Lessons learned
1. ImageShader (correctly) always compresses (typically via PNG) during serialization. This has the surprise results of
- if the image was marked opaque, but has some non-opaque pixels (i.e. bug in blitter or caller), then compressing may "fix" those pixels, making the deserialized version draw differently. bug filed.
- 565 compressess/decompresses to 8888 (at least on Mac), which draws differently (esp. under some filters). bug filed.
2. BitmapShader did not enforce a copy for mutable bitmaps, but ImageShader does (since it creates an Image). Thus the former would see subsequent changes to the pixels after shader creation, while the latter does not, hence the change to the BlitRow test to avoid this modify-after-create pattern. I sure hope this prev. behavior was a bug/undefined-behavior, since this CL changes that.
BUG=skia:5595
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2195893002
Review-Url: https://codereview.chromium.org/2195893002
Most visibly this adds a macro SK_RASTER_STAGE that cuts down on the boilerplate of defining a raster pipeline stage function.
Most interestingly, SK_RASTER_STAGE doesn't define a SkRasterPipeline::Fn, but rather a new type EasyFn. This function is always static and inlined, and the details of interacting with the SkRasterPipeline::Stage are taken care of for you: ctx is just passed as a void*, and st->next() is always called. All EasyFns have to do is take care of the meat of the work: update r,g,b, etc. and read and write from their context.
The really neat new feature here is that you can either add EasyFns to a pipeline with the new append() functions, _or_ call them directly yourself. This lets you use the same set of pieces to build either a pipelined version of the function or a custom, fused version. The bench shows this off.
On my desktop, the pipeline version of the bench takes about 25% more time to run than the fused one.
The old approach to creating stages still works fine. I haven't updated SkXfermode.cpp or SkArithmeticMode.cpp because they seemed just as clear using Fn directly as they would have using EasyFn.
If this looks okay to you I will rework the comments in SkRasterPipeline to explain SK_RASTER_STAGE and EasyFn a bit as I've done here in the CL description.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2195853002
Review-Url: https://codereview.chromium.org/2195853002
Motivation:
SkPDFStream and SkPDFSharedStream now work the same.
Also:
- move SkPDFStream into SkPDFTypes (it's a fundamental PDF type).
- minor refactor of SkPDFSharedStream
- SkPDFSharedStream takes unique_ptr to represent ownership
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2190883003
Review-Url: https://codereview.chromium.org/2190883003
New API mirrors the form of similar APIs in SkRegion,
SkMatrix, etc.
This also fixes a bug:
SkImageInfo appears in a object that Chrome stores in
discardable memory. So when sk_sp<SkColorSpace> was added
to SkImageInfo a leak was introduced. We'll use this new
method and deserialize to store the SkColorSpace in the
discardable object.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2192903002
Review-Url: https://codereview.chromium.org/2192903002
The handling of angle-gl changes with SK_ANGLE. We don't have any bots
that test this particular combination, but I see it all the time while
running DM for other things.
Previously considered changing things so that the config parsing results
are consistent, regardless of GYP_DEFINES, but this is much simpler (and
more consistent with the other code we already have for testing config
parsing).
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2183323004
Review-Url: https://codereview.chromium.org/2183323004
AtomicTest was the only use of sk_atomic_add().
AtomicInc64 bench was the only use of sk_atomic_inc(int64_t*).
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2183473005
CQ_INCLUDE_TRYBOTS=master.client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-TSAN-Trybot,Test-Ubuntu-GCC-Golo-GPU-GT610-x86_64-Release-TSAN-Trybot
Review-Url: https://codereview.chromium.org/2183473005
* do a lot less floating-point math by converting to
an integer as early as possible [faster].
* round rather than truncate.
* use 8 significant digits rather than 9 when possible.
* remove trailing zeros in fractions.
before:
0.12 ! PDFScalar nonrendering
after:
0.07 ! PDFScalar nonrendering
Accuracy guaranteed by existing unit test.
Example diffs:
-/Shading <</Function <</C0 [.321568638 .333333343 .321568638]
+/Shading <</Function <</C0 [.32156864 .33333334 .32156864]
-/C1 [.258823543 .270588248 .258823543]
+/C1 [.25882354 .27058825 .25882354]
-1 0 0 -1 20 120.394500 Tm
+1 0 0 -1 20 120.394501 Tm
-1 0 0 -1 20 184.789001 Tm
+1 0 0 -1 20 184.789 Tm
-291.503997 0 l
+291.504 0 l
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2146103004
Review-Url: https://codereview.chromium.org/2146103004
Previously, SkClipStack would call "setEmpty" on itself when an
inverse-filled difference element made the stack empty. This was
a problem because setEmpty would forget the element had an inverse
fill, yet leave the op as "difference". This change modifies it to
manually update the clip bounds and set the gen-ID to kEmptyGenID,
rather than calling setEmpty.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2175493002
Review-Url: https://codereview.chromium.org/2175493002
If the length of a line path is sufficiently long relative to the dash
interval, it is possible to cause SkDashPathEffect::asPoints to produce
so many points that it overflows the amount that can fit in an int type,
or otherwise produce non-finite values, i.e. path from (0,0) to (0,9e15)
with a dash interval of 1.
This fixes that by capping the amount of points to a sane limit - in this
case, 1mil, since that limit is also used in utils/SkDashPath.cpp and has
precedent.
Downstream Firefox bug report: https://bugzilla.mozilla.org/show_bug.cgi?id=1287515
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2165013002
Review-Url: https://codereview.chromium.org/2165013002
Fix another fuzzer bug.
Some PathOps asserts only make sense if the incoming data is
well-behaved. Well-behaved tests set debugging state to
trigger these additional asserts.
Formalize this by creating macros similar to SkASSERT that
check to see if the assert should be skipped.
TBR=reed@google.com
BUG=629962
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2169863002
Review-Url: https://codereview.chromium.org/2169863002
This trims the SkPM4fPriv methods down to just foolproof methods.
(Anything trying to build these itself is probably wrong.)
Things like Sk4f srgb_to_linear(Sk4f) can't really exist anymore,
at least not efficiently, so this refactor is somewhat more invasive
than you might think. Generally this means things using to_4f() are
also making a misstep... that's gone too.
It also does not make sense to try to play games with linear floats
with 255 bias any more. That hack can't work with real sRGB coding.
Rather than update them, I've removed a couple of L32 xfermode fast
paths. I'd even rather drop it entirely...
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2163683002
CQ_INCLUDE_TRYBOTS=master.client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot
Review-Url: https://codereview.chromium.org/2163683002
I basically just ran a big 5-deep for-loop over the five constants here.
This is the first set of coefficients I found that round trips all bytes.
I suspect there are many such sets.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2162063003
CQ_INCLUDE_TRYBOTS=master.client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot
Review-Url: https://codereview.chromium.org/2162063003
This should give us a good baseline to explore using SkRasterPipeline.
A particular colorxform to half float drops from 425us to 282us on my desktop.
Color Xform to Half Float (HP z620)
Original 425us
Trans16 (not 32) 355us
Vector Trans16 378us
Trans16 + Keep Halfs in Vector 335us
Vector Trans16 + Keep Halfs in Vector 282us
Final 282us
Color Xform to Half Float (Nexus 5X)
Original 556us
Final 472us
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2159993003
CQ_INCLUDE_TRYBOTS=master.client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot
Review-Url: https://codereview.chromium.org/2159993003
GrTextureAccess optionally includes an instance, computed from the src
and dst color spaces. In all common cases (no color space for either src
or dst, or same color space for both), no object is allocated.
This change is orthogonal to my attempts to get color space attached to
render targets - regardless of how we choose to do that, this will give
us the source color space at all points where we are connecting src to
dst.
There are many dangling injection points where I've been inserting
nullptr, but I have a record of all of them. Additionally, there are now
three places (the most common simple paths for bitmap/image rendering)
where things are plumbed enough that I expect to have access to the dst
color space (all marked with XFORMTODO).
In addition to getting the dst color space, I need to inject shader code
and uniform uploading for appendTextureLookup and friends.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2154753003
Review-Url: https://codereview.chromium.org/2154753003
Most changes stem from working on an examples bracketed
by #if DEBUG_UNDER_DEVELOPMENT // tiger
These exposed many problems with coincident curves,
as well as errors throughout the code.
Fixing these errors also fixed a number of fuzzer-inspired
bug reports.
* Line/Curve Intersections
Check to see if the end of the line nearly intersects
the curve. This was a FIXME in the old code.
* Performance
Use a central chunk allocator.
Plumb the allocator into the global variable state
so that it can be shared. (Note that 'SkGlobalState'
is allocated on the stack and is visible to children
functions but not other threads.)
* Refactor
Let SkOpAngle grow up from a structure to a class.
Let SkCoincidentSpans grow up from a structure to a class.
Rename enum Alias to AliasMatch.
* Coincidence Rewrite
Add more debugging to coincidence detection.
Parallel debugging routines have read-only logic to report
the current coincidence state so that steps through the
logic can expose whether things got better or worse.
More functions can error-out and cause the pathops
engine to non-destructively exit.
* Accuracy
Remove code that adjusted point locations. Instead,
offset the curve part so that sorted curves all use
the same origin.
Reduce the size (and influence) of magic numbers.
* Testing
The debug suite with verify and the full release suite
./out/Debug/pathops_unittest -v -V
./out/Release/pathops_unittest -v -V -x
expose one error. That error is captured as cubics_d3.
This error exists in the checked in code as well.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003
Review-Url: https://codereview.chromium.org/2128633003
SkPDFUtils now has a special function (SkPDFUtils::AppendColorComponent)
just for writing out (color/255) as a decimal with three digits of
precision.
SkPDFUnion now has a type to represent a color component. It holds a
utint_8, but calls into AppendColorComponent to serialize.
Added a unit test that tests all possible input values.
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2151863003
Review-Url: https://codereview.chromium.org/2151863003
It's become clear we need to sometimes deal with values <0 or >1.
I'm not yet convinced we care about NaN or +-inf.
We had some fairly clever tricks and optimizations here for NEON
and SSE. I've thrown them out in favor of a single implementation.
If we find the specializations mattered, we can certainly figure out
how to extend them to this new range/domain.
This happens to add a vectorized float -> half for ARMv7, which was
missing from the _01 version. (The SSE strategy was not portable to
platforms that flush denorm floats to zero.)
I've tested the full float range for FloatToHalf on my desktop and a 5x.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2145663003
CQ_INCLUDE_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot;master.client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot,Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-Fast-Trybot
Committed: https://skia.googlesource.com/skia/+/3296bee70d074bb8094b3229dbe12fa016657e90
Review-Url: https://codereview.chromium.org/2145663003
Reason for revert:
Unit tests fail on Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-Fast
Original issue's description:
> Expand _01 half<->float limitation to _finite. Simplify.
>
> It's become clear we need to sometimes deal with values <0 or >1.
> I'm not yet convinced we care about NaN or +-inf.
>
> We had some fairly clever tricks and optimizations here for NEON
> and SSE. I've thrown them out in favor of a single implementation.
> If we find the specializations mattered, we can certainly figure out
> how to extend them to this new range/domain.
>
> This happens to add a vectorized float -> half for ARMv7, which was
> missing from the _01 version. (The SSE strategy was not portable to
> platforms that flush denorm floats to zero.)
>
> I've tested the full float range for FloatToHalf on my desktop and a 5x.
>
> BUG=skia:
> GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2145663003
> CQ_INCLUDE_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot;master.client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot,Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-Fast-Trybot
>
> Committed: https://skia.googlesource.com/skia/+/3296bee70d074bb8094b3229dbe12fa016657e90TBR=msarett@google.com,mtklein@chromium.org
# Skipping CQ checks because original CL landed less than 1 days ago.
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=skia:
Review-Url: https://codereview.chromium.org/2151023003
It's become clear we need to sometimes deal with values <0 or >1.
I'm not yet convinced we care about NaN or +-inf.
We had some fairly clever tricks and optimizations here for NEON
and SSE. I've thrown them out in favor of a single implementation.
If we find the specializations mattered, we can certainly figure out
how to extend them to this new range/domain.
This happens to add a vectorized float -> half for ARMv7, which was
missing from the _01 version. (The SSE strategy was not portable to
platforms that flush denorm floats to zero.)
I've tested the full float range for FloatToHalf on my desktop and a 5x.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2145663003
CQ_INCLUDE_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot;master.client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot
Review-Url: https://codereview.chromium.org/2145663003