qt5base-lts/tests/auto/gui/math3d/qquaternion/tst_qquaternion.cpp

896 lines
27 KiB
C++
Raw Normal View History

/****************************************************************************
**
** Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/
**
** This file is part of the test suite of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** GNU Lesser General Public License Usage
** This file may be used under the terms of the GNU Lesser General Public
** License version 2.1 as published by the Free Software Foundation and
** appearing in the file LICENSE.LGPL included in the packaging of this
** file. Please review the following information to ensure the GNU Lesser
** General Public License version 2.1 requirements will be met:
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU General
** Public License version 3.0 as published by the Free Software Foundation
** and appearing in the file LICENSE.GPL included in the packaging of this
** file. Please review the following information to ensure the GNU General
** Public License version 3.0 requirements will be met:
** http://www.gnu.org/copyleft/gpl.html.
**
** Other Usage
** Alternatively, this file may be used in accordance with the terms and
** conditions contained in a signed written agreement between you and Nokia.
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <QtTest/QtTest>
#include <QtCore/qmath.h>
#include <QtGui/qquaternion.h>
class tst_QQuaternion : public QObject
{
Q_OBJECT
public:
tst_QQuaternion() {}
~tst_QQuaternion() {}
private slots:
void create();
void length_data();
void length();
void normalized_data();
void normalized();
void normalize_data();
void normalize();
void compare();
void add_data();
void add();
void subtract_data();
void subtract();
void multiply_data();
void multiply();
void multiplyFactor_data();
void multiplyFactor();
void divide_data();
void divide();
void negate_data();
void negate();
void conjugate_data();
void conjugate();
void fromAxisAndAngle_data();
void fromAxisAndAngle();
void slerp_data();
void slerp();
void nlerp_data();
void nlerp();
void properties();
void metaTypes();
};
// QVector3D uses float internally, which can lead to some precision
// issues when using it with the qreal-based QQuaternion.
static bool fuzzyCompare(qreal x, qreal y)
{
return qFuzzyIsNull(float(x - y));
}
// Test the creation of QQuaternion objects in various ways:
// construct, copy, and modify.
void tst_QQuaternion::create()
{
QQuaternion identity;
QCOMPARE(identity.x(), (qreal)0.0f);
QCOMPARE(identity.y(), (qreal)0.0f);
QCOMPARE(identity.z(), (qreal)0.0f);
QCOMPARE(identity.scalar(), (qreal)1.0f);
QVERIFY(identity.isIdentity());
QQuaternion negativeZeroIdentity(qreal(1.0), qreal(-0.0), qreal(-0.0), qreal(-0.0));
QCOMPARE(negativeZeroIdentity.x(), qreal(-0.0));
QCOMPARE(negativeZeroIdentity.y(), qreal(-0.0));
QCOMPARE(negativeZeroIdentity.z(), qreal(-0.0));
QCOMPARE(negativeZeroIdentity.scalar(), qreal(1.0));
QVERIFY(negativeZeroIdentity.isIdentity());
QQuaternion v1(34.0f, 1.0f, 2.5f, -89.25f);
QCOMPARE(v1.x(), (qreal)1.0f);
QCOMPARE(v1.y(), (qreal)2.5f);
QCOMPARE(v1.z(), (qreal)-89.25f);
QCOMPARE(v1.scalar(), (qreal)34.0f);
QVERIFY(!v1.isNull());
QQuaternion v1i(34, 1, 2, -89);
QCOMPARE(v1i.x(), (qreal)1.0f);
QCOMPARE(v1i.y(), (qreal)2.0f);
QCOMPARE(v1i.z(), (qreal)-89.0f);
QCOMPARE(v1i.scalar(), (qreal)34.0f);
QVERIFY(!v1i.isNull());
QQuaternion v2(v1);
QCOMPARE(v2.x(), (qreal)1.0f);
QCOMPARE(v2.y(), (qreal)2.5f);
QCOMPARE(v2.z(), (qreal)-89.25f);
QCOMPARE(v2.scalar(), (qreal)34.0f);
QVERIFY(!v2.isNull());
QQuaternion v4;
QCOMPARE(v4.x(), (qreal)0.0f);
QCOMPARE(v4.y(), (qreal)0.0f);
QCOMPARE(v4.z(), (qreal)0.0f);
QCOMPARE(v4.scalar(), (qreal)1.0f);
QVERIFY(v4.isIdentity());
v4 = v1;
QCOMPARE(v4.x(), (qreal)1.0f);
QCOMPARE(v4.y(), (qreal)2.5f);
QCOMPARE(v4.z(), (qreal)-89.25f);
QCOMPARE(v4.scalar(), (qreal)34.0f);
QVERIFY(!v4.isNull());
QQuaternion v9(34, QVector3D(1.0f, 2.5f, -89.25f));
QCOMPARE(v9.x(), (qreal)1.0f);
QCOMPARE(v9.y(), (qreal)2.5f);
QCOMPARE(v9.z(), (qreal)-89.25f);
QCOMPARE(v9.scalar(), (qreal)34.0f);
QVERIFY(!v9.isNull());
v1.setX(3.0f);
QCOMPARE(v1.x(), (qreal)3.0f);
QCOMPARE(v1.y(), (qreal)2.5f);
QCOMPARE(v1.z(), (qreal)-89.25f);
QCOMPARE(v1.scalar(), (qreal)34.0f);
QVERIFY(!v1.isNull());
v1.setY(10.5f);
QCOMPARE(v1.x(), (qreal)3.0f);
QCOMPARE(v1.y(), (qreal)10.5f);
QCOMPARE(v1.z(), (qreal)-89.25f);
QCOMPARE(v1.scalar(), (qreal)34.0f);
QVERIFY(!v1.isNull());
v1.setZ(15.5f);
QCOMPARE(v1.x(), (qreal)3.0f);
QCOMPARE(v1.y(), (qreal)10.5f);
QCOMPARE(v1.z(), (qreal)15.5f);
QCOMPARE(v1.scalar(), (qreal)34.0f);
QVERIFY(!v1.isNull());
v1.setScalar(6.0f);
QCOMPARE(v1.x(), (qreal)3.0f);
QCOMPARE(v1.y(), (qreal)10.5f);
QCOMPARE(v1.z(), (qreal)15.5f);
QCOMPARE(v1.scalar(), (qreal)6.0f);
QVERIFY(!v1.isNull());
v1.setVector(2.0f, 6.5f, -1.25f);
QCOMPARE(v1.x(), (qreal)2.0f);
QCOMPARE(v1.y(), (qreal)6.5f);
QCOMPARE(v1.z(), (qreal)-1.25f);
QCOMPARE(v1.scalar(), (qreal)6.0f);
QVERIFY(!v1.isNull());
QVERIFY(v1.vector() == QVector3D(2.0f, 6.5f, -1.25f));
v1.setVector(QVector3D(-2.0f, -6.5f, 1.25f));
QCOMPARE(v1.x(), (qreal)-2.0f);
QCOMPARE(v1.y(), (qreal)-6.5f);
QCOMPARE(v1.z(), (qreal)1.25f);
QCOMPARE(v1.scalar(), (qreal)6.0f);
QVERIFY(!v1.isNull());
QVERIFY(v1.vector() == QVector3D(-2.0f, -6.5f, 1.25f));
v1.setX(0.0f);
v1.setY(0.0f);
v1.setZ(0.0f);
v1.setScalar(0.0f);
QCOMPARE(v1.x(), (qreal)0.0f);
QCOMPARE(v1.y(), (qreal)0.0f);
QCOMPARE(v1.z(), (qreal)0.0f);
QCOMPARE(v1.scalar(), (qreal)0.0f);
QVERIFY(v1.isNull());
QVector4D v10 = v9.toVector4D();
QCOMPARE(v10.x(), (qreal)1.0f);
QCOMPARE(v10.y(), (qreal)2.5f);
QCOMPARE(v10.z(), (qreal)-89.25f);
QCOMPARE(v10.w(), (qreal)34.0f);
}
// Test length computation for quaternions.
void tst_QQuaternion::length_data()
{
QTest::addColumn<qreal>("x");
QTest::addColumn<qreal>("y");
QTest::addColumn<qreal>("z");
QTest::addColumn<qreal>("w");
QTest::addColumn<qreal>("len");
QTest::newRow("null") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
QTest::newRow("1x") << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f;
QTest::newRow("1y") << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f;
QTest::newRow("1z") << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)1.0f;
QTest::newRow("1w") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)1.0f;
QTest::newRow("-1x") << (qreal)-1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f;
QTest::newRow("-1y") << (qreal)0.0f << (qreal)-1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f;
QTest::newRow("-1z") << (qreal)0.0f << (qreal)0.0f << (qreal)-1.0f << (qreal)0.0f << (qreal)1.0f;
QTest::newRow("-1w") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)-1.0f << (qreal)1.0f;
QTest::newRow("two") << (qreal)2.0f << (qreal)-2.0f << (qreal)2.0f << (qreal)2.0f << (qreal)qSqrt(16.0f);
}
void tst_QQuaternion::length()
{
QFETCH(qreal, x);
QFETCH(qreal, y);
QFETCH(qreal, z);
QFETCH(qreal, w);
QFETCH(qreal, len);
QQuaternion v(w, x, y, z);
QCOMPARE(v.length(), len);
QCOMPARE(v.lengthSquared(), x * x + y * y + z * z + w * w);
}
// Test the unit vector conversion for quaternions.
void tst_QQuaternion::normalized_data()
{
// Use the same test data as the length test.
length_data();
}
void tst_QQuaternion::normalized()
{
QFETCH(qreal, x);
QFETCH(qreal, y);
QFETCH(qreal, z);
QFETCH(qreal, w);
QFETCH(qreal, len);
QQuaternion v(w, x, y, z);
QQuaternion u = v.normalized();
if (v.isNull())
QVERIFY(u.isNull());
else
QCOMPARE(u.length(), qreal(1.0f));
QCOMPARE(u.x() * len, v.x());
QCOMPARE(u.y() * len, v.y());
QCOMPARE(u.z() * len, v.z());
QCOMPARE(u.scalar() * len, v.scalar());
}
// Test the unit vector conversion for quaternions.
void tst_QQuaternion::normalize_data()
{
// Use the same test data as the length test.
length_data();
}
void tst_QQuaternion::normalize()
{
QFETCH(qreal, x);
QFETCH(qreal, y);
QFETCH(qreal, z);
QFETCH(qreal, w);
QQuaternion v(w, x, y, z);
bool isNull = v.isNull();
v.normalize();
if (isNull)
QVERIFY(v.isNull());
else
QCOMPARE(v.length(), qreal(1.0f));
}
// Test the comparison operators for quaternions.
void tst_QQuaternion::compare()
{
QQuaternion v1(8, 1, 2, 4);
QQuaternion v2(8, 1, 2, 4);
QQuaternion v3(8, 3, 2, 4);
QQuaternion v4(8, 1, 3, 4);
QQuaternion v5(8, 1, 2, 3);
QQuaternion v6(3, 1, 2, 4);
QVERIFY(v1 == v2);
QVERIFY(v1 != v3);
QVERIFY(v1 != v4);
QVERIFY(v1 != v5);
QVERIFY(v1 != v6);
}
// Test addition for quaternions.
void tst_QQuaternion::add_data()
{
QTest::addColumn<qreal>("x1");
QTest::addColumn<qreal>("y1");
QTest::addColumn<qreal>("z1");
QTest::addColumn<qreal>("w1");
QTest::addColumn<qreal>("x2");
QTest::addColumn<qreal>("y2");
QTest::addColumn<qreal>("z2");
QTest::addColumn<qreal>("w2");
QTest::addColumn<qreal>("x3");
QTest::addColumn<qreal>("y3");
QTest::addColumn<qreal>("z3");
QTest::addColumn<qreal>("w3");
QTest::newRow("null")
<< (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f
<< (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f
<< (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
QTest::newRow("xonly")
<< (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f
<< (qreal)2.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f
<< (qreal)3.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
QTest::newRow("yonly")
<< (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f
<< (qreal)0.0f << (qreal)2.0f << (qreal)0.0f << (qreal)0.0f
<< (qreal)0.0f << (qreal)3.0f << (qreal)0.0f << (qreal)0.0f;
QTest::newRow("zonly")
<< (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f
<< (qreal)0.0f << (qreal)0.0f << (qreal)2.0f << (qreal)0.0f
<< (qreal)0.0f << (qreal)0.0f << (qreal)3.0f << (qreal)0.0f;
QTest::newRow("wonly")
<< (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f
<< (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)2.0f
<< (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)3.0f;
QTest::newRow("all")
<< (qreal)1.0f << (qreal)2.0f << (qreal)3.0f << (qreal)8.0f
<< (qreal)4.0f << (qreal)5.0f << (qreal)-6.0f << (qreal)9.0f
<< (qreal)5.0f << (qreal)7.0f << (qreal)-3.0f << (qreal)17.0f;
}
void tst_QQuaternion::add()
{
QFETCH(qreal, x1);
QFETCH(qreal, y1);
QFETCH(qreal, z1);
QFETCH(qreal, w1);
QFETCH(qreal, x2);
QFETCH(qreal, y2);
QFETCH(qreal, z2);
QFETCH(qreal, w2);
QFETCH(qreal, x3);
QFETCH(qreal, y3);
QFETCH(qreal, z3);
QFETCH(qreal, w3);
QQuaternion v1(w1, x1, y1, z1);
QQuaternion v2(w2, x2, y2, z2);
QQuaternion v3(w3, x3, y3, z3);
QVERIFY((v1 + v2) == v3);
QQuaternion v4(v1);
v4 += v2;
QVERIFY(v4 == v3);
QCOMPARE(v4.x(), v1.x() + v2.x());
QCOMPARE(v4.y(), v1.y() + v2.y());
QCOMPARE(v4.z(), v1.z() + v2.z());
QCOMPARE(v4.scalar(), v1.scalar() + v2.scalar());
}
// Test subtraction for quaternions.
void tst_QQuaternion::subtract_data()
{
// Use the same test data as the add test.
add_data();
}
void tst_QQuaternion::subtract()
{
QFETCH(qreal, x1);
QFETCH(qreal, y1);
QFETCH(qreal, z1);
QFETCH(qreal, w1);
QFETCH(qreal, x2);
QFETCH(qreal, y2);
QFETCH(qreal, z2);
QFETCH(qreal, w2);
QFETCH(qreal, x3);
QFETCH(qreal, y3);
QFETCH(qreal, z3);
QFETCH(qreal, w3);
QQuaternion v1(w1, x1, y1, z1);
QQuaternion v2(w2, x2, y2, z2);
QQuaternion v3(w3, x3, y3, z3);
QVERIFY((v3 - v1) == v2);
QVERIFY((v3 - v2) == v1);
QQuaternion v4(v3);
v4 -= v1;
QVERIFY(v4 == v2);
QCOMPARE(v4.x(), v3.x() - v1.x());
QCOMPARE(v4.y(), v3.y() - v1.y());
QCOMPARE(v4.z(), v3.z() - v1.z());
QCOMPARE(v4.scalar(), v3.scalar() - v1.scalar());
QQuaternion v5(v3);
v5 -= v2;
QVERIFY(v5 == v1);
QCOMPARE(v5.x(), v3.x() - v2.x());
QCOMPARE(v5.y(), v3.y() - v2.y());
QCOMPARE(v5.z(), v3.z() - v2.z());
QCOMPARE(v5.scalar(), v3.scalar() - v2.scalar());
}
// Test quaternion multiplication.
void tst_QQuaternion::multiply_data()
{
QTest::addColumn<qreal>("x1");
QTest::addColumn<qreal>("y1");
QTest::addColumn<qreal>("z1");
QTest::addColumn<qreal>("w1");
QTest::addColumn<qreal>("x2");
QTest::addColumn<qreal>("y2");
QTest::addColumn<qreal>("z2");
QTest::addColumn<qreal>("w2");
QTest::newRow("null")
<< (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f
<< (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
QTest::newRow("unitvec")
<< (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f
<< (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)1.0f;
QTest::newRow("complex")
<< (qreal)1.0f << (qreal)2.0f << (qreal)3.0f << (qreal)7.0f
<< (qreal)4.0f << (qreal)5.0f << (qreal)6.0f << (qreal)8.0f;
for (qreal w = -1.0f; w <= 1.0f; w += 0.5f)
for (qreal x = -1.0f; x <= 1.0f; x += 0.5f)
for (qreal y = -1.0f; y <= 1.0f; y += 0.5f)
for (qreal z = -1.0f; z <= 1.0f; z += 0.5f) {
QTest::newRow("exhaustive")
<< x << y << z << w
<< z << w << y << x;
}
}
void tst_QQuaternion::multiply()
{
QFETCH(qreal, x1);
QFETCH(qreal, y1);
QFETCH(qreal, z1);
QFETCH(qreal, w1);
QFETCH(qreal, x2);
QFETCH(qreal, y2);
QFETCH(qreal, z2);
QFETCH(qreal, w2);
QQuaternion q1(w1, x1, y1, z1);
QQuaternion q2(w2, x2, y2, z2);
// Use the simple algorithm at:
// http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q53
// to calculate the answer we expect to get.
QVector3D v1(x1, y1, z1);
QVector3D v2(x2, y2, z2);
qreal scalar = w1 * w2 - QVector3D::dotProduct(v1, v2);
QVector3D vector = w1 * v2 + w2 * v1 + QVector3D::crossProduct(v1, v2);
QQuaternion result(scalar, vector);
QVERIFY((q1 * q2) == result);
}
// Test multiplication by a factor for quaternions.
void tst_QQuaternion::multiplyFactor_data()
{
QTest::addColumn<qreal>("x1");
QTest::addColumn<qreal>("y1");
QTest::addColumn<qreal>("z1");
QTest::addColumn<qreal>("w1");
QTest::addColumn<qreal>("factor");
QTest::addColumn<qreal>("x2");
QTest::addColumn<qreal>("y2");
QTest::addColumn<qreal>("z2");
QTest::addColumn<qreal>("w2");
QTest::newRow("null")
<< (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f
<< (qreal)100.0f
<< (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
QTest::newRow("xonly")
<< (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f
<< (qreal)2.0f
<< (qreal)2.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
QTest::newRow("yonly")
<< (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f
<< (qreal)2.0f
<< (qreal)0.0f << (qreal)2.0f << (qreal)0.0f << (qreal)0.0f;
QTest::newRow("zonly")
<< (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f
<< (qreal)2.0f
<< (qreal)0.0f << (qreal)0.0f << (qreal)2.0f << (qreal)0.0f;
QTest::newRow("wonly")
<< (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f
<< (qreal)2.0f
<< (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)2.0f;
QTest::newRow("all")
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)4.0f
<< (qreal)2.0f
<< (qreal)2.0f << (qreal)4.0f << (qreal)-6.0f << (qreal)8.0f;
QTest::newRow("allzero")
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)4.0f
<< (qreal)0.0f
<< (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
}
void tst_QQuaternion::multiplyFactor()
{
QFETCH(qreal, x1);
QFETCH(qreal, y1);
QFETCH(qreal, z1);
QFETCH(qreal, w1);
QFETCH(qreal, factor);
QFETCH(qreal, x2);
QFETCH(qreal, y2);
QFETCH(qreal, z2);
QFETCH(qreal, w2);
QQuaternion v1(w1, x1, y1, z1);
QQuaternion v2(w2, x2, y2, z2);
QVERIFY((v1 * factor) == v2);
QVERIFY((factor * v1) == v2);
QQuaternion v3(v1);
v3 *= factor;
QVERIFY(v3 == v2);
QCOMPARE(v3.x(), v1.x() * factor);
QCOMPARE(v3.y(), v1.y() * factor);
QCOMPARE(v3.z(), v1.z() * factor);
QCOMPARE(v3.scalar(), v1.scalar() * factor);
}
// Test division by a factor for quaternions.
void tst_QQuaternion::divide_data()
{
// Use the same test data as the multiply test.
multiplyFactor_data();
}
void tst_QQuaternion::divide()
{
QFETCH(qreal, x1);
QFETCH(qreal, y1);
QFETCH(qreal, z1);
QFETCH(qreal, w1);
QFETCH(qreal, factor);
QFETCH(qreal, x2);
QFETCH(qreal, y2);
QFETCH(qreal, z2);
QFETCH(qreal, w2);
QQuaternion v1(w1, x1, y1, z1);
QQuaternion v2(w2, x2, y2, z2);
if (factor == (qreal)0.0f)
return;
QVERIFY((v2 / factor) == v1);
QQuaternion v3(v2);
v3 /= factor;
QVERIFY(v3 == v1);
QCOMPARE(v3.x(), v2.x() / factor);
QCOMPARE(v3.y(), v2.y() / factor);
QCOMPARE(v3.z(), v2.z() / factor);
QCOMPARE(v3.scalar(), v2.scalar() / factor);
}
// Test negation for quaternions.
void tst_QQuaternion::negate_data()
{
// Use the same test data as the add test.
add_data();
}
void tst_QQuaternion::negate()
{
QFETCH(qreal, x1);
QFETCH(qreal, y1);
QFETCH(qreal, z1);
QFETCH(qreal, w1);
QQuaternion v1(w1, x1, y1, z1);
QQuaternion v2(-w1, -x1, -y1, -z1);
QVERIFY(-v1 == v2);
}
// Test quaternion conjugate calculations.
void tst_QQuaternion::conjugate_data()
{
// Use the same test data as the add test.
add_data();
}
void tst_QQuaternion::conjugate()
{
QFETCH(qreal, x1);
QFETCH(qreal, y1);
QFETCH(qreal, z1);
QFETCH(qreal, w1);
QQuaternion v1(w1, x1, y1, z1);
QQuaternion v2(w1, -x1, -y1, -z1);
QVERIFY(v1.conjugate() == v2);
}
// Test quaternion creation from an axis and an angle.
void tst_QQuaternion::fromAxisAndAngle_data()
{
QTest::addColumn<qreal>("x1");
QTest::addColumn<qreal>("y1");
QTest::addColumn<qreal>("z1");
QTest::addColumn<qreal>("angle");
QTest::newRow("null")
<< (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
QTest::newRow("xonly")
<< (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)90.0f;
QTest::newRow("yonly")
<< (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)180.0f;
QTest::newRow("zonly")
<< (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)270.0f;
QTest::newRow("complex")
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)45.0f;
}
void tst_QQuaternion::fromAxisAndAngle()
{
QFETCH(qreal, x1);
QFETCH(qreal, y1);
QFETCH(qreal, z1);
QFETCH(qreal, angle);
// Use a straight-forward implementation of the algorithm at:
// http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56
// to calculate the answer we expect to get.
QVector3D vector = QVector3D(x1, y1, z1).normalized();
qreal sin_a = qSin((angle * M_PI / 180.0) / 2.0);
qreal cos_a = qCos((angle * M_PI / 180.0) / 2.0);
QQuaternion result((qreal)cos_a,
(qreal)(vector.x() * sin_a),
(qreal)(vector.y() * sin_a),
(qreal)(vector.z() * sin_a));
result = result.normalized();
QQuaternion answer = QQuaternion::fromAxisAndAngle(QVector3D(x1, y1, z1), angle);
QVERIFY(fuzzyCompare(answer.x(), result.x()));
QVERIFY(fuzzyCompare(answer.y(), result.y()));
QVERIFY(fuzzyCompare(answer.z(), result.z()));
QVERIFY(fuzzyCompare(answer.scalar(), result.scalar()));
answer = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle);
QVERIFY(fuzzyCompare(answer.x(), result.x()));
QVERIFY(fuzzyCompare(answer.y(), result.y()));
QVERIFY(fuzzyCompare(answer.z(), result.z()));
QVERIFY(fuzzyCompare(answer.scalar(), result.scalar()));
}
// Test spherical interpolation of quaternions.
void tst_QQuaternion::slerp_data()
{
QTest::addColumn<qreal>("x1");
QTest::addColumn<qreal>("y1");
QTest::addColumn<qreal>("z1");
QTest::addColumn<qreal>("angle1");
QTest::addColumn<qreal>("x2");
QTest::addColumn<qreal>("y2");
QTest::addColumn<qreal>("z2");
QTest::addColumn<qreal>("angle2");
QTest::addColumn<qreal>("t");
QTest::addColumn<qreal>("x3");
QTest::addColumn<qreal>("y3");
QTest::addColumn<qreal>("z3");
QTest::addColumn<qreal>("angle3");
QTest::newRow("first")
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f
<< (qreal)0.0f
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f;
QTest::newRow("first2")
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f
<< (qreal)-0.5f
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f;
QTest::newRow("second")
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f
<< (qreal)1.0f
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f;
QTest::newRow("second2")
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f
<< (qreal)1.5f
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f;
QTest::newRow("middle")
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f
<< (qreal)0.5f
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)135.0f;
QTest::newRow("wide angle")
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)0.0f
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)270.0f
<< (qreal)0.5f
<< (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)-45.0f;
}
void tst_QQuaternion::slerp()
{
QFETCH(qreal, x1);
QFETCH(qreal, y1);
QFETCH(qreal, z1);
QFETCH(qreal, angle1);
QFETCH(qreal, x2);
QFETCH(qreal, y2);
QFETCH(qreal, z2);
QFETCH(qreal, angle2);
QFETCH(qreal, t);
QFETCH(qreal, x3);
QFETCH(qreal, y3);
QFETCH(qreal, z3);
QFETCH(qreal, angle3);
QQuaternion q1 = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle1);
QQuaternion q2 = QQuaternion::fromAxisAndAngle(x2, y2, z2, angle2);
QQuaternion q3 = QQuaternion::fromAxisAndAngle(x3, y3, z3, angle3);
QQuaternion result = QQuaternion::slerp(q1, q2, t);
QVERIFY(fuzzyCompare(result.x(), q3.x()));
QVERIFY(fuzzyCompare(result.y(), q3.y()));
QVERIFY(fuzzyCompare(result.z(), q3.z()));
QVERIFY(fuzzyCompare(result.scalar(), q3.scalar()));
}
// Test normalized linear interpolation of quaternions.
void tst_QQuaternion::nlerp_data()
{
slerp_data();
}
void tst_QQuaternion::nlerp()
{
QFETCH(qreal, x1);
QFETCH(qreal, y1);
QFETCH(qreal, z1);
QFETCH(qreal, angle1);
QFETCH(qreal, x2);
QFETCH(qreal, y2);
QFETCH(qreal, z2);
QFETCH(qreal, angle2);
QFETCH(qreal, t);
QQuaternion q1 = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle1);
QQuaternion q2 = QQuaternion::fromAxisAndAngle(x2, y2, z2, angle2);
QQuaternion result = QQuaternion::nlerp(q1, q2, t);
qreal resultx, resulty, resultz, resultscalar;
if (t <= 0.0f) {
resultx = q1.x();
resulty = q1.y();
resultz = q1.z();
resultscalar = q1.scalar();
} else if (t >= 1.0f) {
resultx = q2.x();
resulty = q2.y();
resultz = q2.z();
resultscalar = q2.scalar();
} else if (qAbs(angle1 - angle2) <= 180.f) {
resultx = q1.x() * (1 - t) + q2.x() * t;
resulty = q1.y() * (1 - t) + q2.y() * t;
resultz = q1.z() * (1 - t) + q2.z() * t;
resultscalar = q1.scalar() * (1 - t) + q2.scalar() * t;
} else {
// Angle greater than 180 degrees: negate q2.
resultx = q1.x() * (1 - t) - q2.x() * t;
resulty = q1.y() * (1 - t) - q2.y() * t;
resultz = q1.z() * (1 - t) - q2.z() * t;
resultscalar = q1.scalar() * (1 - t) - q2.scalar() * t;
}
QQuaternion q3 = QQuaternion(resultscalar, resultx, resulty, resultz).normalized();
QVERIFY(fuzzyCompare(result.x(), q3.x()));
QVERIFY(fuzzyCompare(result.y(), q3.y()));
QVERIFY(fuzzyCompare(result.z(), q3.z()));
QVERIFY(fuzzyCompare(result.scalar(), q3.scalar()));
}
class tst_QQuaternionProperties : public QObject
{
Q_OBJECT
Q_PROPERTY(QQuaternion quaternion READ quaternion WRITE setQuaternion)
public:
tst_QQuaternionProperties(QObject *parent = 0) : QObject(parent) {}
QQuaternion quaternion() const { return q; }
void setQuaternion(const QQuaternion& value) { q = value; }
private:
QQuaternion q;
};
// Test getting and setting quaternion properties via the metaobject system.
void tst_QQuaternion::properties()
{
tst_QQuaternionProperties obj;
obj.setQuaternion(QQuaternion(6.0f, 7.0f, 8.0f, 9.0f));
QQuaternion q = qvariant_cast<QQuaternion>(obj.property("quaternion"));
QCOMPARE(q.scalar(), (qreal)6.0f);
QCOMPARE(q.x(), (qreal)7.0f);
QCOMPARE(q.y(), (qreal)8.0f);
QCOMPARE(q.z(), (qreal)9.0f);
obj.setProperty("quaternion",
QVariant::fromValue(QQuaternion(-6.0f, -7.0f, -8.0f, -9.0f)));
q = qvariant_cast<QQuaternion>(obj.property("quaternion"));
QCOMPARE(q.scalar(), (qreal)-6.0f);
QCOMPARE(q.x(), (qreal)-7.0f);
QCOMPARE(q.y(), (qreal)-8.0f);
QCOMPARE(q.z(), (qreal)-9.0f);
}
void tst_QQuaternion::metaTypes()
{
QVERIFY(QMetaType::type("QQuaternion") == QMetaType::QQuaternion);
QCOMPARE(QByteArray(QMetaType::typeName(QMetaType::QQuaternion)),
QByteArray("QQuaternion"));
QVERIFY(QMetaType::isRegistered(QMetaType::QQuaternion));
QVERIFY(qMetaTypeId<QQuaternion>() == QMetaType::QQuaternion);
}
QTEST_APPLESS_MAIN(tst_QQuaternion)
#include "tst_qquaternion.moc"