This node essentially implements the feColorMatrix SVG filter. I got the
idea yesterday after looking at the opacity implementation.
It can be used for opacity (not sure if we want to) and to implement a
bunch of the CSS filters.
Now that every call to GtkCellArea is a snapshot call and no more cairo
calls are left, move the actual differentiation between Cairo and
Snapshot down to the cell renderer.
... and implement it for the Cairo renderer.
It's an API that instructs a renderer to render to a texture.
So far this is mostly meant to be used for testing, but I could imagine
it being useful for rendering DND icons.
This causes the snapshotting algorithm to dump all widget nodes into
their own container node. We then name that group accordingly (ie
"GtkSwitch<0xdeadbeef>") so you can easily see which node belongs where.
The feature is toggleable in the inspector's visual tab.
There's a few problems with it, becuse GtkSnapshot optimized container
nodes away if they are not needed, so we are losing some widgets...
Instead of making people intiialize a rectangle and then applying border
radius manually, provide a constructor that does it for them.
While doing that, also allow people to instead request the padding box
or the content box.
Refactor all relevant code to use this new constructor.
... and make the icon rendering code use it.
This requires moving even more shadow renering code into GSK, but so be
it. At least the "shadows not implemented" warning is now gone!
The node draws a solid CSS border, which can be used to cover everything
but dashed and dotted borders (double, groove, inset, ...).
For different border styles, we overlay multiple nodes and set their
colors to transparent for sides with non-matching styles.
It is now possible to call push() subfunctions for simple container
nodes with just a single child. So you can for example
gtk_snapshot_push_clip() a clip region that all the nodes that get
appended later will then obey.
gtk_snapshot_pop() will then not return a container node, but a clip
node containing the container node (and similar for the transform
example).
This is implemented internally by providing a "collect function" when
pushing that is called when popping to collects all the accumulated
nodes and combine them into the single node that gets returned.
To simplify things even more, gtk_snapshot_pop_and_append() has been
added, which pops the currently pushed node and appends it to the
parent.
The icon rendering code has been converted to this approach.
Instead of appending a container node and adding the nodes to it as they
come in, we now collect the nodes until gtk_snapshot_pop() is called and
then hand them out in a container node.
The caller of gtk_snapshot_push() is then responsible for doing whatever
he wants with the created node.
Another addigion is the keep_coordinates flag to gtk_snapshot_push()
which allows callers to keep the current offset and clip region or
discard it. Discarding is useful when doing transforms, keeping it is
useful when inserting effect nodes (like the ones I'm about to add).
Instead of having a setter for the transform, have a GskTransformNode.
Most of the oprations that GTK does do not require a transform, so it
doesn't make sense to have it as a primary attribute.
Also, changing the transform requires updating the uniforms of the GL
renderer, so we're happy if we can avoid that.
gsk_render_node_get_bounds() still exists and is computed via vfunc
call:
- containers dynamically compute the bounds from their children
- surface and texture nodes get bounds passed on construction
If we ever feel, we need this function again, we can readd it later.
But nobody is using it other than for overriding opactiy. And you can
just override opacity directly if you care.
Creating render nodes is fire-and-forget, so all one should do is create
a container, append, append, append and then send it off to the
renderer. So there's no need to replace, insert between or anything
else.
We want to split nodes into containers and nodes that do actual drawing.
So pushing nodes that do drawing is exactly the wrong thing.
Also fix up GtkPopover. There's no need for it to push anything.
GtkCellView has a gadget, so peopl can do all their shenanigans with
CSS.
And the original use case (overriding the background so that the
cellview's GdkWindow shares the background color of the combobox) is
outdated since we have transparent backgrounds.
This is a way to query the damaged area of the backbuffer.
The GL renderer uses this to compute the extents of that damage region
(computed via buffer age) and use them to minimize the area to redraw.
This changes the semantics of GL rendering to "When calling
gdk_window_begin_frame() with a GL context, the area by
gdk_gl_context_get_damage() needs to be redrawn and every other pixel of
the backbuffer is guaranteed to be correct.
After gdk_window_end_frame() on a GL-drawn window, the whole backbuffer
must be correct.
We can always glXBufferSwap() now because of this.
and remove gsk_renderer_get_for_display().
This new function returns a realized renderer. Because of that, GSK can
catch failures to realize, destroy the renderer and try another one.
Or in short: I can finally use GTK on Weston with the nvidia binary
drivers again.
Signed-off-by: Emmanuele Bassi <ebassi@gnome.org>
Instead of having a gsk_renderer_set_window() call, pass the window to
realize(). This way, the realization can fail with the wrong window.
Signed-off-by: Emmanuele Bassi <ebassi@gnome.org>
The functions gdk_pixbuf_get_from_window() and
gdk_cairo_set_source_window() are unreliable and depend on the windowing
system (they work great on X11 and Win32, less so on Quartz and Wayland).
With the switch to new drawing API and OpenGL, we can definitely no
longer support a generic way to snapshot windows.
People should either write windowsystem-specific code or draw their
widgets directly - like with gtk_widget_draw() - if they need to get a
rendering.
Grips have long been unused in GTK, so remove all support for them.
This removes the GTK_STYLE_CLASS_GRIP and the special
gtk_render_handle() code for drawing those grips.
Switch code to use gdk_display_is_composited() instead.
The new code also doesn't use a vfunc to query the property but rather
requires the backend to call set_composited()/set_rgba() to change the
value.
Also add properties for those two properties.
The first property is equivalent to checking if an RGBA visual exists,
the 2nd is equivalent to gdk_screen_is_composited().
This merged gtk, gdk and gsk into one library, making it possible to
have internal private APIs between gtk them, as well as producing more
efficient code.
https://bugzilla.gnome.org/show_bug.cgi?id=773100
These complicate a lot of GdkWindow internals to implement features
that not a lot of apps use, and will be better achieved using gsk.
So, we just drop it all.