It is basically not used by default and is pretty much broken at this point, so
it's about time to drop it.
Let's focus on fixing the OLE2 DnD protocol.
The dummy Win32 window that we use to capture display change events and
to create dummy WGL contexts was created with CS_OWNDC, so we really do
not need to (and should not) call ReleaseDC() on the HDC that we
obtained from it, so drop these calls.
Since the shaders need to be updated for using with GLES (libANGLE at
least), default to WGL for now. Unfortunately it is not that common for
Windows to have GLES support, in which the easiest way to obtain such
support is via Google's libANGLE.
It turns out that the problem of the WGL window not drawing was due to
the fact that I messed up where I placed SwapBuffers() during the
conversion... doh:|
At the same time, stop storing the HDC in the GdkWin32GLContextWGL, but
instead always create it along the surface we created, so that it is ready
for use for operating with WGL when we are not dealing with "surfaceless"
contexts. If we are dealing with "surfaceless" contexts, just use the
HDC of the dummy window that we created when we created the
Gdk(Win32)Display.
WGL contexts should now be in working order at this point.
This commit attempts to split GdkWin32GLContext into two parts, one for
WGL and the other for EGL (ANGLE), and attempts to simplify things a
bit, by:
* We are already creating a Win32 window to capture display changes,
so we can just use that to act as our dummy window that we use to
find out the pixel format that the system supports for WGL. We also
use it to obtain the dummy legacy WGL context that we will always
require to create our more advanced Core WGL contexts.
* Like what is done in X11, store up the WGL pixel format or the
EGLConfig in our GdkWin32Display.
* Ensure we do not create the dummy WGL context unnecessarily.
In this way, we can successfully create the WGL/EGL contexts, however
there are some issues at this point:
* For WGL, the code successfully initializes and realizes the WGL
Contexts, but for some reason things became invisible. When running
gtk4-demo, this can be verified by seeing the mouse cursor changing
when moved to spots where one can resize the window, although they
were invisible.
* For EGL, the code initializes EGL but could not realize the EGL
context as shaders failed to compile. It seems like the shader issue
is definitely outside the scope of this MR.
Now that we have the display's context to hook into, we can use it to
construct other GL contexts and don't need a GdkSurface vfunc anymore.
This has the added benefit that backends can have different GdkGLContext
classes on the display and get new GLContexts generated from them, so
we get multiple GL backend support per GDK backend for free.
I originally wanted to make this a vfunc on GdkGLContextClass, but
it turns out all the abckends would just call g_object_new() anyway.
Instead of
Display::make_gl_context_current()
we now have
GLContext::clear_current()
GLContext::make_current()
This fits better with the backends (we can actually implement
clearCurrent on macOS now) and makes it easier to implement different GL
backends for backends (like EGL/GLX on X11).
We also pass a surfaceless boolean to make_current() so the calling code
can decide if a surface needs to be bound or not, because the backends
were all doing whatever, which was very counterproductive.
... or more exactly: Only use paint contexts with
gdk_cairo_draw_from_gl().
Instead of paint contexts being the only contexts who call swapBuffer(),
any context can be used for this, when it's used with
begin_frame()/end_frame().
This removes 2 features:
1. We no longer need a big sharing hierarchy. All contexts are now
shared with gdk_display_get_gl_context().
2. There is no longer a difference between attached and non-attached
contexts. All contexts work the same way.
The vfunc is called to initialize GL and it returns a "base" context
that GDK then uses as the context all others are shared with. So the GL
context share tree now looks like:
+ context from init_gl
- context1
- context2
...
So this is a flat tree now, the complexity is gone.
The only caveat is that backends now need to create a GL context when
initializing GL so some refactoring was needed.
Two new functions have been added:
* gdk_display_prepare_gl()
This is public API and can be used to ensure that GL has been
initialized or if not, retrieve an error to display (or debug-print).
* gdk_display_get_gl_context()
This is a private function to retrieve the base context from
init_gl(). It replaces gdk_surface_get_shared_data_context().
Make _gdk_win32_display_get_monitor_scale_factor() less complex, by:
* Drop the preceding underscore.
* Dropping an unused parameter.
* Using a GdkSurface instead of a HWND, as the HWND that we pass into
this function might have been taken from a GdkSurface, which are now
always created with CS_OWNDC. This means if a GdkSurface was passed
in, we ensure that we only acquire the DC from the HWND once, and do
not attempt to call ReleaseDC() on it.
* Store the HDC that we acquire from the GdkSurface's HWND into the
surface, and use that as the HDC we need for our GdkGLContext.
* Drop the gl_hwnd from GdkWin32Display, as that is really should be
stored in the GdkSurface.
* For functions that were updated, name GdkWin32Display variables as
display_win32 and GdkSurface variables as surface, to unify things.
* Stop calling ReleaseDC() on the HDC that we use for OpenGL, since
they were acquired from HWND's created with CS_OWNDC.
It apparently worked by chance in the past, but now causes e.g.
alphanumeric characters to be interpreted as half-width katakana
when using the Japanese IME.
Determine the root_x and root_y coordinates of the drag surface by
relying on the coordinates of the surface where the drag is being
carried out, plus the coordinates that we receive from the drag event,
which is in-line with what the X11 backend does.
This will prevent the drag surface from being initially drawn at the
correct position, but jumping towards the top-left corner of the screen
shortly afterwards.
The DnD support will still need some more updates to function correctly
on Windows, but at least this is a small improvement.
Fixes issue #3798.
If we are undergoing a surface move, just apply the next_layout anyways,
even if we are not moving a toplevel surface.
Update the way how we obtain the x and y coordinates of a surface, if it
is a toplevel, apply the x and y coordinates from the results from we
obtained the underlying Win32 HWND, as we did before. But if it is a
popup, use gdk_win32_surface_get_geometry() to obtain the correct x and
y coordinates to place our popup surface.
Also correct how we compute the shadow dimensions, and the final popup
rectangle as we attempt to layout the popup surface, since GDK-Win32
keeps track of the shadow dimensions in system (unscaled) units, not GDK
units.
Fixes issue #3793.
Add support to share the WGL context in GDK with the WGL context in GStreamer,
so that we can also use OpenGL in the gstreamer media backend to playback
videos. For now OpenGL/ES is not supported for this under Windows.
The process of setting this up in Windows is a little bit more involved, as:
* The OpenGL support in GstGL requires a GL 4.1 Core context, but we may just
get the GL version from wglCreateContextAttribsARB() that we pass into the
attributes, which is 3.2 by default. So, try to ask for a 4.1 Core context
first if we are asking for anything less.
* There is only one GstDisplay available for Windows, so we just use
gst_gl_display_new().
* We must explicitly tell libepoxy that we are using wglMakeCurrent() outside
of libepoxy that is being used in GdkGL, otherwise we would end up crashing
as the GL/WGL function pointers would become invalid.
* We must also deactivate temporarily the underlying WGL context that was made
current by gdk_gl_context_make_current() so that when
gst_gl_display_create_context() calls wglShareLists(), we won't get bitten
by error 0xaa (resource busy), as some drivers don't handle this well when
the GL context is current in another thread.
For the last two points we make use of macros defined by the platforms that the
build is done for to help us carry out the necessary tasks as needed.
Thanks to Matthew Waters for the info on integrating GstGL and windowing
toolkits on Windows.
Some GL drivers such as Mesa-D3D12 do not allow one to call SetPixelFormat() on
a given HDC if one pixel format has been already set for it, so first check the
HDC with GetPixelFormat() to see whether a pixel format has already been set
with the HDC, and only attempt to acquire the pixel format if one has not been
set.
This will fix running with GL/NGL on Windows using the Mesa drivers.
Apparently, by comparing with the other backends, we should not call
_gdk_win32_append_event() after calling gdk_scroll_event_new() but we should
call it after calling gdk_scroll_event_new_discrete(), which was why we didn't
restore the cursor after we scroll using the mouse wheel and didn't manage to
remove the shade that appears after we scrolled to the very top or very bottom.
Also, as suggested by the reporter, use IDC_SIZEALL for the system cursor that
we fall back to if no cursor theme is installed, as with other Windows
programs.
This should really fix issue #3581.
This makes sure that we don't have cursors disappearing on Windows upon
scrolling because we can't find a cursor that exists on the system during
a scroll, and unlike GTK-3.x, we do not default to the arrow pointer on GTK4.
Just mimic what we have on X11 and Wayland: the trusty standard arrow pointer.
Fixes issue #3581.
We ought to get the coordinates of where the window menu should be
displayed using gdk_win32_surface_get_root_coords(), instead of rounding
the position that we obtained with gdk_event_get_position().
Also rename items a bit in the same function, and call
gdk_event_get_event_type() for consistency with the other backends.
Fixes issue #3704.
My reading of the code is that gdk_drop_new() is not
consuming the content formats it is given, so the caller
must not pass a new reference.
Needs testing on Windows.
This attempts to fix the counter-intuitive resizing of surfaces in GTK4 where
the surface grows or shrinks at the right and/or bottom edge when the window
resized from the top and/or left edge(s).
This is not yet perfect as the window stutters upon resizing from the top
and/or left edges, but at least makes resizing more intuitive.
Remove the 'resized' member from the GdkWin32Surface structure, as we already
have a structure with a member that keeps track of whether a surface is being
resized, so we can just use that and avoid some confusion in the process
In GTK4, we are now defaulting to the OpenGL renderer with the Cairo renderer
only used as a fallback, so there is no point keeping the code paths that use
layered windows as layered windows do not work well with OpenGL nor Vulkan.
Have an implementation of ->request_layout() and ->compute_size() for the Win32
surface backend so that we can properly display and move and resize the
windows, as we request from the Win32 APIs.
Hxndling Aerosnap properly is mostly done except for snap_up(), which needs to
to be looked at later.
In line with what is done with the Wayland backend, enable the mapped state
independently as needed from the toplevel surface presentation, and also enable
the mapped state if necessary when presenting the popup surface.
When being fullscreen, and wanting to unfullscreen but not caring about
whether to go unmaximized or maximized (as this information is lost), if
the GdkToplevelLayout represents the full intended state, we won't be
able to do the right thing.
To avoid this issue, make the GdkToplevelLayout API intend based, where
if one e.g. doesn't call gdk_toplevel_set_maximized() with anything, the
backend will not attempt to change the maximized state.
This means we can also remove the old 'initially_maximized' and
'initially_fullscreen' fields from the private GtkWindow struct, as we
only deal with intents now.
It was used by all surfaces to track 'is-mapped', but still part of the
GdkToplevelState, and is now replaced with a separate boolean in the
GdkSurface structure.
It also caused issues when a widget was unmapped, and due to that
unmapped a popover which hid its corresponding surface. When this
surface was hidden, it emitted a state change event, which would then go
back into GTK and queue a resize on popover widget, which would travel
back down to the widget that was originally unmapped, causing confusino
when doing future allocations.
To summarize, one should not hide widgets during allocation, and to
avoid this, make this new is-mapped boolean asynchronous when hiding a
surface, meaning the notification event for the changed mapped state
will be emitted in an idle callback. This avoids the above described
reentry issue.
This removes the GDK_CONFIGURE event and all related functions and data
types; it includes untested changes to the MacOSX, Win32 and Broadway
backends.
This removes the gdk_surface_set_shadow_width() function and related
vfuncs. The point here is that the shadow width and surface size can now
be communicated to GDK atomically, meaning it's possible to avoid
intermediate stages where the surface size includes the shadow, but
without the shadow width set, or the other way around.
Reading the comment, it seems to be related being a window manager
decoration utility; this is not something GTK4 aims to handle, just drop
support for this.
The keycode and modifier (state) parameters are in the wrong order
for gdk_key_event_new() in the gdk win32 backend, which causes
key up/down events to be populated incorrectly.
In gdk/win32/gdkmonitor-win32.c in function
populate_monitor_devices_from_display_config() refresh->Numerator * 1000
overflows for refresh->Numerator > 4294976.
Cast the factor 1000 to UINT64 to prevent the overflow.
Fixes#3394
In gdkdevice-win32.c we are interested in knowing which window
receives mouse input at a specific location.
Only WindowFromPoint is the right API for the task, other API's
(such as (Real)ChildWindowFromPoint(Ex)) have shortcomings because
they are really designed for other purposes. For example, only
WindowFromPoint is able to look through transparent layered windows.
So even if we want to find a direct child we have to use
WindowFromPoint and then walk up the hierarchy.
Fixes: #370, #417
See: !2800
Call SetCapture() explcitly for the (new) modal window so that we make the
modal window respond to mouse input, and also call SetCapture() to the parent
of the transient window that we are destroying so that mouse input capture is
returned to the parent window.
This attempts to fix the following:
* Upon creating a new modal window, the new modal window does not receive
pointer input unless one switches to another program and back
* Upon closing a transient window, the parent window that activated the
transient window does not receive pointer input unless one switches to
another and back
This reverts commit fc2008f2.
Turns out, we *don't* have code to maintain Z-order. Restacking
code is not doint that, it just enforces a few weird Z-order-related
behaviours.
Make sure that we get the state of the modal window properly, and send out the
corresponding notification signals.
This will ensure that we do not try to activate windows that should have become
inactivated due to it opening modal windows and render the program unresponsive
because we are not activating the correct window that is due to receive user
input.
Prevents GDK Popups from stealing focus from the parent window when
using Server Side Decorations on win32.
It uses `ShowWindow` and the `SW_SHOWNOACTIVATE` flag.
Since the changes to GDK to use surface subtypes, CSD windows were
broken because we did not set the window styles properly. Fix this by
first acquiring whether decorations are used by the GtkWindow, and based
on that result we set the decorations that we want to use accordingly
and so apply them.
Thanks to Matt Jakeman for investigating into the issue and providing
pointers to a proposed fix.
Fixes issue #3157, besides the part where window sizes are not correct
since that is likely caused a separate issue.
GTK will not up front know how to correctly calculate a size, since it
will not be able to reliably predict the constraints that may exist
where it will be mapped.
Thus, to handle this, calculate the size of the toplevel by having GDK
emitting a signal called 'compute-size' that will contain information
needed for computing a toplevel window size.
This signal may be emitted at any time, e.g. during
gdk_toplevel_present(), or spontaneously if constraints change.
This also drops the max size from the toplevel layout, while moving the
min size from the toplevel layout struct to the struct passed via the
signal,
This needs changes to a test case where we make sure we process
GDK_CONFIGURE etc, which means we also needs to show the window and
process all pending events in the test-focus-chain test case.
gdk_gl_context_has_framebuffer_blit() and gdk_gl_context_has_frame_terminator()
were only used by by GDK/Win32, and they do not provide performance advantages
in GTK master, so clean up the code a bit by dropping them.
Use gdk_surface_get_geometry() to get the correct x and y coordinates of the
window that we are resizing, so that the window does not reposition itself
automatically at the top-left corner at resizing as we to used hard-code the x
and y coordinates to 0.
By doing so, we ensure that resizes of windows will work on Vulkan renderer, by
first calling gdk_win32_surface_handle_queued_move_resize() before we proceed
as usual
Use the shared function that was added in the previous commit, to simplify
things.
Also make gdk_win32_surface_get_queued_window_rect() and
gdk_win32_surface_apply_queued_move_resize() back into static functions, since
they are now used only by the code in gdksurface-win32.c
Since we need to deal with queued moves and resizes in the Cairo, GL and Vulkan
draw contexts, and the logic involved in all three of these are largely
similar, add a function gdk_win32_surface_handle_queued_move_resize() that will
handle this, which will be shared between these three types of draw contexts.
Move gdk_win32_surface_get_queued_window_rect() and
gdk_win32_surface_apply_queued_move_resize() to gdksurface-win32.c, since these
functions are not only used for Cairo draw contexts, but is also used for GL
draw contexts, and will be used for Vulkan draw contexts.
Don't get the default display when we compute the Aerosnap region, but instead
get it from the underlying GdkSurface that we are using for the computation.
Also, don't unref the monitors that we obtain from the display in the wrong
place, which was why we had crashes whenever we triggered AeroSnap code (and we
are actually not supposed to do that as they are owned by the GdkDisplay that
is owned by the GdkSurface we are using), and this will eliminate lots of
criticals that are spewed as a result.
This allows us to use DPI_AWARENESS_CONTEXT_PER_MONITOR_AWARE_V2 for the
DPI awareness mode, which will help us to better support use cases with
multiple monitors. This is actualy a more advaned version of the
current PROCESS_PER_MONITOR_DPI_AWARE via using SetProcessDpiAwareness().
Note that this is not enabled by default, but also enabled via using
GDK_WIN32_PER_MONITOR_HIDPI, as in the PROCESS_PER_MONITOR_DPI_AWARE
case.
Note also, that appliation compatibility settings and DPI-awareness
manifests takes precedence over this API call, as before.
Like the other backends, we ought to create our WGL/EGL GL contexts like
the following:
"Create a global GL context that connects all GL contexts on a display
and lets us share textures between them."
If GLES support is enabled on Windows, force GLES mode if we are running
on a ARM64 version of Windows (i.e. Windows 10 for ARM).
This is required as ARM64 versions of Windows only provide a software
implementation of OpenGL 1.1/1.2, which is not enough for our purposes.
Thus, we could make instead use the GLES support provided via Google's
libANGLE (which emulates OpenGL/ES 3 with Direct3D 9/11), so that we
can run GtkGLArea programs under OpenGL/ES in ARM64 versions of Windows.
Note that eventually we could update the libepoxy build files for Windows
to not check nor enable WGL when building for ARM64 Windows, as the WGL
items do not work, although they do build.
We need to use GL_BGRA instead of GL_RGBA when doing glReadPixels() on
EGL on Windows (ANGLE) so that the red and blue bits won't be displayed
inverted.
Also fix the logic where we determine whether to bit blit or redraw
everything.
This is for adding a EGL-based renderer which is done via the ANGLE
project, which translate EGL calls to Direct3D 9/11. This is done as a
possible solution to issue #105, especially for cases where the needed
full GL extensions to map OpenGL to Direct3D is unavailable or
unreliable, or when the OpenGL implementation from the graphics drivers
are problematic.
To enable this, do the following:
-Build ANGLE and ensure the ANGLE libEGL.dll and libGLESv2.dll are
available. A sufficiently-recent ANGLE is needed for things to
work correctly--note that the copy of ANGLE that is included in
qtbase-5.10.1 is sufficient. ANGLE is licensed under a BSD 3-clause
license.
-Build libepoxy on Windows with EGL support enabled.
-Currently, prior to running GTK+ programs, the GDK_DEBUG envvar needs
to be set with gl-gles as at least one of the flags.
Known issues:
-Only OpenGL ES 3 is supported, ANGLE's ES 2 does not support the needed
extensions, notably GL_OES_vertex_array_object, but its ES 3 support is
sufficient.
-There is no autodetection or fallback mechanism to enable using
EGL/Angle automatically yet. There are no plans to do this in this
commit.
...EGL support needs to be explicitly enabled during the build of
libepoxy on Windows as it is not enabled by default on Windows.
With this, we can add an EGL renderer for Windows that make use of
Google's libANGLE, which is a library that translates OpenGL/ES calls
to Direct3D 9/11, which will provide better hardware compatibility
on Windows and would act as one of the foundations to resolve issue #105.
It's not a portable API, so remove it. The corresponding backend
specific functions are still available, if they were implemented, e.g.
gdk_macos_monitor_get_workarea() and gdk_x11_monitor_get_workarea().
Make GdkEvents hold a single GdkDevice. This device is closer to
the logical device conceptually, although it must be sufficient for
device checks (i.e. GdkInputSource), which makes it similar to the
physical devices.
Make the logical devices have a more accurate GdkInputSource where
needed, and conflate the event devices altogether.