skia2/tools/VisualBench/VisualBench.cpp

359 lines
9.9 KiB
C++
Raw Normal View History

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
*/
#include "VisualBench.h"
#include "ProcStats.h"
#include "SkApplication.h"
#include "SkCanvas.h"
#include "SkCommandLineFlags.h"
#include "SkForceLinking.h"
#include "SkGraphics.h"
#include "SkGr.h"
#include "SkImageDecoder.h"
#include "SkOSFile.h"
#include "SkStream.h"
#include "Stats.h"
#include "gl/GrGLInterface.h"
__SK_FORCE_IMAGE_DECODER_LINKING;
// Between samples we reset context
// Between frames we swap buffers
// Between flushes we call flush on GrContext
DEFINE_int32(gpuFrameLag, 5, "Overestimate of maximum number of frames GPU allows to lag.");
DEFINE_int32(samples, 10, "Number of times to time each skp.");
DEFINE_int32(frames, 5, "Number of frames of each skp to render per sample.");
DEFINE_double(flushMs, 20, "Target flush time in millseconds.");
DEFINE_double(loopMs, 5, "Target loop time in millseconds.");
DEFINE_int32(msaa, 0, "Number of msaa samples.");
DEFINE_bool2(fullscreen, f, true, "Run fullscreen.");
DEFINE_bool2(verbose, v, false, "enable verbose output from the test driver.");
DEFINE_string(key, "", ""); // dummy to enable gm tests that have platform-specific names
DEFINE_string(outResultsFile, "", "If given, write results here as JSON.");
DEFINE_string(properties, "",
"Space-separated key/value pairs to add to JSON identifying this run.");
static SkString humanize(double ms) {
if (FLAGS_verbose) {
return SkStringPrintf("%llu", (uint64_t)(ms*1e6));
}
return HumanizeMs(ms);
}
#define HUMANIZE(time) humanize(time).c_str()
VisualBench::VisualBench(void* hwnd, int argc, char** argv)
: INHERITED(hwnd)
, fCurrentSample(0)
, fCurrentFrame(0)
, fFlushes(1)
, fLoops(1)
, fState(kPreWarmLoops_State)
, fBenchmark(nullptr)
, fResults(new ResultsWriter) {
SkCommandLineFlags::Parse(argc, argv);
this->setTitle();
this->setupBackend();
fBenchmarkStream.reset(new VisualBenchmarkStream);
// Print header
SkDebugf("curr/maxrss\tloops\tflushes\tmin\tmedian\tmean\tmax\tstddev\tbench\n");
// setup json logging if required
if (!FLAGS_outResultsFile.isEmpty()) {
fResults.reset(new NanoJSONResultsWriter(FLAGS_outResultsFile[0]));
}
if (1 == FLAGS_properties.count() % 2) {
SkDebugf("ERROR: --properties must be passed with an even number of arguments.\n");
} else {
for (int i = 1; i < FLAGS_properties.count(); i += 2) {
fResults->property(FLAGS_properties[i - 1], FLAGS_properties[i]);
}
}
}
VisualBench::~VisualBench() {
INHERITED::detach();
}
void VisualBench::setTitle() {
SkString title("VisualBench");
INHERITED::setTitle(title.c_str());
}
SkSurface* VisualBench::createSurface() {
if (!fSurface) {
SkSurfaceProps props(INHERITED::getSurfaceProps());
fSurface.reset(SkSurface::NewRenderTargetDirect(fRenderTarget, &props));
}
// The caller will wrap the SkSurface in an SkAutoTUnref
return SkRef(fSurface.get());
}
bool VisualBench::setupBackend() {
this->setColorType(kRGBA_8888_SkColorType);
this->setVisibleP(true);
this->setClipToBounds(false);
if (FLAGS_fullscreen) {
if (!this->makeFullscreen()) {
SkDebugf("Could not go fullscreen!");
}
}
if (!this->attach(kNativeGL_BackEndType, FLAGS_msaa, &fAttachmentInfo)) {
SkDebugf("Not possible to create backend.\n");
INHERITED::detach();
return false;
}
this->setVsync(false);
this->resetContext();
return true;
}
void VisualBench::resetContext() {
fSurface.reset(nullptr);
fInterface.reset(GrGLCreateNativeInterface());
SkASSERT(fInterface);
// setup contexts
fContext.reset(GrContext::Create(kOpenGL_GrBackend, (GrBackendContext)fInterface.get()));
SkASSERT(fContext);
// setup rendertargets
this->setupRenderTarget();
}
void VisualBench::setupRenderTarget() {
if (fContext) {
fRenderTarget.reset(this->renderTarget(fAttachmentInfo, fInterface, fContext));
}
}
inline void VisualBench::renderFrame(SkCanvas* canvas) {
for (int flush = 0; flush < fFlushes; flush++) {
fBenchmark->draw(fLoops, canvas);
canvas->flush();
}
INHERITED::present();
}
void VisualBench::printStats() {
const SkTArray<double>& measurements = fRecords.back().fMeasurements;
const char* shortName = fBenchmark->getUniqueName();
// update log
// Note: We currently log only the minimum. It would be interesting to log more information
SkString configName;
if (FLAGS_msaa > 0) {
configName.appendf("msaa_%d", FLAGS_msaa);
} else {
configName.appendf("gpu");
}
fResults->config(configName.c_str());
fResults->configOption("name", fBenchmark->getUniqueName());
SkASSERT(measurements.count());
Stats stats(measurements);
fResults->metric("min_ms", stats.min);
// Print output
if (FLAGS_verbose) {
for (int i = 0; i < measurements.count(); i++) {
SkDebugf("%s ", HUMANIZE(measurements[i]));
}
SkDebugf("%s\n", shortName);
} else {
const double stdDevPercent = 100 * sqrt(stats.var) / stats.mean;
SkDebugf("%4d/%-4dMB\t%d\t%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\n",
sk_tools::getCurrResidentSetSizeMB(),
sk_tools::getMaxResidentSetSizeMB(),
fLoops,
fFlushes,
HUMANIZE(stats.min),
HUMANIZE(stats.median),
HUMANIZE(stats.mean),
HUMANIZE(stats.max),
stdDevPercent,
shortName);
}
}
bool VisualBench::advanceRecordIfNecessary(SkCanvas* canvas) {
if (fBenchmark) {
return true;
}
fBenchmark.reset(fBenchmarkStream->next());
if (!fBenchmark) {
return false;
}
canvas->clear(0xffffffff);
fBenchmark->preDraw();
fRecords.push_back();
// Log bench name
fResults->bench(fBenchmark->getUniqueName(), fBenchmark->getSize().fX,
fBenchmark->getSize().fY);
return true;
}
inline void VisualBench::nextState(State nextState) {
fState = nextState;
}
void VisualBench::perCanvasPreDraw(SkCanvas* canvas, State nextState) {
fBenchmark->perCanvasPreDraw(canvas);
fCurrentFrame = 0;
this->nextState(nextState);
}
void VisualBench::preWarm(State nextState) {
if (fCurrentFrame >= FLAGS_gpuFrameLag) {
// we currently time across all frames to make sure we capture all GPU work
this->nextState(nextState);
fCurrentFrame = 0;
fTimer.start();
} else {
fCurrentFrame++;
}
}
void VisualBench::draw(SkCanvas* canvas) {
if (!this->advanceRecordIfNecessary(canvas)) {
SkDebugf("Exiting VisualBench successfully\n");
this->closeWindow();
return;
}
this->renderFrame(canvas);
switch (fState) {
case kPreWarmLoopsPerCanvasPreDraw_State: {
this->perCanvasPreDraw(canvas, kPreWarmLoops_State);
break;
}
case kPreWarmLoops_State: {
this->preWarm(kTuneLoops_State);
break;
}
case kTuneLoops_State: {
this->tuneLoops();
break;
}
case kPreWarmTimingPerCanvasPreDraw_State: {
this->perCanvasPreDraw(canvas, kPreWarmTiming_State);
break;
}
case kPreWarmTiming_State: {
this->preWarm(kTiming_State);
break;
}
case kTiming_State: {
this->timing(canvas);
break;
}
}
// Invalidate the window to force a redraw. Poor man's animation mechanism.
this->inval(nullptr);
}
inline double VisualBench::elapsed() {
fTimer.end();
return fTimer.fWall;
}
void VisualBench::resetTimingState() {
fCurrentFrame = 0;
fTimer = WallTimer();
this->resetContext();
}
void VisualBench::scaleLoops(double elapsedMs) {
// Scale back the number of loops
fLoops = (int)ceil(fLoops * FLAGS_loopMs / elapsedMs);
fFlushes = (int)ceil(FLAGS_flushMs / elapsedMs);
}
inline void VisualBench::tuneLoops() {
if (1 << 30 == fLoops) {
// We're about to wrap. Something's wrong with the bench.
SkDebugf("InnerLoops wrapped\n");
fLoops = 0;
} else {
double elapsedMs = this->elapsed();
if (elapsedMs > FLAGS_loopMs) {
this->scaleLoops(elapsedMs);
this->nextState(kPreWarmTimingPerCanvasPreDraw_State);
} else {
fLoops *= 2;
this->nextState(kPreWarmLoops_State);
}
this->resetTimingState();
}
}
void VisualBench::recordMeasurement() {
double measurement = this->elapsed() / (FLAGS_frames * fLoops * fFlushes);
fRecords.back().fMeasurements.push_back(measurement);
}
void VisualBench::postDraw(SkCanvas* canvas) {
fBenchmark->perCanvasPostDraw(canvas);
fBenchmark.reset(nullptr);
fCurrentSample = 0;
fFlushes = 1;
fLoops = 1;
}
inline void VisualBench::timing(SkCanvas* canvas) {
if (fCurrentFrame >= FLAGS_frames) {
this->recordMeasurement();
if (fCurrentSample++ >= FLAGS_samples) {
this->printStats();
this->postDraw(canvas);
this->nextState(kPreWarmLoopsPerCanvasPreDraw_State);
} else {
this->nextState(kPreWarmTimingPerCanvasPreDraw_State);
}
this->resetTimingState();
} else {
fCurrentFrame++;
}
}
void VisualBench::onSizeChange() {
this->setupRenderTarget();
}
bool VisualBench::onHandleChar(SkUnichar unichar) {
return true;
}
// Externally declared entry points
void application_init() {
SkGraphics::Init();
SkEvent::Init();
}
void application_term() {
SkEvent::Term();
SkGraphics::Term();
}
SkOSWindow* create_sk_window(void* hwnd, int argc, char** argv) {
return new VisualBench(hwnd, argc, argv);
}