Make sure all our dmabuf debug messages are display-scoped so the
inspector doesn't trigger them, use the same formatting throughout,
and improve consistency of wording here and there.
It started out as busywork, but it does many separate things. If I could
start over, I'd take them apart into multiple commits:
1. Remove G_ENABLE_DEBUG around GDK_DEBUG_*() calls
This is not needed at all, the calls themselves take care of it.
2. Remove G_ENABLE_DEBUG around profiling code
This now enables profiling support in release builds.
3. Stop poking _gdk_debug_flags and use GDK_DEBUG_CHECK()
This was old code that was never updated.
4. Make !G_ENABLE_DEBUG turn off GDK_DEBUG_CHECK()
The code used to
#define GDK_DEBUG_CHECK(...) false
#define GDK_DEBUG(...)
which would compile away all the code inside those macros. This
means a lot of variable definitions and debug utility functions
would suddenly no longer be used and cause compiler errors.
Vertex arrays are available in GL and in GLES >= 3.
We don't check for the GLES extension that provided
vertex arrays in older GLES, since that requires
using different API.
This api avoids version checks all over the place.
Now that all contexts do that, insist that they keep doing it.
And because they keep doing it, we can support querying the GL version
from gdk_gl_context_get_version() without requiring the context to be
made current.
The EGL spec states:
The context returned must be the specified version, or a later
version which is backwards compatible with that version.
Even if a later version is returned, the specified version
must correspond to a defined version of the client API.
GTK has so far been relying on EGL implementations returning a
later version, because that is what Mesa does.
But ANGLE does not do that and only provides the minimum version, which
means Windows EGL has been forced to use a lower EGL version for no
reason.
So fix this and try versions in order from highest to lowest.
GLES 2.0 version is fine now with current gtk according to B. Otte.
Let's use the same minimum requirement for all implementations.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Fractional scaling with the GL renderer is
experimental for now, so we disable it unless
GDK_DEBUG=gl-fractional is set.
This will give us time to work out the kinks.
This commit combines changes in the Wayland backend,
the GL context frontend, and the GL renderer to switch
them all to use the fractional scale.
In the Wayland backend, we now use the fractional scale
to size the EGL window.
In the GL frontend code, we use the fractional scale to
scale the damage region and surface in begin/end_frame.
And in the GL renderer, we replace gdk_surface_get_scale_factor()
with gdk_surface_get_scale().
... and use this check in gdk_gl_context_make_current() and
gdk_gl_context_get_current() to make sure the context really is still
current.
The context no longer being current can happen when external GL
implementations make their own contexts current in the same threads GDK
contexts are used in.
And that can happen for example by WebKit.
Theoretically, this should also allow external EGL code to run in X11
applications when GDK chooses to use GLX, but I didn't try it.
Fixes#5392
Simplify the API to just return the requirements that the user
has asked for. The rest of the code was undocumented and previously
used as a buggy source for a default value from internal code.
Since the buggy code is now fixed, remove all unnecessary cruft.
There are two reasons for this:
* First, the refactored realize code now makes sure that no
context with unsupported version is ever created.
* Second, this code could bump into false possitives and negatives, since
the user is not requested, nor expected to set_required_version
in any specific order relative to set_allowed_apis. Therefore,
some version could be rejected or accepted based on a set of
allowed apis that the user has not yet correctly configured.
It is useful for backends to get user set preferences while
ensuring the correctness of the result, which will be always
greater or equal than the minimum version provided
Those property features don't seem to be in use anywhere.
They are redundant since the docs cover the same information
and more. They also created unnecessary translation work.
Closes#4904
It appears that NVIDIA does not implement EGL_EXT_swap_buffers_with_damage
on their EGL implementation, but does implement the KHR variant of it.
This checks for a suitable implementation and stores a pointer to the
compatible implementation within the GdkGLContextPrivate struct.
There are situations where our "default framebuffer" is not actually
zero, yet we still want to apply a scissor rect.
Generally, 0 is the default framebuffer. But on platforms where we need
to bind a platform-specific feature to a GL_FRAMEBUFFER, we might have a
default that is not 0. For example, on macOS we bind an IOSurfaceRef to
a GL_TEXTURE_RECTANGLE which then is assigned as the backing store for a
framebuffer. This is different than using gsk_gl_renderer_render_texture()
in that we don't want to incur an extra copy to the destination surface
nor do we even have a way to pass a texture_id into render_texture().