hurd/htl/pt-docancel.c: Include <pthreadP.h>.
(call_exit): Call __pthread_exit instead of pthread_exit.
* sysdeps/mach/hurd/htl/pt-mutex-init.c: Include <pthreadP.h>.
(_pthread_mutex_init): New hidden definition.
* sysdeps/mach/hurd/htl/pt-sysdep.c: Include <pthreadP.h>.
(_init_routine): Call __pthread_attr_init and __pthread_attr_setstack
instead of pthread_attr_init and pthread_attr_setstack.
Contributed by
Agustina Arzille <avarzille@riseup.net>
Amos Jeffries <squid3@treenet.co.nz>
David Michael <fedora.dm0@gmail.com>
Marco Gerards <marco@gnu.org>
Marcus Brinkmann <marcus@gnu.org>
Neal H. Walfield <neal@gnu.org>
Pino Toscano <toscano.pino@tiscali.it>
Richard Braun <rbraun@sceen.net>
Roland McGrath <roland@gnu.org>
Samuel Thibault <samuel.thibault@ens-lyon.org>
Thomas DiModica <ricinwich@yahoo.com>
Thomas Schwinge <tschwinge@gnu.org>
* htl: New directory.
* sysdeps/htl: New directory.
* sysdeps/hurd/htl: New directory.
* sysdeps/i386/htl: New directory.
* sysdeps/mach/htl: New directory.
* sysdeps/mach/hurd/htl: New directory.
* sysdeps/mach/hurd/i386/htl: New directory.
* nscd/Depend, resolv/Depend, rt/Depend: Add htl dependency.
* sysdeps/mach/hurd/i386/Implies: Add mach/hurd/i386/htl imply.
* sysdeps/mach/hurd/i386/libpthread.abilist: New file.
This patch fixes 3dc214977 for sparc. Different than other architectures
SPARC kernel Kconfig does not define CONFIG_CLONE_BACKWARDS, however it
has the same ABI as if it did, implemented by sparc-specific code
(sparc_do_fork).
It also has a unique return value convention for clone:
Parent --> %o0 == child's pid, %o1 == 0
Child --> %o0 == parent's pid, %o1 == 1
Which required a special macro to correct issue the syscall
(INLINE_CLONE_SYSCALL).
Checked on sparc64-linux-gnu and sparcv9-linux-gnu.
* sysdeps/unix/sysv/linux/arch-fork.h [__ASSUME_CLONE_BACKWARDS]
(arch_fork): Issue INLINE_CLONE_SYSCALL if defined.
* sysdeps/unix/sysv/linux/sparc/kernel-features.h
(__ASSUME_CLONE_BACKWARDS): Define.
When there is no login uid Linux sets /proc/self/loginid to the sentinel
value of, (uid_t) -1. If this is set we can return early and avoid
needlessly looking up the sentinel value in any configured nss
databases.
Checked on aarch64-linux-gnu.
* sysdeps/unix/sysv/linux/getlogin_r.c (__getlogin_r_loginuid): Return
early when linux sentinel value is set.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Linux kernel architectures have various arrangements for umount
syscalls. There is a syscall that takes flags, and an older one that
does not. Newer architectures have only the one taking flags, under
the name umount2 (or under the name umount, in the ia64 case). Older
architectures may have both, under the names umount2 and umount (or
under the names umount and oldumount, in the alpha case). glibc then
has several similar implementations of the umount function (no flags)
in terms of either the __umount2 function, or the corresponding
syscall, or in terms of the old syscall under either of its names.
This patch simplifies the implementations in glibc by always using the
__umount2 function to implement the umount function on all systems
using the Linux kernel. The linux/generic implementation is moved to
sysdeps/unix/sysv/linux (without any changes to code or comments) and
all the other variants are removed. (This will have the effect of
causing the new syscall to be used in some cases that previously used
the old one, but as discussed for previous changes, such a change to
the underlying syscalls used is OK.)
There remain two variants of how the __umount2 function is
implemented, either in umount2.S, or, for ia64, in syscalls.list.
Tested with build-many-glibcs.py.
[BZ #16552]
* sysdeps/unix/sysv/linux/generic/umount.c: Move to ....
* sysdeps/unix/sysv/linux/umount.c: ... here.
* sysdeps/unix/sysv/linux/arm/umount.c: Remove file.
* sysdeps/unix/sysv/linux/hppa/umount.c: Likewise.
* sysdeps/unix/sysv/linux/ia64/umount.c: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/umount.c: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/umount.c: Likewise.
* sysdeps/unix/sysv/linux/umount.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/umount.c: Likewise.
Letting rtld access errno through TLS can not work at early stages since
TLS will not be initialized yet. When a private errno is not possible,
we thus have no other way than going through __errno_location.
* include/errno.h [IS_IN(rtld) && !RTLD_PRIVATE_ERRNO]: Do not use the
TLS declaration of errno.
When $(tests-execstack-$(have-z-execstack)) is added to tests before
it is defined, it is empty. This patch adds it to tests after it is
defined.
[BZ #22998]
* elf/Makefile (tests): Add $(tests-execstack-$(have-z-execstack))
after it is defined.
No glibc configuration uses the present debug/backtrace.c, whereas
several #include the x86_64 version. The x86_64 version is
effectively a generic one (using _Unwind_Backtrace from libgcc, which
works much more reliably than the built-in functions used by
debug/backtrace.c). This patch moves it to debug/backtrace.c and
removes all the #includes of the x86_64 version from other
architectures which are no longer required.
I do not know whether all the other architecture-specific backtrace
implementations that are based on _Unwind_Backtrace are required, or
whether, where their differences from the generic version do something
useful, suitable hooks could be added to the generic version to reduce
the duplication involved.
Tested with build-many-glibcs.py that installed stripped shared
libraries are unchanged by this patch.
* sysdeps/x86_64/backtrace.c: Move to ....
* debug/backtrace.c: ... here.
* sysdeps/aarch64/backtrace.c: Remove file.
* sysdeps/alpha/backtrace.c: Likewise.
* sysdeps/hppa/backtrace.c: Likewise.
* sysdeps/ia64/backtrace.c: Likewise.
* sysdeps/mips/backtrace.c: Likewise.
* sysdeps/nios2/backtrace.c: Likewise.
* sysdeps/riscv/backtrace.c: Likewise.
* sysdeps/sh/backtrace.c: Likewise.
* sysdeps/tile/backtrace.c: Likewise.
The powerpc and sparc bits/mathinline.h include inlines of fdim and
fdimf. These are not restricted to -fno-math-errno, but do not set
errno, and wrongly use ordered <= comparisons instead of the required
islessequal comparisons (this latter issue is latent on powerpc
because GCC wrongly uses unordered comparison instructions for
operations that should use ordered comparison instructions).
Since we wish to avoid such header inlines anyway, leaving it to the
compiler to inline such standard functions under appropriate
conditions, this patch fixes those issues by removing the inlines in
question (and thus removing the sparc bits/mathinline.h header which
had no other inlines left in it). I've filed
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85003> for adding
correct fdim inlines to GCC, since the function is simple enough that
a correct inline is a perfectly reasonable architecture-independent
optimization with -fno-math-errno and in the absence of implicit
excess precision.
Tested with build-many-glibcs.py for all its powerpc and sparc
configurations.
[BZ #22987]
* sysdeps/powerpc/bits/mathinline.h (fdim): Remove inline
function.
(fdimf): Likewise.
* sysdeps/sparc/fpu/bits/mathinline.h: Remove file.
Bug 17343 reports that stdlib/random_r.c has code with undefined
behavior because of signed integer overflow on int32_t. This patch
changes the code so that the possibly overflowing computations use
unsigned arithmetic instead.
Note that the bug report refers to "Most code" in that file. The
places changed in this patch are the only ones I found where I think
such overflow can occur.
Tested for x86_64 and x86.
[BZ #17343]
* stdlib/random_r.c (__random_r): Use unsigned arithmetic for
possibly overflowing computations.
* manual/errno.texi (EOWNERDEAD, ENOTRECOVERABLE): Remove errno
values from Linux-specific section now that it is in the GNU section.
* sysdeps/gnu/errlist.c: Regenerate.
As requested in bug 20079, this patch adds SHT_X86_64_UNWIND (a
standard value from the x86_64 ABI) to elf.h.
Tested for x86_64.
[BZ #20079]
* elf/elf.h (SHT_X86_64_UNWIND): New macro.
Add an undefine of attribute_hidden since it may be defined in some cases
(it must be defined since it is used by some hp-timing configurations).
* benchtests/bench-timing.h (attribute_hidden): Undefine.
Appending / to the path to be looked up would make us always follow a final
symlink, even with O_NOTRANS (since the final resolution is after the
'/'). In the O_DIRECTORY | O_NOFOLLOW case, we thus have to really open
the node and stat it, which we already do anyway, and check for
directory type.
* hurd/hurdlookup.c (__hurd_file_name_lookup): Do not append '/' to
path when flags contains O_NOFOLLOW.
* hurd/lookup-retry.c (__hurd_file_name_lookup_retry): Return ENOTDIR
if flags contains O_DIRECTORY and the result is a directory.
The error code documented by POSIX for opening a symlink with O_NOFOLLOW
is ELOOP.
Also, if the translator does not expose symlink as a symlink translator but
as a S_IFLNK file, O_NOFOLLOW needs to return ELOOP too.
* hurd/lookup-retry.c (__hurd_file_name_lookup_retry): Return ELOOP
when opening a symlink with O_NOFOLLOW.
* hurd/Makefile (routines): Add hurdlock.
* hurd/Versions (GLIBC_PRIVATE): Added new entry to export the above
interface.
(HURD_CTHREADS_0.3): Remove __libc_getspecific.
* hurd/hurdpid.c: Include <lowlevellock.h>
(_S_msg_proc_newids): Use lll_wait to synchronize.
* hurd/hurdsig.c: (reauth_proc): Use __mutex_lock and __mutex_unlock.
* hurd/setauth.c: Include <hurdlock.h>, use integer for synchronization.
* mach/Makefile (lock-headers): Remove machine-lock.h.
* mach/lock-intern.h: Include <lowlevellock.h> instead of
<machine-lock.h>.
(__spin_lock_t): New type.
(__SPIN_LOCK_INITIALIZER): New macro.
(__spin_lock, __spin_unlock, __spin_try_lock, __spin_lock_locked,
__mutex_init, __mutex_lock_solid, __mutex_unlock_solid, __mutex_lock,
__mutex_unlock, __mutex_trylock): Use lll to implement locks.
* mach/mutex-init.c: Include <lowlevellock.h> instead of <cthreads.h>.
(__mutex_init): Initialize with lll.
* manual/errno.texi (EOWNERDEAD, ENOTRECOVERABLE): New errno values.
* sysdeps/mach/Makefile: Add libmachuser as dependencies for libs
needing lll.
* sysdeps/mach/hurd/bits/errno.h: Regenerate.
* sysdeps/mach/hurd/cthreads.c (__libc_getspecific): Remove function.
* sysdeps/mach/hurd/bits/libc-lock.h: Remove file.
* sysdeps/mach/hurd/setpgid.c: Include <lowlevellock.h>.
(__setpgid): Use lll for synchronization.
* sysdeps/mach/hurd/setsid.c: Likewise with __setsid.
* sysdeps/mach/bits/libc-lock.h: Include <tls.h> and <lowlevellock.h>
instead of <cthreads.h>.
(_IO_lock_inexpensive): New macro
(__libc_lock_recursive_t, __rtld_lock_recursive_t): New structures.
(__libc_lock_self0): New declaration.
(__libc_lock_owner_self): New macro.
(__libc_key_t): Remove type.
(_LIBC_LOCK_INITIALIZER): New macro.
(__libc_lock_define_initialized, __libc_lock_init, __libc_lock_fini,
__libc_lock_fini_recursive, __rtld_lock_fini_recursive,
__libc_lock_lock, __libc_lock_trylock, __libc_lock_unlock,
__libc_lock_define_initialized_recursive,
__rtld_lock_define_initialized_recursive,
__libc_lock_init_recursive, __libc_lock_trylock_recursive,
__libc_lock_lock_recursive, __libc_lock_unlock_recursive,
__rtld_lock_initialize, __rtld_lock_trylock_recursive,
__rtld_lock_lock_recursive, __rtld_lock_unlock_recursive
__libc_once_define, __libc_mutex_unlock): Reimplement with lll.
(__libc_lock_define_recursive, __rtld_lock_define_recursive,
_LIBC_LOCK_RECURSIVE_INITIALIZER, _RTLD_LOCK_RECURSIVE_INITIALIZER):
New macros.
Include <libc-lockP.h> to reimplement libc_key* with pthread_key*.
* hurd/hurdlock.c: New file.
* hurd/hurdlock.h: New file.
* mach/lowlevellock.h: New file
This makes it notably safe against 'return' and such, and used for
__libc_cleanup_push/pop.
* sysdeps/mach/libc-lock.h (__libc_cleanup_frame): Define structure.
(__libc_cleanup_fct): Define function.
(__libc_cleanup_region_start, __libc_cleanup_region_end,
__libc_cleanup_end): Rewrite implementation using
__attribute__ ((__cleanup__)).
(__libc_cleanup_push, __libc_cleanup_pop): New macros.
* sysdeps/unix/sysv/linux/x86_64/sysdep.h: Always include
<dl-sysdep.h>. Test for value of RTLD_PRIVATE_ERRNO instead of
testing whether it is defined.
This gets rid of a lot of kludge and gets closer to other ports.
* hurd/Makefile (headers): Remove threadvar.h.
(inline-headers): Remove threadvar.h.
* hurd/Versions (GLIBC_2.0: Remove __hurd_sigthread_stack_base,
__hurd_sigthread_stack_end, __hurd_sigthread_variables,
__hurd_threadvar_max, __hurd_errno_location.
(HURD_CTHREADS_0.3): Add pthread_getattr_np, pthread_attr_getstack.
* hurd/hurd/signal.h: Do not include <hurd/threadvar.h>.
(_hurd_self_sigstate): Use THREAD_SELF to get _hurd_sigstate.
(_HURD_SIGNAL_H_EXTERN_INLINE): Use THREAD_SELF to get _hurd_sigstate,
unless TLS is not initialized yet, in which case we do not need a
critical section yet anyway.
* hurd/hurd/threadvar.h: Include <tls.h>, do not include
<machine-sp.h>.
(__hurd_sigthread_variables, __hurd_threadvar_max): Remove variables
declarations.
(__hurd_threadvar_index): Remove enum.
(_HURD_THREADVAR_H_EXTERN_INLINE): Remove macro.
(__hurd_threadvar_location_from_sp,__hurd_threadvar_location): Remove
inlines.
(__hurd_reply_port0): New variable declaration.
(__hurd_local_reply_port): New macro.
* hurd/hurdsig.c (__hurd_sigthread_variables): Remove variable.
(interrupted_reply_port_location): Add thread_t parameter. Use it
with THREAD_TCB to access thread-local variables.
(_hurdsig_abort_rpcs): Pass ss->thread to
interrupted_reply_port_location.
(_hurd_internal_post_signal): Likewise.
(_hurdsig_init): Use presence of cthread_fork instead of
__hurd_threadvar_stack_mask to start signal thread by hand.
Remove signal thread threadvar initialization.
* hurd/hurdstartup.c: Do not include <hurd/threadvar.h>
* hurd/sigunwind.c: Include <hurd/threadvar.h>
(_hurdsig_longjmp_from_handler): Use __hurd_local_reply_port instead
of threadvar.
* sysdeps/mach/hurd/Versions (libc.GLIBC_PRIVATE): Add
__libc_lock_self0.
(ld.GLIBC_2.0): Remove __hurd_sigthread_stack_base,
__hurd_sigthread_stack_end, __hurd_sigthread_variables.
(ld.GLIBC_PRIVATE): Add __libc_lock_self0.
* sysdeps/mach/hurd/cthreads.c: Add __libc_lock_self0.
* sysdeps/mach/hurd/dl-sysdep.c (errno, __hurd_sigthread_stack_base,
__hurd_sigthread_stack_end, __hurd_sigthread_variables, threadvars,
__hurd_threadvar_stack_offset, __hurd_threadvar_stack_mask): Do not
define variables.
* sysdeps/mach/hurd/errno-loc.c: Do not include <errno.h> and
<hurd/threadvar.h>.
[IS_IN(rtld)] (rtld_errno): New variable.
[IS_IN(rtld)] (__errno_location): New weak function.
[!IS_IN(rtld)]: Include "../../../csu/errno-loc.c".
* sysdeps/mach/hurd/errno.c: Remove file.
* sysdeps/mach/hurd/fork.c: Include <hurd/threadvar.h>
(__fork): Remove THREADVAR_SPACE macro and its use.
* sysdeps/mach/hurd/i386/init-first.c (__hurd_threadvar_max): Remove
variable.
(init): Do not initialize threadvar.
* sysdeps/mach/hurd/i386/libc.abilist (__hurd_threadvar_max): Remove
symbol.
* sysdeps/mach/hurd/i386/sigreturn.c (__sigreturn): Use
__hurd_local_reply_port instead of threadvar.
* sysdeps/mach/hurd/i386/tls.h (tcbhead_t): Add reply_port and
_hurd_sigstate fields.
(HURD_DESC_TLS, __LIBC_NO_TLS, THREAD_TCB): New macro.
* sysdeps/mach/hurd/i386/trampoline.c: Remove outdated comment.
* sysdeps/mach/hurd/libc-lock.h: Do not include <hurd/threadvar.h>.
(__libc_lock_owner_self): Use &__libc_lock_self0 and THREAD_SELF
instead of threadvar.
* sysdeps/mach/hurd/libc-tsd.h: Remove file.
* sysdeps/mach/hurd/mig-reply.c (GETPORT, reply_port): Remove macros.
(use_threadvar, global_reply_port): Remove variables.
(__hurd_reply_port0): New variable.
(__mig_get_reply_port): Use __hurd_local_reply_port and
__hurd_reply_port0 instead of threadvar.
(__mig_dealloc_reply_port): Likewise.
(__mig_init): Do not initialize threadvar.
* sysdeps/mach/hurd/profil.c: Fix comment.
* sysdeps/generic/thread_state.h (MACHINE_NEW_THREAD_STATE_FLAVOR):
Define macro.
* sysdeps/mach/thread_state.h (MACHINE_THREAD_STATE_FIX_NEW): New macro.
* sysdeps/mach/i386/thread_state.h
(MACHINE_NEW_THREAD_STATE_FLAVOR): New macro, defined to
i386_THREAD_STATE.
(MACHINE_THREAD_STATE_FLAVOR): Define to i386_REGS_SEGS_STATE instead of
i386_THREAD_STATE.
(MACHINE_THREAD_STATE_FIX_NEW): New macro, reads segments.
* sysdeps/mach/hurd/i386/trampoline.c (_hurd_setup_sighandler): Use
i386_REGS_SEGS_STATE instead of i386_THREAD_STATE.
* sysdeps/mach/hurd/i386/tls.h (TCB_ALIGNMENT, HURD_SEL_LDT): New
macros.
(_hurd_tls_fork): Add original thread parameter, Duplicate existing LDT
descriptor instead of creating a new one.
(_hurd_tls_new): New function, creates a new descriptor and updates tcb.
* mach/setup-thread.c: Include <ldsodefs.h>.
(__mach_setup_thread): Call _dl_allocate_tls, pass
MACHINE_NEW_THREAD_STATE_FLAVOR to __thread_set_state instead of
MACHINE_THREAD_STATE_FLAVOR, before getting
MACHINE_THREAD_STATE_FLAVOR, calling _hurd_tls_new, and setting
MACHINE_THREAD_STATE_FLAVOR with the result.
* hurd/hurdfault.c (_hurdsig_fault_init): Call
MACHINE_THREAD_STATE_FIX_NEW.
* sysdeps/mach/hurd/fork.c (__fork): Call _hurd_tls_fork for sigthread
too. Add original thread parameter.
Continuing the removals of inline functions from the x86
bits/mathinline.h, this patch removes an inline of __finite (which was
not actually architecture-specific at all beyond its
endianness-dependence).
This inline is not normally used with GCC 4.4 or later, because
isfinite now uses __builtin_isfinite except for -fsignaling-nans.
Allowing __builtin_isfinite etc. to work properly even for
-fsignaling-nans, by implementing versions of those built-in functions
that use integer arithmetic in GCC, is
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66462> (a patch was
committed but had to be reverted because it caused problems, and that
patch didn't address all formats for all architectures, only some, so
by itself would not have been sufficient to allow glibc to use
__builtin_isfinite unconditionally for new-enough GCC).
Tested for x86_64 and x86.
* sysdeps/x86/fpu/bits/mathinline.h [__USE_MISC] (__finite):
Remove inline function.
I found the i386 libm-test-ulps files needed updating (probably the
sqrt changes perturbed exactly when excess precision was used by the
compiler).
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
Revert m68k __ieee754_sqrt change as it causes a build failure in one
m68k configuration. m68k-linux-gnu now passes again.
* sysdeps/m68k/m680x0/fpu/mathimpl.h (__ieee754_sqrt): Revert previous
commit.
Remove the now unused target specific__ieee754_sqrt(f/l) inlines.
Also remove inlines of sqrt which are for really old GCC versions.
Removing these is desirable, under the general principle of leaving
such inlining to the compiler rather than trying to do it in installed
headers, especially when only very old compilers are affected.
Note that removing inlines for __ieee754_sqrt disables inlining in the
sqrt wrapper functions. Given the sqrt function will typically only be
called for negative arguments, it doesn't matter whether the inlining
happens or not.
* sysdeps/aarch64/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
* sysdeps/alpha/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
* sysdeps/generic/math-type-macros.h (M_SQRT): Use sqrt.
* sysdeps/m68k/m680x0/fpu/mathimpl.h (__ieee754_sqrt): Remove.
* sysdeps/powerpc/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
* sysdeps/s390/fpu/bits/mathinline.h: Remove file.
* sysdeps/sparc/fpu/bits/mathinline.h (sqrt) Remove.
(sqrtf): Remove.
(sqrtl): Remove.
(__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
(__ieee754_sqrtl): Remove.
* sysdeps/m68k/m680x0/fpu/mathimpl.h (__ieee754_sqrt): Remove.
* sysdeps/x86/fpu/math_private.h (__ieee754_sqrt): Remove.
* sysdeps/x86_64/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
(__ieee754_sqrtl): Remove.
This patch series cleans up the many uses of __ieee754_sqrt(f/l) in GLIBC.
The goal is to enable GCC to do the inlining, and if this fails call the
__ieee754_sqrt function. This is done by internally declaring sqrt with asm
redirects. The compat symbols and sqrt wrappers need to disable the redirect.
The redirect is also disabled if there are already redirects defined when
using -ffinite-math-only.
All math functions (but not math tests, non-library code and libnldbl) are
built with -fno-math-errno which means GCC will typically inline sqrt as a
single instruction. This means targets are no longer forced to add a special
inline for sqrt.
* include/math.h (sqrt): Declare with asm redirect.
(sqrtf): Likewise.
(sqrtl): Likewise.
(sqrtf128): Likewise.
* Makeconfig: Add -fno-math-errno for libc/libm, but build testsuite,
nonlib and libnldbl with -fmath-errno.
* math/w_sqrt_compat.c: Define NO_MATH_REDIRECT.
* math/w_sqrt_template.c: Likewise.
* math/w_sqrtf_compat.c: Likewise.
* math/w_sqrtl_compat.c: Likewise.
* sysdeps/i386/fpu/w_sqrt.c: Likewise.
* sysdeps/i386/fpu/w_sqrt_compat.c: Likewise.
* sysdeps/generic/math-type-macros-float128.h: Remove math.h and
complex.h.
This patch removes further parts of sysdeps/x86/fpu/bits/mathinline.h
that are only of value for optimization with older compiler versions,
in accordance with general principles of preferring the let the
compiler deal with such inlining through built-in functions.
In general, GCC supports inlining all these functions as of version
4.3 or earlier. However, some inlines in GCC may have had excessively
restrictive conditions in past GCC versions (e.g. requiring
-ffast-math when the inline is valid under broader conditions). (In
particular, GCC had, before GCC 7, unnecessarily restrictive
conditions on when it could apply floor and ceil inlines corresponding
to the ones removed here. The same was true for rint, but
bits/mathinline.h *also* was excessively restrictive there.)
The removed sincos inlines are for __sincos etc. functions (not a
public interface and not currently used in this header either; not in
a part of the header ever used for building glibc itself). Likewise,
the atan2 inlines included one for __atan2l, also not a public
interface and not used for building glibc itself (calls inside glibc
generally use __ieee754_atan2l, for which there is a separate
__LIBC_INTERNAL_MATH_INLINES case in this header).
Tested for x86_64 and x86.
* sysdeps/x86/fpu/bits/mathinline.h [__FAST_MATH__]
(__sincos_code): Remove define and undefine.
[__FAST_MATH__] (__sincos): Remove inline function.
[__FAST_MATH__] (__sincosf): Remove inline function.
[__FAST_MATH__] (__sincosl): Remove inline function.
(__atan2l): Remove inline functions.
[!__GNUC_PREREQ (3, 4)] (__atan2_code): Remove macro.
[!__GNUC_PREREQ (3, 4) && __FAST_MATH__] (atan2): Remove inline
function.
(floor): Remove inline function.
(ceil): Likewise.
[__FAST_MATH__] (__ldexp_code): Remove macro.
[__FAST_MATH__] (ldexp): Remove inline function.
[__FAST_MATH__ && __USE_ISOC99] (ldexpf): Likewise.
[__FAST_MATH__ && __USE_ISOC99] (ldexpl): Likewise.
[__FAST_MATH__ && __USE_ISOC99] (rint): Likewise.
[__USE_ISOC99] (__lrint_code): Remove macro.
[__USE_ISOC99] (__llrint_code): Likewise.
[__USE_ISOC99] (lrintf): Remove inline function.
[__USE_ISOC99] (lrint): Likewise.
[__USE_ISOC99] (lrintl): Likewise.
[__USE_ISOC99] (llrint): Likewise.
[__USE_ISOC99] (llrintf): Likewise.
[__USE_ISOC99] (llrintl): Likewise.
Currently the benchtests are run with internal GLIBC headers, which is incorrect.
Defining _ISOMAC in the makefile ensures the internal headers are bypassed.
Fix all tests which were relying on internal defines or includes.
* benchtests/Makefile: Define _ISOMAC.
* benchtests/bench-strcoll.c: Add missing sys/stat.h include.
* benchtests/bench-string.h: Define inhibit_loop_to_libcall macro.
* benchtests/bench-strstr.c: Define empty libc_hidden_builtin_def.
* benchtests/bench-strtok.c (oldstrtok): Use rawmemchr.
* benchtests/bench-timing.h: Define attribute_hidden.
As spotted by GNOME translation team, Greek language has the actually
visible difference between the abbreviated nominative and the abbreviated
genitive case for some month names. Examples:
May:
abbreviated nominative: "Μάι" -> abbreviated genitive: "Μαΐ"
July:
abbreviated nominative: "Ιούν" -> abbreviated genitive: "Ιουλ"
and more month names with similar differences.
Original discussion: https://bugzilla.gnome.org/show_bug.cgi?id=793645#c21
[BZ #22937]
* localedata/locales/el_CY (abmon): Rename to...
(ab_alt_mon): This.
(abmon): Import from CLDR (abbreviated genitive case).
* localedata/locales/el_GR (abmon): Rename to...
(ab_alt_mon): This.
(abmon): Import from CLDR (abbreviated genitive case).
A GNOME translator asked to use the same abbreviated month names
as provided by CLDR. This sounds reasonable. See the discussion:
https://bugzilla.gnome.org/show_bug.cgi?id=793645#c27
[BZ #22932]
* localedata/locales/lt_LT (abmon): Synchronize with CLDR.
In accordance with the general principle of preferring to let the
compiler optimize function calls based on their standard semantics
rather than putting inline definitions of such functions in installed
headers, this patch removes various such inline definitions in the x86
bits/mathinline.h that were already disabled for GCC 3.5 or later and
so were only used with very old compilers (for which good optimization
is particularly unimportant); along with those inlines, a definition
of __M_SQRT2, which was only used in such inline functions, is also
removed. This is similar to an early step in removing the string.h
inlines; I intend to follow up with further removals of
bits/mathinline.h inline definitions in appropriate logical groups
(with GCC bugs filed in cases where GCC doesn't already support
corresponding optimizations).
Tested for x86_64 and x86.
* sysdeps/x86/fpu/bits/mathinline.h [!__GNUC_PREREQ (3, 4)]
(lrintf): Remove definitions used only with old GCC.
[!__GNUC_PREREQ (3, 4)] (lrint): Likewise.
[!__GNUC_PREREQ (3, 4)] (llrintf): Likewise.
[!__GNUC_PREREQ (3, 4)] (llrint): Likewise.
[!__GNUC_PREREQ (3, 4)] (fmaxf): Likewise.
[!__GNUC_PREREQ (3, 4)] (fmax): Likewise.
[!__GNUC_PREREQ (3, 4)] (fminf): Likewise.
[!__GNUC_PREREQ (3, 4)] (fmin): Likewise.
[!__GNUC_PREREQ (3, 4)] (rint): Likewise.
[!__GNUC_PREREQ (3, 4)] (rintf): Likewise.
[!__GNUC_PREREQ (3, 4)] (nearbyint): Likewise.
[!__GNUC_PREREQ (3, 4)] (nearbyintf): Likewise.
[!__GNUC_PREREQ (3, 4)] (ceil): Likewise.
[!__GNUC_PREREQ (3, 4)] (ceilf): Likewise.
[!__GNUC_PREREQ (3, 4)] (floor): Likewise.
[!__GNUC_PREREQ (3, 4)] (floorf): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (tan): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (fmod): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 4)] (sin): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 4)] (cos): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (log10): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (asin): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (acos): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 4)] (atan): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (log1p): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (logb): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (log2): Likewise.
[__FAST_MATH__ && !__GNUC_PREREQ (3, 5)] (drem): Likewise.
[__FAST_MATH__] (__M_SQRT2): Remove macro.
The mutually misaligned inputs on aarch64 are compared with a simple
byte copy, which is not very efficient. Enhance the comparison
similar to strcmp by loading a double-word at a time. The peak
performance improvement (i.e. 4k maxlen comparisons) due to this on
the strncmp microbenchmark is as follows:
falkor: 3.5x (up to 72% time reduction)
cortex-a73: 3.5x (up to 71% time reduction)
cortex-a53: 3.5x (up to 71% time reduction)
All mutually misaligned inputs from 16 bytes maxlen onwards show
upwards of 15% improvement and there is no measurable effect on the
performance of aligned/mutually aligned inputs.
* sysdeps/aarch64/strncmp.S (count): New macro.
(strncmp): Store misaligned length in SRC1 in COUNT.
(mutual_align): Adjust.
(misaligned8): Load dword at a time when it is safe.
C99 specifies that the EOF condition on a file is "sticky": once EOF
has been encountered, all subsequent reads should continue to return
EOF until the file is closed or something clears the "end-of-file
indicator" (e.g. fseek, clearerr). This is arguably a change from
C89, where the wording was ambiguous; the BSDs always had sticky EOF,
but the System V lineage would attempt to read from the underlying fd
again. GNU libc has followed System V for as long as we've been
using libio, but nowadays C99 conformance and BSD compatibility are
more important than System V compatibility.
You might wonder if changing the _underflow impls is sufficient to
apply the C99 semantics to all of the many stdio functions that
perform input. It should be enough to cover all paths to _IO_SYSREAD,
and the only other functions that call _IO_SYSREAD are the _seekoff
impls, which is OK because seeking clears EOF, and the _xsgetn impls,
which, as far as I can tell, are unused within glibc.
The test programs in this patch use a pseudoterminal to set up the
necessary conditions. To facilitate this I added a new test-support
function that sets up a pair of pty file descriptors for you; it's
almost the same as BSD openpty, the only differences are that it
allocates the optionally-returned tty pathname with malloc, and that
it crashes if anything goes wrong.
[BZ #1190]
[BZ #19476]
* libio/fileops.c (_IO_new_file_underflow): Return EOF immediately
if the _IO_EOF_SEEN bit is already set; update commentary.
* libio/oldfileops.c (_IO_old_file_underflow): Likewise.
* libio/wfileops.c (_IO_wfile_underflow): Likewise.
* support/support_openpty.c, support/tty.h: New files.
* support/Makefile (libsupport-routines): Add support_openpty.
* libio/tst-fgetc-after-eof.c, wcsmbs/test-fgetwc-after-eof.c:
New test cases.
* libio/Makefile (tests): Add tst-fgetc-after-eof.
* wcsmbs/Makefile (tests): Add tst-fgetwc-after-eof.
* sysdeps/mach/hurd/reboot.c: Include <hurd/paths.h>
(reboot): Lookup _SERVERS_STARTUP instead of calling proc_getmsgport to get a
port to the startup server.
Jeff Law noticed that native PowerPC builds were broken by my having
made math_ldbl_opt.h not include math.h. nldbl-compat.c formerly got
math.h via libioP.h and math_ldbl_opt.h, *without* __NO_LONG_DOUBLE_MATH;
after my change it got it via nldbl-compat.h *with* __NO_LONG_DOUBLE_MATH,
but __NO_LONG_DOUBLE_MATH mode is forbidden on hosts that define
__HAVE_DISTINCT_FLOAT128, so the build breaks. This is the quick fix.
* sysdeps/ieee754/ldbl-opt/nldbl-compat.c: Include math.h
before nldbl-compat.h.
The sysdeps/ieee754/ldbl-opt version of math_ldbl_opt.h includes
math.h and math_private.h, despite not having any need for those
headers itself; the sysdeps/generic version doesn't. About 20 files
are relying on math_ldbl_opt.h to include math.h and/or math_private.h
for them, even though none of them necessarily used on a platform that
needs ldbl-opt support.
* sysdeps/ieee754/ldbl-opt/math_ldbl_opt.h: Don't include
math.h or math_private.h.
* sysdeps/alpha/fpu/s_isnan.c
* sysdeps/ieee754/ldbl-128ibm/s_ceill.c
* sysdeps/ieee754/ldbl-128ibm/s_floorl.c
* sysdeps/ieee754/ldbl-128ibm/s_llrintl.c
* sysdeps/ieee754/ldbl-128ibm/s_llroundl.c
* sysdeps/ieee754/ldbl-128ibm/s_lrintl.c
* sysdeps/ieee754/ldbl-128ibm/s_lroundl.c
* sysdeps/ieee754/ldbl-128ibm/s_rintl.c
* sysdeps/ieee754/ldbl-128ibm/s_roundl.c
* sysdeps/ieee754/ldbl-128ibm/s_truncl.c
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/e_hypot.c
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/e_hypotf.c:
* sysdeps/powerpc/powerpc64/fpu/multiarch/e_expf.c
* sysdeps/powerpc/powerpc64/fpu/multiarch/e_hypot.c
* sysdeps/powerpc/powerpc64/fpu/multiarch/e_hypotf.c:
Include math_private.h.
* sysdeps/ieee754/ldbl-64-128/s_finitel.c
* sysdeps/ieee754/ldbl-64-128/s_fpclassifyl.c
* sysdeps/ieee754/ldbl-64-128/s_isinfl.c
* sysdeps/ieee754/ldbl-64-128/s_isnanl.c
* sysdeps/ieee754/ldbl-64-128/s_signbitl.c
* sysdeps/powerpc/power7/fpu/s_logb.c:
Include math.h and math_private.h.
On Alpha, the register $at is, by default, reserved for use by the
assembler, in the expansion of pseudo-instructions. It's also used
by the special calling convention for _mcount. We get warnings from
Alpha clone.S because the code to call _mcount isn't properly marked
up to tell the assembler not to use $at itself.
* sysdeps/unix/sysv/linux/alpha/clone.s (__clone): Wrap manual
uses of $at in .set noat / .set at.
Since __libc_longjmp is a private interface for cancellation implementation
in libpthread, there is no need to provide hidden __libc_longjmp in libc.
Tested with build-many-glibcs.py.
* include/setjmp.h (__libc_longjmp): Remove libc_hidden_proto.
* setjmp/longjmp.c (__libc_longjmp): Remove libc_hidden_def.
* sysdeps/s390/longjmp.c (__libc_longjmp): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/longjmp.S (__libc_longjmp):
Likewise.
On sparc32 tst-makecontext fails, as backtrace called within a context
created by makecontext to yield infinite backtrace.
Fix that the same way than nios2 by adding a nop just before
__startcontext. This is needed as otherwise FDE lookup just repeatedly
finds __setcontext's FDE in an infinite loop, due to the convention of
using 'address - 1' for FDE lookup.
Changelog:
[BZ #22919]
* sysdeps/unix/sysv/linux/sparc/sparc32/setcontext.S (__startcontext):
Add nop before __startcontext, add explaining comments.
Some SPE opcodes clashes with some recent PowerISA opcodes and
until recently gas did not complain about it. However binutils
recently changed it and now VLE configured gas does not support to
assembler some instruction that might class with VLE (HTM for
instance). It also does not help that glibc build hardware lock
elision support as default (regardless of assembler support).
Although runtime will not actually enables TLE on SPE hardware
(since kernel will not advertise it), I see little advantage on
adding HTM support on SPE built glibc. SPE uses an incompatible
ABI which does not allow share the same build with default
powerpc and HTM code slows down SPE without any benefict.
This patch fixes it by only building HTM when SPE configuration
is not used.
Checked with a powerpc-linux-gnuspe build. I also did some sniff
tests on a e500 hardware without any issue.
[BZ #22926]
* sysdeps/powerpc/powerpc32/sysdep.h (ABORT_TRANSACTION_IMPL): Define
empty for __SPE__.
* sysdeps/powerpc/sysdep.h (ABORT_TRANSACTION): Likewise.
* sysdeps/unix/sysv/linux/powerpc/elision-lock.c (__lll_lock_elision):
Do not build hardware transactional code for __SPE__.
* sysdeps/unix/sysv/linux/powerpc/elision-trylock.c
(__lll_trylock_elision): Likewise.
* sysdeps/unix/sysv/linux/powerpc/elision-unlock.c
(__lll_unlock_elision): Likewise.
This patch refactors the ARCH_FORK macro and the required architecture
specific header to simplify the required architecture definitions
to provide the fork syscall semantic and proper document current
Linux clone ABI variant.
Instead of require the reimplementation of arch-fork.h header, this
patch changes the ARCH_FORK to an inline function with clone ABI
defined by kernel-features.h define. The generic kernel ABI meant
for newer ports is used as default and redefine if the architecture
requires.
Checked on x86_64-linux-gnu and i686-linux-gnu. Also with a build
for all the afected ABIs.
* sysdeps/nptl/fork.c (ARCH_FORK): Replace by auch_fork.
* sysdeps/unix/sysv/linux/alpha/arch-fork.h: Remove file.
* sysdeps/unix/sysv/linux/riscv/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/aarch64/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/arm/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/i386/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/microblaze/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/mips/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/s390/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/sh/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/tile/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/x86_64/arch-fork.h: Likewise.
* sysdeps/unix/sysv/linux/arch-fork.h (arch_fork): New function.
* sysdeps/unix/sysv/linux/aarch64/kernel-features.h: New file.
* sysdeps/unix/sysv/linux/riscv/kernel-features.h: Likewise.
* sysdeps/unix/sysv/linux/arm/kernel-features.h
(__ASSUME_CLONE_BACKWARDS): Define.
* sysdeps/unix/sysv/linux/createthread.c (ARCH_CLONE): Define to
__clone2 if __NR_clone2 is defined.
* sysdeps/unix/sysv/linux/hppa/kernel-features.h
(__ASSUME_CLONE_BACKWARDS): Likewise.
* sysdeps/unix/sysv/linux/i386/kernel-features.h
(__ASSUME_CLONE_BACKWARDS): Likewise.
* sysdeps/unix/sysv/linux/ia64/kernel-features.h
(__ASSUME_CLONE2): Likewise.
* sysdeps/unix/sysv/linux/microblaze/kernel-features.h
(__ASSUME_CLONE_BACKWARDS3): Likewise.
* sysdeps/unix/sysv/linux/kernel-features.h: Document possible clone
variants and the define architecture can use.
(__ASSUME_CLONE_DEFAULT): Define as default.
* sysdeps/unix/sysv/linux/mips/kernel-features.h
(__ASSUME_CLONE_BACKWARDS): Likewise.
* sysdeps/unix/sysv/linux/powerpc/kernel-features.h
(__ASSUME_CLONE_BACKWARDS): Likewise.
* sysdeps/unix/sysv/linux/s390/kernel-features.h
(__ASSUME_CLONE_BACKWARDS2): Likewise.
I goofed up when changing the loop8 name to loop16 and missed on out
the branch instance. Fixed and actually build tested this time.
* sysdeps/aarch64/memcmp.S (more16): Fix branch target loop16.
This improved memcmp provides a fast path for compares up to 16 bytes
and then compares 16 bytes at a time, thus optimizing loads from both
sources. The glibc memcmp microbenchmark retains performance (with an
error of ~1ns) for smaller compare sizes and reduces up to 31% of
execution time for compares up to 4K on the APM Mustang. On Qualcomm
Falkor this improves to almost 48%, i.e. it is almost 2x improvement
for sizes of 2K and above.
* sysdeps/aarch64/memcmp.S: Widen comparison to 16 bytes at a
time.
* sysdeps/mach/hurd/bits/stat.h [__USE_ATFILE] (UTIME_NOW,
UTIME_OMIT): New macros.
* sysdeps/mach/hurd/futimens.c (__futimens): Try to use __file_utimens
before reverting to converting time spec to time value and calling
__file_utimes.
* sysdeps/mach/hurd/utime-helper.c: New file.
* sysdeps/mach/hurd/futimes.c: Include "utime-helper.c".
(__futimes): Try to use utime_ts_from_tval and __file_utimens before
reverting to utime_tvalue_from_tval and __file_utimes.
* sysdeps/mach/hurd/lutimes.c: Include "utime-helper.c".
(__lutimes): Just call hurd_futimens after lookup.
* sysdeps/mach/hurd/utimes.c: Likewise.
Building glibc for s390 with -Os (32-bit only, with GCC 7) fails with:
In file included from ../sysdeps/s390/multiarch/8bit-generic.c:370:0,
from ebcdic-at-de.c:28:
../iconv/loop.c: In function '__to_generic_vx':
../iconv/loop.c:264:22: error: 'ch' may be used uninitialized in this function [-Werror=maybe-uninitialized]
if (((Character) >> 7) == (0xe0000 >> 7)) \
^~
In file included from ebcdic-at-de.c:28:0:
../sysdeps/s390/multiarch/8bit-generic.c:340:15: note: 'ch' was declared here
uint32_t ch; \
^
../iconv/loop.c:325:7: note: in expansion of macro 'BODY'
BODY
^~~~
It's fairly easy to see, looking at the (long) expansion of the BODY
macro, that this is a false positive and the relevant variable 'ch' is
always initialized before use, in one of two possible places. As
such, disabling the warning for -Os with the DIAG_* macros is the
natural approach to fix this build failure. However, because of the
location at which the warning is reported, the disabling needs to go
in iconv/loop.c, around the definition of UNICODE_TAG_HANDLER (not
inside the definition), as that macro definition is where the
uninitialized use is reported, whereas the code that needs to be
reasoned about to see that the warning is a false positive is in the
definition of BODY elsewhere.
Thus, the patch adds such disabling in iconv/loop.c, with a comment
pointing to the s390-specific code and a comment in the s390-specific
code pointing to the generic file to alert people to the possible need
to update one place when changing the other. It would be possible if
desired to use #ifdef __s390__ around the disabling, though in general
we try to avoid that sort of thing in generic files. (Or some
extremely specialized macros for "disable -Wmaybe-uninitialized in
this particular place" could be specified, defined to 0 in a lot of
different files that include iconv/loop.c and to 1 in that particular
s390 file.)
Tested that this fixed -Os compilation for s390-linux-gnu with
build-many-glibcs.py.
* iconv/loop.c (UNICODE_TAG_HANDLER): Disable
-Wmaybe-uninitialized for -Os.
* sysdeps/s390/multiarch/8bit-generic.c (BODY): Add comment about
this disabling.
This patch defines _DIRENT_MATCHES_DIRENT64 to either 0 or 1 and adjust its
usage from checking its definition to its value.
Checked on a build for major Linux abis.
* bits/dirent.h (__INO_T_MATCHES_INO64_T): Define regardless whether
__INO_T_MATCHES_INO64_T is defined.
* sysdeps/unix/sysv/linux/bits/dirent.h: Likewise.
* dirent/alphasort.c: Check _DIRENT_MATCHES_DIRENT64 value instead
of definition.
* dirent/alphasort64.c: Likewise.
* dirent/scandir.c: Likewise.
* dirent/scandir64-tail.c: Likewise.
* dirent/scandir64.c: Likewise.
* dirent/scandirat.c: Likewise.
* dirent/scandirat64.c: Likewise.
* dirent/versionsort.c: Likewise.
* dirent/versionsort64.c: Likewise.
* include/dirent.h: Likewise.
Now that send might be implemented calling sendto syscall on Linux,
I am seeing some issue in some kernel configurations where tst-cancel4
sendto do not block as expected.
The socket used to force the syscall blocking is used with default
system configuration for buffer sending size, which might not be
suffice to force blocking. This patch fixes it by explicit setting
buffer socket lower than the buffer size used. It also enables sendto
cancellation tests to work in both ways (since internally send is
implemented routing to sendto on Linux kernel).
The patch also removes unrequired make rules on some archictures
for send/recv. The generic nptl Makefile already set the compiler flags
required on some architectures for correct unwinding and libc object
are not strictly required to support unwind (since pthread_cancel
requires linking against libpthread).
Checked on aarch64-linux-gnu and x86_64-linux-gnu. I also did a
sniff test with tst-cancel{4,5} on a simulated mips64-linux-gnu.
* nptl/tst-cancel4-common.h (set_socket_buffer): New function.
* nptl/tst-cancel4-common.c (do_test): Call set_socket_buffer
for socketpair endpoint.
* nptl/tst-cancel4.c (tf_send): Call set_socket_buffer and use
WRITE_BUFFER_SIZE as buffer size for sending socket.
(tf_sendto): Use SOCK_STREAM instead of SOCK_DGRAM and fix an
issue on system where send is implemented with sendto syscall.
* sysdeps/unix/sysv/linux/mips/mips64/Makefile [$(subdir) = socket]
(CFLAGS-recv.c, CFLAGS-send.c): Remove rules.
[$(subdir) = nptl] (CFLAGS-recv.c, CFLAGS-send.c): Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/Makefile: Remove file.
This patch fixes the i386 sa_restorer field initialization for sigaction
syscall for kernel with vDSO. As described in bug report, i386 Linux
(and compat on x86_64) interprets SA_RESTORER clear with nonzero
sa_restorer as a request for stack switching if the SS segment is 'funny'.
This means that anything that tries to mix glibc's signal handling with
segmentation (for instance through modify_ldt syscall) is randomly broken
depending on what values lands in sa_restorer.
The testcase added is based on Linux test tools/testing/selftests/x86/ldt_gdt.c,
more specifically in do_multicpu_tests function. The main changes are:
- C11 atomics instead of plain access.
- Remove x86_64 support which simplifies the syscall handling and fallbacks.
- Replicate only the test required to trigger the issue.
Checked on i686-linux-gnu.
[BZ #21269]
* sysdeps/unix/sysv/linux/i386/Makefile (tests): Add tst-bz21269.
* sysdeps/unix/sysv/linux/i386/sigaction.c (SET_SA_RESTORER): Clear
sa_restorer for vDSO case.
* sysdeps/unix/sysv/linux/i386/tst-bz21269.c: New file.
so interfaces needing it can get it.
* stdlib/errno.h (error_t): Move definition to...
* bits/types/error_t.h: ... new header.
* stdlib/Makefile (headers): Add bits/types/error_t.h.
* sysdeps/mach/hurd/bits/errno.h (error_t): Move definition to...
* sysdeps/mach/hurd/bits/types/error_t.h: ... new header.
* sysdeps/mach/hurd/errnos.awk (error_t): Likewise.
* hurd/hurd.h: Include <bits/types/error_t.h>
* hurd/hurd/fd.h: Include <bits/types/error_t.h>
* hurd/hurd/id.h: Include <errno.h> and <bits/types/error_t.h>
* hurd/hurd/lookup.h: Include <errno.h> and <bits/types/error_t.h>
* hurd/hurd/resource.h: Include <bits/types/error_t.h>
* hurd/hurd/signal.h: Include <bits/types/error_t.h>
* hurd/hurd/sigpreempt.h: Include <bits/types/error_t.h>
* hurd/hurd.h: Include <bits/types/sigset_t.h>
* hurd/hurd/fd.h: Include <sys/select.h> and <bits/types/sigset_t.h>
(_hurd_fd_read, _hurd_fd_write): Use __loff_t instead of loff_t.
* hurd/hurd/signal.h: Include <bits/types/stack_t.h> and
<bits/types/sigset_t.h>.
[!defined __USE_GNU]: Do not #error out.
(struct hurd_sigstate): Use _NSIG instead of NSIG.
* hurd/hurd/sigpreempt.h (__need_size_t): Define.
Include <stddef.h> and <bits/types/sigset_t.h>
(struct hurd_signal_preemptor, hurd_catch_signal): Use __sighandler_t
instead of sighandler_t.
mig_support does not actually inline the stpncpy any more.
* mach/mach/mig_support.h [defined __USE_GNU]: Do not #error out.
* scripts/check-installed-headers.sh: Do not ignore Hurd and Mach
headers.
thus making <hurd/port.h> and <hurd/userlink.h> includable without
_GNU_SOURCE.
* hurd/hurd/port.h: Do not include <hurd/signal.h>.
* hurd/hurd/userlink.h [!defined __USE_EXTERN_INLINES ||
!defined _LIBC || !IS_IN (libc)]: Do not include <hurd/signal.h>.
Compiling the testsuite for powerpc (multi-arch configurations) with
-Os with GCC 7 fails with:
In file included from ifuncmod1.c:7:0,
from ifuncdep1.c:3:
../sysdeps/powerpc/ifunc-sel.h: In function 'ifunc_sel':
../sysdeps/powerpc/ifunc-sel.h:12:3: error: asm operand 2 probably doesn't match constraints [-Werror]
__asm__ ("mflr 12\n\t"
^~~~~~~
../sysdeps/powerpc/ifunc-sel.h:12:3: error: asm operand 3 probably doesn't match constraints [-Werror]
../sysdeps/powerpc/ifunc-sel.h:12:3: error: asm operand 4 probably doesn't match constraints [-Werror]
../sysdeps/powerpc/ifunc-sel.h:12:3: error: impossible constraint in 'asm'
The "i" constraints on function pointers require the function call to
be inlined so the compiler can see the constant function pointer
arguments passed to the asm. This patch marks the relevant functions
as always_inline accordingly.
Tested that this fixes the -Os testsuite build for
powerpc-linux-gnu-power4, powerpc64-linux-gnu, powerpc64le-linux-gnu
with build-many-glibcs.py.
* sysdeps/powerpc/ifunc-sel.h (ifunc_sel): Make always_inline.
(ifunc_one): Likewise.
Unlike other nscd caches, the netgroup cache contains two types of
records - those for "iterate through a netgroup" (i.e. setnetgrent())
and those for "is this user in this netgroup" (i.e. innetgr()),
i.e. full and partial records. The timeout code assumes these records
have the same key for the group name, so that the collection of records
that is "this netgroup" can be expired as a unit.
However, the keys are not the same, as the in-netgroup key is generated
by nscd rather than being passed to it from elsewhere, and is generated
without the trailing NUL. All other keys have the trailing NUL, and as
noted in the linked BZ, debug statements confirm that two keys for the
same netgroup are added to the cache with two different lengths.
The result of this is that as records in the cache expire, the purge
code only cleans out one of the two types of entries, resulting in
stale, possibly incorrect, and possibly inconsistent cache data.
The patch simply includes the existing NUL in the computation for the
key length ('key' points to the char after the NUL, and 'group' to the
first char of the group, so 'key-group' includes the first char to the
NUL, inclusive).
[BZ #22342]
* nscd/netgroupcache.c (addinnetgrX): Include trailing NUL in
key value.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Complement commit c579f48edb ("Remove cached PID/TID in clone") and
remove the `match_pid' parameter not used by `iterate_thread_list' any
longer. Update call sites accordingly.
* nptl_db/td_ta_thr_iter.c (iterate_thread_list): Remove
`match_pid' parameter.
(td_ta_thr_iter): Update accordingly.
libpthread_nonshared.a is unused after this, so remove it from the
build.
There is no ABI impact because pthread_atfork was implemented using
__register_atfork in libc even before this change.
pthread_atfork has to be a weak alias because pthread_* names are not
reserved in libc.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
As discussed in bug 22902, the i386 fenv_private.h implementation has
problems for float128 for the case of 32-bit glibc built with libgcc
from GCC configured using --with-fpmath=sse.
The optimized floating-point state handling in fenv_private.h needs to
know which floating-point state - x87 or SSE - is used for each
floating-point type, so that only one state needs updating / testing
for libm code using that state internally. On 32-bit x86, the x87
rounding mode is always used for float128, but the x87 exception flags
are only used when libgcc is built using x87 floating-point
arithmetic; if libgcc is built for SSE arithmetic, the SSE exception
flags are used.
The choice of arithmetic with which libgcc is built is independent of
that with which glibc is built. Thus, since glibc cannot tell the
choice used in libgcc, the default implementations of
libc_feholdexcept_setroundf128 and libc_feupdateenv_testf128 (which
use the <fenv.h> functions, thus using both x87 and SSE state on
processors that have both) need to be used; this patch updates the
code accordingly.
Tested for 32-bit x86; HJ reports testing in the --with-fpmath=sse
case.
[BZ #22902]
* sysdeps/i386/fpu/fenv_private.h [!__x86_64__]
(libc_feholdexcept_setroundf128): New macro.
[!__x86_64__] (libc_feupdateenv_testf128): Likewise.
On sparc, localplt test failures appear when building with -Os because
of a call to strtoumax from
sysdeps/unix/sysv/linux/sparc/sparc64/get_clockfreq.c, and strtoumax
is not inlined when building with -Os. This patch fixes those
failures by using libc_hidden_proto and libc_hidden_def for strtoumax.
Tested with build-many-glibcs.py for
sparc64-linux-gnu-disable-multi-arch, sparc64-linux-gnu,
sparcv9-linux-gnu-disable-multi-arch, sparcv9-linux-gnu that this
fixes that test failure with -Os.
[BZ #15105]
* sysdeps/wordsize-32/strtoumax.c (strtoumax): Use
libc_hidden_def.
* sysdeps/wordsize-64/strtoumax.c (strtoumax): Likewise.
* include/inttypes.h: New file.
Continuing fixes for -Os build issues shown with build-many-glibcs.py,
this patch adds uses of DIAG_* to disable -Wmaybe-uninitialized in two
more places where code inlined from strcoll / wcscoll is wrongly
diagnosed as possibly using uninitialized structure fields. (All
these warnings in different places for these functions are I think
essentially the same bug.)
Tested with build-many-glibcs.py for alpha-linux-gnu and
mips-linux-gnu that this fixes the -Os build failures for those
configurations with GCC 7.
* locale/weightwc.h (findidx): Ignore -Wmaybe-uninitialized for
-Os in two more places.
See this bug https://sourceware.org/bugzilla/show_bug.cgi?id=22898
These lines don’t yet work because of a glibc bug, not because of
problems in the locale data. No matter what sorting rules one uses,
these characters cannot be sorted at all at the moment.
As soon as that bug is fixed, these lines should be added back to the
test file.
* localedata/cmn_TW.UTF-8.in: Remove the lines which cannot
be sorted correctly at the moment because of a bug.
With out this, adding collation test files like localedata/gez_ER.UTF-8@abegede.in
does not work for locales which contain @ modifiers.
* gen-locales.mk: Make test files which contain @ modifiers in their
name work.
* localedata/gen-locale.sh: Likewise.
See:
http://pubs.opengroup.org/onlinepubs/7908799/xbd/re.html
> A range expression represents the set of collating elements that fall
> between two elements in the current collation sequence,
> inclusively. It is expressed as the starting point and the ending
> point separated by a hyphen (-).
>
> Range expressions must not be used in portable applications because
> their behaviour is dependent on the collating sequence. Ranges will be
> treated according to the current collating sequence, and include such
> characters that fall within the range based on that collating
> sequence, regardless of character values. This, however, means that
> the interpretation will differ depending on collating sequence. If,
> for instance, one collating sequence defines ä as a variant of a,
> while another defines it as a letter following z, then the expression
> [ä-z] is valid in the first language and invalid in the second.
Therefore, using [a-z] does not make much sense except in the C/POSIX locale.
The new iso14651_t1_common lists upper case and lower case Latin characters
in a different order than the old one which causes surprising results
for example in the de_DE locale: [a-z] now includes A because A comes
after a in iso14651_t1_common but does not include Z because that comes
after z in iso14651_t1_common.
* posix/tst-fnmatch.input: Fix results for range expressions
for non C locales.
* posix/tst-regexloc.c: Do not use a range expression for
de_DE.ISO-8859-1 locale.
This test case tests how many collating elements are defined in
da_DK.ISO-8859-1 locale. The da_DK locale source defines 4:
collating-element <A-A> from "<U0041><U0041>"
collating-element <A-a> from "<U0041><U0061>"
collating-element <a-A> from "<U0061><U0041>"
collating-element <a-a> from "<U0061><U0061>"
The new iso14651_t1_common file defines more collating elements, two
of them are in the ISO-8859-1 range:
collating-element <U004C_00B7> from "<U004C><U00B7>" % decomposition of LATIN CAPITAL LETTER L WITH MIDDLE DOT
collating-element <U006C_00B7> from "<U006C><U00B7>" % decomposition of LATIN SMALL LETTER L WITH MIDDLE DOT
So the total count is now 6 instead of 4.
* posix/bug-regex5.c: Fix test case because with the new
iso14651_t1_common file, the da_DK locale now has 6 collating elements
in the ISO-8859-1 range instead of 4 with the old iso14651_t1_common
file.
* localedata/da_DK.ISO-8859-1.in: In the new iso14651_t1_common file
downloaded from ISO, the collation order of @-. and space has changed.
Therefore, this test file needed to be adapted.
* localedata/fr_CA.UTF-8.in: Likewise.
* localedata/fr_FR.UTF-8.in: Likewise.
* localedata/uk_UA.UTF-8.in: Likewise.
* localedata/cs_CZ.UTF-8.in: adapt this test file to the collation
order of ȥ in the new iso14651_t1_common file.
* localedata/pl_PL.UTF-8.in: Likewise.
Entries for characters which have “IGNORE” on all 4 levels like:
<U0001> IGNORE;IGNORE;IGNORE;IGNORE % START OF HEADING (in ISO 6429)
are changed into:
<U0001> IGNORE;IGNORE;IGNORE;<U0001> % START OF HEADING (in ISO 6429)
i.e. putting the code point of the character into the fourth level
instead of “IGNORE”. Without that change, all such characters
would compare equal which would make a wcscoll test case fail.
It is better to have a clearly defined sort order even for characters
like this so it is good to use the code point as a tie-break.
* localedata/locales/iso14651_t1_common: Use the code point of a
character in the fourth collation level instead of IGNORE for all
entries which have IGNORE on all 4 levels.
* localedata/locales/iso14651_t1_common: Add some convenient collation
symbols like <AFTER-A>, <BEFORE-A> to make tailoring easier using
rules similar to those in CLDR.
* localedata/locales/iso14651_t1_common: The new version of this
file downloaded from ISO contained several syntax errors which
are fixed by this patch.
[BZ #14095] - Review / update collation data from Unicode / ISO 14651
File downloaded from:
http://standards.iso.org/iso-iec/14651/ed-4/ISO14651_2016_TABLE1_en.txt
Updating this file alone is not enough, there are problems in the new
file which need to be fixed and the collation rules for many locales
need to be adapted. This is done by the following patches.
This update also fixes the problem that many characters are treated as
identical when sorting because they were not yet in the old
iso14651_t1_common file, see:
https://bugzilla.redhat.com/show_bug.cgi?id=1336308
- Infinite (∞) and empty set (∅) are treated as if they were the same character by sort and uniq
[BZ #14095]
* localedata/locales/iso14651_t1_common: Update file to
latest version from ISO (ISO14651_2016_TABLE1_en.txt).
* sysdeps/pthread/timer_routines.c: Include <timer_routines.h> instead
of <nptl/pthreadP.h>
(thread_attr_compare): Move function to...
* sysdeps/nptl/timer_routines.h: ... new header.
While there are now clean -Os build and test results on x86_64 (given
my patch <https://sourceware.org/ml/libc-alpha/2018-02/msg00602.html>,
pending review), testing with -Os with build-many-glibcs.py shows the
build is still failing with -Os everywhere except for x86_64, x86 and
s390x.
There are a variety of different build failures, but the most common
seem to be in strcoll / wcscoll, similar to existing such cases where
DIAG_* are used to disable -Wmaybe-uninitialized. There are various
different failures even within those functions. This patch fixes one
particular case that seems quite common, where the warning appears at
the declarations of seq1 and seq2.
Tested with build-many-glibcs.py that this fixes the -Os build for
aarch64-linux-gnu with GCC 7.
* string/strcoll_l.c: Include <libc-diag.h>.
(STRCOLL): Ignore -Wmaybe-uninitialized for -Os around
declarations of seq1 and seq2.
Continuing the fixes for localplt test failures with -Os arising from
functions not being inlined in that case, this patch fixes such
failures for atoi by using libc_hidden_proto and libc_hidden_def.
Tested for x86_64 (both that it removes this particular localplt
failure for -Os, and that the testsuite continues to pass without
-Os).
[BZ #15105]
* stdlib/atoi.c (atoi): Use libc_hidden_def.
* include/stdlib.h [!_ISOMAC] (atoi): Use libc_hidden_proto.
Linux ptrace headers define macros whose tokens conflict with the
constants of enum __ptrace_request causing build errors when
asm/ptrace.h or linux/ptrace.h are included before sys/ptrace.h.
* sysdeps/unix/sysv/linux/powerpc/sys/ptrace.h: Undefine Linux
macros used in __ptrace_request.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.vnet.ibm.com>
Glibc build generates header files to define constants from special .sym
files. If a .sym file includes the same header file which it generates,
it leads to circular dependency which may lead to build hang on a
many-core machine. Define GEN_AS_CONST_HEADERS when generating header
files to avoid circular dependency.
<tcb-offsets.h> is needed for i686 and it isn't needed for x86-64 at
least since glibc 2.23.
Tested on i686 and x86-64.
[BZ #22792]
* Makerules ($(common-objpfx)%.h): Pass -DGEN_AS_CONST_HEADERS
to $(CC).
* sysdeps/unix/sysv/linux/i386/lowlevellock.h: Include
<tcb-offsets.h> only if GEN_AS_CONST_HEADERS isn't defined.
* sysdeps/unix/sysv/linux/x86_64/lowlevellock.h: Don't include
<tcb-offsets.h>.
Continuing the fixes for localplt test failures with -Os arising from
functions not being inlined in that case, this patch fixes such
failures for tolower and toupper by using libc_hidden_proto and
libc_hidden_def.
Tested for x86_64 (both that it removes this particular localplt
failure for -Os, and that the testsuite continues to pass without
-Os).
2018-02-22 Joseph Myers <joseph@codesourcery.com>
[BZ #15105]
* ctype/ctype.c (tolower): Use libc_hidden_def.
(toupper): Likewise.
* include/ctype.h [!_ISOMAC] (tolower): Use libc_hidden_proto.
[!_ISOMAC] (toupper): Likewise.
LC_TIME in these 4 locales is identical, using “copy "es_BO"” makes
that more obvious.
[BZ #22646]
* localedata/locales/es_CL (LC_TIME): copy "es_BO".
* localedata/locales/es_CU (LC_TIME): copy "es_BO".
* localedata/locales/es_EC (LC_TIME): copy "es_BO".
Current implementation (sysdeps/nptl/fork.c) replicates the atfork
handlers list backward to invoke the child handlers after fork/clone
syscall.
The internal atfork handlers is implemented as a single-linked list
so a lock-free algorithm can be used, trading fork mulithread call
performance for some code complexity and dynamic stack allocation
(since the backwards list should not fail).
This patch refactor it to use a dynarary instead of a linked list.
It simplifies the external variables need to be exported and also
the internal atfork handler member definition.
The downside is a serialization of fork call in multithread, since to
operate on the dynarray the internal lock should be used. However
as noted by Florian, it already acquires external locks for malloc
and libio so it is already hitting some lock contention. Besides,
posix_spawn should be faster and more scalable to run external programs
in multithread environments.
Checked on x86_64-linux-gnu.
* nptl/Makefile (routines): Remove unregister-atfork.
* nptl/register-atfork.c (fork_handler_pool): Remove variable.
(fork_handler_alloc): Remove function.
(fork_handlers, fork_handler_init): New variables.
(__fork_lock): Rename to atfork_lock.
(__register_atfork, __unregister_atfork, libc_freeres_fn): Rewrite
to use a dynamic array to add/remove atfork handlers.
* sysdeps/nptl/fork.c (__libc_fork): Likewise.
* sysdeps/nptl/fork.h (__fork_lock, __fork_handlers, __linkin_atfork):
Remove declaration.
(fork_handler): Remove next, refcntr, and need_signal member.
(__run_fork_handler_type): New enum.
(__run_fork_handlers): New prototype.
* sysdeps/nptl/libc-lockP.h (__libc_atfork): Remove declaration.
This patch renames the nptl-signals.h header to internal-signals.h.
On Linux the definitions and functions are not only NPTL related, but
used for other POSIX definitions as well (for instance SIGTIMER for
posix times, SIGSETXID for id functions, and signal block/restore
helpers) and since generic functions will be places and used in generic
implementation it makes more sense to decouple it from NPTL.
Checked on x86_64-linux-gnu.
* sysdeps/nptl/nptl-signals.h: Move to ...
* sysdeps/generic/internal-signals.h: ... here. Adjust internal
comments.
* sysdeps/unix/sysv/linux/internal-signals.h: Add include guards.
(__nptl_is_internal_signal): Rename to __is_internal_signal.
(__nptl_clear_internal_signals): Rename to __clear_internal_signals.
* sysdeps/unix/sysv/linux/raise.c: Adjust nptl-signal.h to
include-signals.h rename.
* nptl/pthreadP.h: Likewise.
* sysdeps/unix/sysv/linux/spawni.c (__spawni_child): Call
__is_internal_signal instead of __nptl_is_internal_signal.
I accidentally set the loop jump back label as misaligned8 instead of
do_misaligned. The typo is harmless but it's always nice to not have
to unnecessarily execute those two instructions.
* sysdeps/aarch64/strcmp.S (do_misaligned): Jump back to
do_misaligned, not misaligned8.
* sysdeps/aarch64/multiarch/Makefile (sysdep_routines):
Add memcpy_thunderx2.
* sysdeps/aarch64/multiarch/ifunc-impl-list.c (MAX_IFUNC):
Increment to 4.
(__libc_ifunc_impl_list): Add __memcpy_thunderx2.
* sysdeps/aarch64/multiarch/memcpy.c (libc_ifunc): Add IS_THUNDERX2
and IS_THUNDERX2PA checks.
* sysdeps/aarch64/multiarch/memcpy_thunderx.S (USE_THUNDERX2):
Use macro to set name appropriately.
(memcpy): Use USE_THUNDERX2 macro to modify prefetches.
* sysdeps/aarch64/multiarch/memcpy_thunderx2.S: New file.
* sysdeps/unix/sysv/linux/aarch64/cpu-features.h (IS_THUNDERX2PA):
New macro.
(IS_THUNDERX2): New macro.
After regenerating ULPs from scratch in
commit 8e7196c875, I've missed
to test it with multiple gcc versions. Hence, here is a further update.
ChangeLog:
* sysdeps/s390/fpu/libm-test-ulps: Regenerated.
This patch eliminates a number of #if 0 and #ifdef TODO blocks, macros
that are never used, macros that provide portability to substrates that
lack basic things like EINVAL and off_t, and other such debris.
I preserved IO_DEBUG and CHECK_FILE, even though as far as I can tell
IO_DEBUG is never defined and therefore CHECK_FILE never does
anything, because it seems like we might actually want to turn it _on_.
Installed stripped libraries and executables are unchanged, except,
again, that the line number of an assertion changes (this time it's
somewhere in fileops.c).
* libio/libio.h (_IO_pos_BAD, _IO_pos_0, _IO_pos_adjust):
Define here, unconditionally.
* libio/iolibio.h (_IO_pos_BAD): Don't define here.
* libio/libioP.h: Remove #if 0 blocks.
(_IO_pos_BAD, _IO_pos_0, _IO_pos_adjust): Don't define here.
(_IO_va_start, COERCE_FILE, MAYBE_SET_EINVAL): Don't define.
(CHECK_FILE): Don't use MAYBE_SET_EINVAL or COERCE_FILE. Fix style.
* libio/clearerr.c, libio/fputc.c, libio/getchar.c:
Assume weak_alias is always defined.
* libio/fileops.c, libio/genops.c, libio/oldfileops.c
* libio/oldpclose.c, libio/pclose.c, libio/wfileops.c:
Remove #if 0 and #ifdef TODO blocks.
Assume text_set_element is always defined.
* libio/iofdopen.c, libio/iogetdelim.c, libio/oldiofdopen.c
Use __set_errno (EINVAL) instead of MAYBE_SET_EINVAL.
* libio/tst-mmap-eofsync.c: Make #if 1 block unconditional.
This entirely mechanical (except for some indentation fixups) patch
replaces all uses of _IO_file_flags with _flags and removes the #define.
Installed stripped libraries and executables are unchanged by this patch.
* libio/libio.h (_IO_file_flags): Remove macro.
All uses changed to _flags.
This patch eliminates the "compatibility defines"
_IO_UNIFIED_JUMPTABLES (always defined to 1, used in a number of #ifs
which are therefore always false), _STDIO_USES_IOSTREAM (unused),
__HAVE_COLUMN (unused), _IO_BE (replaced with __glibc_unlikely), and
yet another redundant definition of EOF.
Installed stripped libraries are unchanged by this patch.
* libio/libio.h (_IO_UNIFIED_JUMPTABLES, _STDIO_USES_IOSTREAM)
(__HAVE_COLUMN, _IO_BE): Don't define.
(_IO_peekc_unlocked, _IO_getwc_unlocked, _IO_putwc_unlocked)
(_IO_fwide_maybe_incompatible): Use __glibc_unlikely.
* libio/libioP.h (EOF): Don't define.
* libio/iofdopen.c, libio/iofopen.c, libio/iopopen.c
* libio/iovdprintf.c, libio/oldiofdopen.c, libio/oldiofopen.c
* libio/oldiopopen.c, debug/vdprintf_chk.c: Remove #if block
testing _IO_UNIFIED_JUMPTABLES.
This patch mechanically removes all remaining uses, and the
definitions, of the following libio name aliases:
name replaced with
---- -------------
_IO_FILE FILE
_IO_fpos_t __fpos_t
_IO_fpos64_t __fpos64_t
_IO_size_t size_t
_IO_ssize_t ssize_t or __ssize_t
_IO_off_t off_t
_IO_off64_t off64_t
_IO_pid_t pid_t
_IO_uid_t uid_t
_IO_wint_t wint_t
_IO_va_list va_list or __gnuc_va_list
_IO_BUFSIZ BUFSIZ
_IO_cookie_io_functions_t cookie_io_functions_t
__io_read_fn cookie_read_function_t
__io_write_fn cookie_write_function_t
__io_seek_fn cookie_seek_function_t
__io_close_fn cookie_close_function_t
I used __fpos_t and __fpos64_t instead of fpos_t and fpos64_t because
the definitions of fpos_t and fpos64_t depend on the largefile mode.
I used __ssize_t and __gnuc_va_list in a handful of headers where
namespace cleanliness might be relevant even though they're
internal-use-only. In all other cases, I used the public-namespace
name.
There are a tiny handful of places where I left a use of 'struct _IO_FILE'
alone, because it was being used together with 'struct _IO_FILE_plus'
or 'struct _IO_FILE_complete' in the same arithmetic expression.
Because this patch was almost entirely done with search and replace, I
may have introduced indentation botches. I did proofread the diff,
but I may have missed something.
The ChangeLog below calls out all of the places where this was not a
pure search-and-replace change.
Installed stripped libraries and executables are unchanged by this patch,
except that some assertions in vfscanf.c change line numbers.
* libio/libio.h (_IO_FILE): Delete; all uses changed to FILE.
(_IO_fpos_t): Delete; all uses changed to __fpos_t.
(_IO_fpos64_t): Delete; all uses changed to __fpos64_t.
(_IO_size_t): Delete; all uses changed to size_t.
(_IO_ssize_t): Delete; all uses changed to ssize_t or __ssize_t.
(_IO_off_t): Delete; all uses changed to off_t.
(_IO_off64_t): Delete; all uses changed to off64_t.
(_IO_pid_t): Delete; all uses changed to pid_t.
(_IO_uid_t): Delete; all uses changed to uid_t.
(_IO_wint_t): Delete; all uses changed to wint_t.
(_IO_va_list): Delete; all uses changed to va_list or __gnuc_va_list.
(_IO_BUFSIZ): Delete; all uses changed to BUFSIZ.
(_IO_cookie_io_functions_t): Delete; all uses changed to
cookie_io_functions_t.
(__io_read_fn): Delete; all uses changed to cookie_read_function_t.
(__io_write_fn): Delete; all uses changed to cookie_write_function_t.
(__io_seek_fn): Delete; all uses changed to cookie_seek_function_t.
(__io_close_fn): Delete: all uses changed to cookie_close_function_t.
* libio/iofopncook.c: Remove unnecessary forward declarations.
* libio/iolibio.h: Correct outdated commentary.
* malloc/malloc.c (__malloc_stats): Remove unnecessary casts.
* stdio-common/fxprintf.c (__fxprintf_nocancel):
Remove unnecessary casts.
* stdio-common/getline.c: Use _IO_getdelim directly.
Don't redefine ssize_t.
* stdio-common/printf_fp.c, stdio_common/printf_fphex.c
* stdio-common/printf_size.c: Don't redefine size_t or FILE.
Remove outdated comments.
* stdio-common/vfscanf.c: Don't redefine va_list.
As requested by Adhemerval, this patch removes some preprocessor
conditionals from the libio headers that were only relevant when
building libio outside glibc.
Installed stripped libraries and executables are unchanged by this
patch.
* libio/iolibio.h, libio/libioP.h: Remove extern "C".
* libio/libio.h: Remove __BEGIN_DECLS and __END_DECLS.
Remove preprocessor conditionals on _LIBC and __USE_GNU,
which are always true, and __cplusplus, which is always false.
Continuing the fixes for linknamespace and localplt test failures with
-Os that arise from functions not being inlined in that case, this
patch fixes such failures for putc_unlocked and fputc_unlocked.
libc_hidden_* are used for both functions, while namespace issues are
addressed by making putc_unlocked a weak alias of hidden
__putc_unlocked, which is called in the one place where namespace
issues arise (and defined as an inline function in include/stdio.h).
Tested for x86_64 (both without -Os to make sure that case continues
to work, and with -Os to make sure all the relevant linknamespace and
localplt test failures are resolved). This completes fixing the -Os
linknamespace failures (at least for x86_64); localplt failures remain
after this patch.
2018-02-19 Joseph Myers <joseph@codesourcery.com>
[BZ #15105]
[BZ #19463]
* libio/fputc_u.c (fputc_unlocked): Use libc_hidden_def.
* libio/putc_u.c (putc_unlocked): Rename to __putc_unlocked and
define as weak alias of __putc_unlocked. Use libc_hidden_weak.
* include/stdio.h [!_ISOMAC] (fputc_unlocked): Use
libc_hidden_proto.
[!_ISOMAC] (putc_unlocked): Likewise.
[!_ISOMAC] (__putc_unlocked): Declare as hidden function, and
define inline if [__USE_EXTERN_INLINES].
* misc/syslog.c (__vsyslog_chk): Call __putc_unlocked instead of
putc_unlocked.
Continuing the fixes for linknamespace and localplt test failures with
-Os that arise from functions not being inlined in that case, this
patch fixes such failures for getc_unlocked.
__getc_unlocked already exists; this patch makes it explicitly hidden,
calls it where needed for namespace reasons, adds an inline function
for it when inline functions are used and adds libc_hidden_proto /
libc_hidden_weak for getc_unlocked.
Tested for x86_64 (both without -Os to make sure that case continues
to work, and with -Os to make sure all the relevant linknamespace and
localplt test failures are resolved). Because of other such failures
that remain after this patch, neither of the bugs can yet be closed.
[BZ #15105]
[BZ #19463]
* libio/getc_u.c (getc_unlocked): Use libc_hidden_weak.
* include/stdio.h [!_ISOMAC] (__getc_unlocked): Use
attribute_hidden, and define inline if [__USE_EXTERN_INLINES].
[!_ISOMAC] (getc_unlocked): Use libc_hidden_proto.
* misc/getttyent.c (__getttyent): Call __getc_unlocked instead of
getc_unlocked.
* time/tzfile.c (__tzfile_read): Likewise.
The description of the interplay between feature test macros and
compiler options in the description of _DEFAULT_SOURCE is a little
confusing, and dated, so clarify the situation, and don't assume a
specific value for _DEFAULT_SOURCE.
Also, _DEFAULT_SOURCE is supposed to be defined if none of the C/POSIX
feature test macros are defined, but the condition was lacking a test
for _ISOC11_SOURCE, so that is also addressed.
[BZ #22862]
* include/features.h: Add _ISOC11_SOURCE to test for whether
to define _DEFAULT_SOURCE.
* manual/creature.texi (_DEFAULT_SOURCE): Improve
documentation.
If the system crashes before the file data has been written to disk, the
file system recovery upon the next mount may restore a partially
rewritten temporary file under the non-temporary (final) name (after the
rename operation).
This looks like a post-exploitation hardening measure: If an attacker is
able to redirect execution flow, they could use that to load a DSO which
contains additional code (or perhaps make the stack executable).
However, the checks are not in the correct place to be effective: If
they are performed before the critical operation, an attacker with
sufficient control over execution flow could simply jump directly to
the code which performs the operation, bypassing the check. The check
would have to be executed unconditionally after the operation and
terminate the process in case a caller violation was detected.
Furthermore, in _dl_check_caller, there was a fallback reading global
writable data (GL(dl_rtld_map).l_map_start and
GL(dl_rtld_map).l_text_end), which could conceivably be targeted by an
attacker to disable the check, too.
Other critical functions (such as system) remain completely
unprotected, so the value of these additional checks does not appear
that large. Therefore this commit removes this functionality.
The current description refers to ISO C99 not being widely adopted,
which it is believed to be now.
* manual/creature.texi (_ISOC99_SOURCE): Update the dated
description.
Several feature test macros are documented in features.h but absent in
the manual, and some documented macros accept undocumented values.
This commit updates the manual to mention all the accepted macros,
along with any values that hold special meaning.
* manual/creature.texi (_POSIX_C_SOURCE): Document special
values of 199606L, 200112L, and 200809L.
(_XOPEN_SOURCE): Document special values of 600 and 700.
(_ISOC11_SOURCE): Document macro.
(_ATFILE_SOURCE): Likewise.
(_FORTIFY_SOURCE): Likewise.
Continuing the fixes for linknamespace and localplt test failures with
-Os that arise from functions not being inlined in that case, this
patch fixes such failures for ferror_unlocked.
The usual approach is followed of adding __ferror_unlocked (inlined
when ferror_unlocked is), making calls use it when required for
namespace reasons (only one such call), and using libc_hidden_proto /
libc_hidden_weak for the ferror_unlocked weak alias when only localplt
but not namespace issues are involved.
Tested for x86_64 (both without -Os to make sure that case continues
to work, and with -Os to make sure all the relevant linknamespace and
localplt test failures are resolved). Because of other such failures
that remain after this patch, neither of the bugs can yet be closed.
[BZ #15105]
[BZ #19463]
* libio/ferror_u.c (ferror_unlocked): Rename to __ferror_unlocked
and define as weak alias of __ferror_unlocked. Use
libc_hidden_weak.
* include/stdio.h [!_ISOMAC] (ferror_unlocked): Use
libc_hidden_proto.
[!_ISOMAC] (__ferror_unlocked) New declaration, and inline
function if [__USE_EXTERN_INLINES].
* time/getdate.c (__getdate_r): Call __ferror_unlocked instead of
ferror_unlocked.
This is a minor rewording to clarify the behaviour of
get_current_dir_name. Additionally, the @vindex is moved above the
@deftypefun so that following links give a better result with regard
to context.
[BZ #6889]
* manual/filesys.texi (get_current_dir_name): Clarify
behaviour.
The tst-glob_lstat_compat test needs to run tests on the previous
version of glob. On alpha, there are three versions of glob, GLIBC_2.0,
GLIBC_2.1 and GLIBC_2.27, while on other architectures there are only
the GLIBC_2.0 and GLIBC_2.27 version. Therefore on alpha the previous
version is GLIBC_2.1 and not GLIBC_2.0.
Changelog:
[BZ #22818]
* posix/tst-glob_lstat_compat.c [__alpha__] (glob): Access
the GLIBC_2.1 version.
Since upstream gettext commit d13f165b83 (msgfmt: Remove
POT-Creation-Date field from the header in the output.), msgfmt does not
copy the POT-Creation-Date field in the header entry from the po file to
the mo file anymore. This breaks the assumption that we can test gettext
by comparing each message in the po files with the corresponding string
return by gettext. This makes the intl/tst-gettext to fail.
While it would have been possible to modify the po2test.awk script to
also strip the line POT-Creation-Date field when creating the msgs.h
file, it would not work with both the old and new msgfmt.
Instead create a tst-gettext-de.po file from de.po by removing the
POT-Creation-Date line. Another alternative would be to use a static
tst-gettext-de.po file, but I guess the reason for using de.po is to
also catch issues caused by newly added strings.
As tst-catgets also uses msg.h, it should also be updated. Instead of
using the new tst-gettext-de.po file, the patch modifies xopen-msg.awk
to avoid creating a second catgets->intl dependency.
Changelog:
[BZ #21508]
* catgets/xopen-msg.awk: Ignore POT-Creation-Date line.
* intl/Makefile ($(objpfx)tst-gettext-de.po): Generate
intl/tst-gettext-de.po from po/de.po by removing the
POT-Creation-Date line.
($(objpfx)msgs.h): Depend on $(objpfx)tst-gettext-de.po instead of
../po/de.po.
* intl/tst-gettext.sh: Use ${objpfx}tst-gettext-de.po instead of
../po/de.po.
The opening parenthesis for function arguments in an @deftypefun need
to be separated from the function name. This isn't just a matter of
the GNU coding style---it causes the "(void" (in this case) to be
rendered as a part of the function name, causing a visual defect, and
also results in a warning to the following effect during `make pdf':
Warning: unbalanced parentheses in @def...)
* manual/platform.texi (__riscv_flush_icache): Fix @deftypefun
syntax.
An elided mutex don't fail destroy. Elision was disabled for the
test nptl/tst-mutex8 in nptl/Makefile. Thus we can run tests which
destroy a locked mutex.
As elision is only disabled for tst-mutex8, the variants
tst-mutex8-static, tst-mutexpi8 and tst-mutexpi8-static are still
failing if lock elision is enabled.
This patch adds a runtime check, if the checked type of mutex will
be elided. This check is using TUNABLE_GET_FULL to determine if
elision is enabled via the tunables framework.
The pthread_mutex_destroy tests are only run if we dont't assume an
elided mutex.
This way, we can run the whole glibc testsuite with or without enabled
lock elision.
ChangeLog:
* nptl/Makefile (tst-mutex8-ENV): Delete.
* nptl/tst-mutex8.c (check_type):
Add runtime check if mutex will be elided.
There are some bug reports from people setting CFLAGS not including a
-O option and then being confused when the build fails. This patch
addresses this by documenting the proper use of CC and CFLAGS in more
detail - saying what options should go where and specifying the
requirement to compile with optimization.
The previous text incorrectly used @var markup with CC and CFLAGS.
The correct markup for environment variables is @env, but it's also
the case that passing such variables explicitly on the configure
command line is preferred to passing them in the environment, so this
patch changes the documentation to describe passing them on the
command line (and uses @code).
In many cases putting options in the wrong place may in fact work, but
I believe what I've specified is the correct rule for which options to
put where.
[BZ #20980]
[BZ #21234]
* manual/install.texi (Configuring and compiling): Describe
passing CC and CFLAGS on configure command line, not as
environment variables. Use @code markup on those variables.
Specify what options go in CC and what go in CFLAGS. Note the
requirement to compile with optimization.
* INSTALL: Regenerated.
When adding/updating localplt.data for various architectures to get
the compilation tests passing everywhere, I generally made it reflect
the existing state of what local PLT entries were actually seen,
rather than an ideal state with as few as possible such entries,
mainly for functions that are intended to be interposable.
This patch eliminates some local PLT entries for hppa by using
__sigprocmask instead of sigprocmask in getcontext and setcontext.
The specific case of sigprocmask called by setcontext is the third of
four items in bug 18124 (the other three have already been fixed for
2.26 or earlier releases). Note that hppa-specific localplt.data
entries for __sigsetjmp, _IO_funlockfile and __errno_location remain,
but the causes / fixes are less immediately obvious from source
inspection.
Tested (compilation tests only) with build-many-glibcs.py for
hppa-linux-gnu.
[BZ #18124]
* sysdeps/hppa/bsd-setjmp.S: Include <sysdep.h>.
(setjmp): Use HIDDEN_JUMPTARGET with __sigsetjmp.
* sysdeps/unix/sysv/linux/hppa/getcontext.S (__getcontext): Call
__sigprocmask instead of sigprocmask.
* sysdeps/unix/sysv/linux/hppa/setcontext.S (__setcontext):
Likewise.
* sysdeps/unix/sysv/linux/hppa/localplt.data: Remove entries for
__sigsetjmp and sigprocmask.
Among other localplt test failures when building with -Os, there are
libc.so PLT references for argz_next and __argz_next. This is a
simple case of functions that are inlined for -O2 but not for -Os;
this patch adds libc_hidden_proto / libc_hidden_def for them to avoid
localplt failures even when not inlined.
Tested for x86_64 (both that it removes these particular localplt
failures for -Os - but other such failures remain so the bug can't yet
be closed - and that the testsuite continues to pass without -Os).
[BZ #15105]
* include/argz.h (argz_next): Use libc_hidden_proto.
(__argz_next): Likewise.
* string-argz-next.c (__argz_next): Use libc_hidden_def.
(argz_next): Use libc_hidden_weak.
Among other localplt test failures when building with -Os, there are
libc.so PLT references for __cmsg_nxthdr. This is a simple case of a
function that is inlined for -O2 but not for -Os; this patch adds
libc_hidden_proto / libc_hidden_def for it to avoid a localplt failure
even when it is not inlined.
Tested for x86_64 (both that it removes this particular localplt
failure for -Os - but other such failures remain so the bug can't yet
be closed - and that the testsuite continues to pass without -Os).
[BZ #15105]
* include/sys/socket.h [!_ISOMAC] (__cmsg_nxthdr): Use
libc_hidden_proto.
* sysdeps/unix/sysv/linux/cmsg_nxthdr.c (__cmsg_nxthdr): Use
libc_hidden_def.
Among other localplt test failures when building with -Os, there are
libc.so PLT references for fputs. fputs calls normally get redirected
to _IO_fputs by a macro in include/stdio.h (and _IO_fputs in turn uses
libc_hidden_proto), but GCC can convert an fprintf call with a
constant string argument into an fputs call, which of course is then
unaffected by the macro redirection. (I don't know why this issue
only appears with -Os.)
This patch duly adds a use of libc_hidden_proto for fputs. I see no
obvious reason why the fputs macro redirection is needed at all, but
this patch does not change it.
Tested for x86_64 (both that it removes this particular localplt
failure for -Os - but other such failures remain so the bug can't yet
be closed - and that the testsuite continues to pass without -Os).
[BZ #15105]
* include/stdio.h [!_ISOMAC && IS_IN (libc)] (fputs): Use
libc_hidden_proto.
* libio/iofputs.c (fputs): Use libc_hidden_weak.
Continuing the fixes for linknamespace and localplt test failures with
-Os that arise from functions not being inlined in that case, this
patch fixes such failures for feof_unlocked.
The usual approach is followed of adding __feof_unlocked (inlined when
feof_unlocked is), making calls use it when required for namespace
reasons, and using libc_hidden_proto / libc_hidden_weak for the
feof_unlocked weak alias when only localplt but not namespace issues
are involved. In the case of getaddrinfo.c, use of __feof_unlocked
needs to be conditional since that code is also used in nscd (where
__feof_unlocked is not available).
Tested for x86_64 (both without -Os to make sure that case continues
to work, and with -Os to make sure all the relevant linknamespace and
localplt test failures are resolved). Because of other such failures
that remain after this patch, neither of the bugs can yet be closed.
[BZ #15105]
[BZ #19463]
* libio/feof_u.c (feof_unlocked): Rename to __feof_unlocked and
define as weak alias of __feof_unlocked. Use libc_hidden_weak.
* include/stdio.h (feof_unlocked): Use libc_hidden_proto.
(__feof_unlocked): New declaration, and inline function if
[__USE_EXTERN_INLINES].
* iconv/gconv_conf.c (read_conf_file): Call __feof_unlocked
instead of feof_unlocked.
* intl/localealias.c [_LIBC] (FEOF): Likewise.
* nss/nsswitch.c (nss_parse_file): Likewise.
* sysdeps/unix/sysv/linux/readonly-area.c (__readonly_area):
Likewise.
* time/getdate.c (__getdate_r): Likewise.
* sysdeps/posix/getaddrinfo.c [IS_IN (libc)] (feof_unlocked):
Define as macro to call __feof_unlocked.
* sysdeps/powerpc/fpu/libm-test-ulps (pow): Increase double and
idouble to 1 ULP.
Signed-off-by: Tulio Magno Quites Machado Filho <tuliom@linux.vnet.ibm.com>
This completes the deprecation and removal of this inclusion, which
was begun in the 2.25 release.
* posix/sys/types.h: Don't include sys/sysmacros.h.
* misc/sys/sysmacros.h: Remove the conditional deprecation
warnings for the macros defined by this header.
Remove the slow paths from pow. Like several other double precision math
functions, pow is exactly rounded. This is not required from math functions
and causes major overheads as it requires multiple fallbacks using higher
precision arithmetic if a result is close to 0.5ULP. Ridiculous slowdowns
of up to 100000x have been reported when the highest precision path triggers.
All GLIBC math tests pass on AArch64 and x64 (with ULP of pow set to 1).
The worst case error is ~0.506ULP. A simple test over a few hundred million
values shows pow is 10% faster on average. This fixes BZ #13932.
[BZ #13932]
* sysdeps/ieee754/dbl-64/uexp.h (err_1): Remove.
* benchtests/pow-inputs: Update comment for slow path cases.
* manual/probes.texi (slowpow_p10): Delete removed probe.
(slowpow_p10): Likewise.
* math/Makefile: Remove halfulp.c and slowpow.c.
* sysdeps/aarch64/libm-test-ulps: Set ULP of pow to 1.
* sysdeps/generic/math_private.h (__exp1): Remove error argument.
(__halfulp): Remove.
(__slowpow): Remove.
* sysdeps/i386/fpu/halfulp.c: Delete file.
* sysdeps/i386/fpu/slowpow.c: Likewise.
* sysdeps/ia64/fpu/halfulp.c: Likewise.
* sysdeps/ia64/fpu/slowpow.c: Likewise.
* sysdeps/ieee754/dbl-64/e_exp.c (__exp1): Remove error argument,
improve comments and add error analysis.
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Add error analysis.
(power1): Remove function:
(log1): Remove error argument, add error analysis.
(my_log2): Remove function.
* sysdeps/ieee754/dbl-64/halfulp.c: Delete file.
* sysdeps/ieee754/dbl-64/slowpow.c: Likewise.
* sysdeps/m68k/m680x0/fpu/halfulp.c: Likewise.
* sysdeps/m68k/m680x0/fpu/slowpow.c: Likewise.
* sysdeps/powerpc/power4/fpu/Makefile: Remove CPPFLAGS-slowpow.c.
* sysdeps/x86_64/fpu/libm-test-ulps: Set ULP of pow to 1.
* sysdeps/x86_64/fpu/multiarch/Makefile: Remove slowpow-fma.c,
slowpow-fma4.c, halfulp-fma.c, halfulp-fma4.c.
* sysdeps/x86_64/fpu/multiarch/e_pow-fma.c (__slowpow): Remove define.
* sysdeps/x86_64/fpu/multiarch/e_pow-fma4.c (__slowpow): Likewise.
* sysdeps/x86_64/fpu/multiarch/halfulp-fma.c: Delete file.
* sysdeps/x86_64/fpu/multiarch/halfulp-fma4.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/slowpow-fma.c: Likewise.
* sysdeps/x86_64/fpu/multiarch/slowpow-fma4.c: Likewise.
PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP is Linux-only.
* nscd/connections.c (RWLOCK_INITIALIZER): Define to
PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP or
PTHREAD_RWLOCK_INITIALIZER if that is not available.
(dbs): Use RWLOCK_INITIALIZER instead of
PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP.
Remove compat-specific constants that were never exported by kernel
headers under these names. Before linux commit v3.7-rc1~16^2~1 they
were exported with COMPAT_ prefix, and since that commit they are not
exported at all.
* sysdeps/unix/sysv/linux/aarch64/sys/ptrace.h (__ptrace_request):
Remove arm-specific PTRACE_GET_THREAD_AREA, PTRACE_GETHBPREGS,
and PTRACE_SETHBPREGS.
malloc_stats means to disable cancellation for writes to stderr while
it runs, but it restores stderr->_flags2 with |= instead of =, so what
it actually does is disable cancellation on stderr permanently.
[BZ #22830]
* malloc/malloc.c (__malloc_stats): Restore stderr->_flags2
correctly.
* malloc/tst-malloc-stats-cancellation.c: New test case.
* malloc/Makefile: Add new test case.