skia2/include/core/SkRegion.h
djsollen@google.com cd9d69b9ce Upstreaming changes from android.
- fix compile warnings in the GPU code
- upstream android specific code (ifdef protected)
- fail gracefully when a custom allocator fails



git-svn-id: http://skia.googlecode.com/svn/trunk@936 2bbb7eff-a529-9590-31e7-b0007b416f81
2011-03-14 20:30:14 +00:00

367 lines
13 KiB
C++

/*
* Copyright (C) 2005 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SkRegion_DEFINED
#define SkRegion_DEFINED
#include "SkRect.h"
class SkPath;
class SkRgnBuilder;
namespace android {
class Region;
}
#define SkRegion_gEmptyRunHeadPtr ((SkRegion::RunHead*)-1)
#define SkRegion_gRectRunHeadPtr 0
/** \class SkRegion
The SkRegion class encapsulates the geometric region used to specify
clipping areas for drawing.
*/
class SkRegion {
public:
typedef int32_t RunType;
enum {
kRunTypeSentinel = 0x7FFFFFFF
};
SkRegion();
SkRegion(const SkRegion&);
explicit SkRegion(const SkIRect&);
~SkRegion();
SkRegion& operator=(const SkRegion&);
friend int operator==(const SkRegion& a, const SkRegion& b);
friend int operator!=(const SkRegion& a, const SkRegion& b) {
return !(a == b);
}
/** Replace this region with the specified region, and return true if the
resulting region is non-empty.
*/
bool set(const SkRegion& src) {
SkASSERT(&src);
*this = src;
return !this->isEmpty();
}
/** Swap the contents of this and the specified region. This operation
is gauarenteed to never fail.
*/
void swap(SkRegion&);
/** Return true if this region is empty */
bool isEmpty() const { return fRunHead == SkRegion_gEmptyRunHeadPtr; }
/** Return true if this region is a single, non-empty rectangle */
bool isRect() const { return fRunHead == SkRegion_gRectRunHeadPtr; }
/** Return true if this region consists of more than 1 rectangular area */
bool isComplex() const { return !this->isEmpty() && !this->isRect(); }
/** Return the bounds of this region. If the region is empty, returns an
empty rectangle.
*/
const SkIRect& getBounds() const { return fBounds; }
/** Returns true if the region is non-empty, and if so, sets the specified
path to the boundary(s) of the region.
*/
bool getBoundaryPath(SkPath* path) const;
/** Set the region to be empty, and return false, since the resulting
region is empty
*/
bool setEmpty();
/** If rect is non-empty, set this region to that rectangle and return true,
otherwise set this region to empty and return false.
*/
bool setRect(const SkIRect&);
/** If left < right and top < bottom, set this region to that rectangle and
return true, otherwise set this region to empty and return false.
*/
bool setRect(int32_t left, int32_t top, int32_t right, int32_t bottom);
/** Set this region to the union of an array of rects. This is generally
faster than calling region.op(rect, kUnion_Op) in a loop. If count is
0, then this region is set to the empty region.
@return true if the resulting region is non-empty
*/
bool setRects(const SkIRect rects[], int count);
/** Set this region to the specified region, and return true if it is
non-empty. */
bool setRegion(const SkRegion&);
/** Set this region to the area described by the path, clipped.
Return true if the resulting region is non-empty.
This produces a region that is identical to the pixels that would be
drawn by the path (with no antialiasing) with the specified clip.
*/
bool setPath(const SkPath&, const SkRegion& clip);
/** Returns true if the specified rectangle has a non-empty intersection
with this region.
*/
bool intersects(const SkIRect&) const;
/** Returns true if the specified region has a non-empty intersection
with this region.
*/
bool intersects(const SkRegion&) const;
/** Return true if the specified x,y coordinate is inside the region.
*/
bool contains(int32_t x, int32_t y) const;
/** Return true if the specified rectangle is completely inside the region.
This works for simple (rectangular) and complex regions, and always
returns the correct result. Note: if either this region or the rectangle
is empty, contains() returns false.
*/
bool contains(const SkIRect&) const;
/** Return true if the specified region is completely inside the region.
This works for simple (rectangular) and complex regions, and always
returns the correct result. Note: if either region is empty, contains()
returns false.
*/
bool contains(const SkRegion&) const;
/** Return true if this region is a single rectangle (not complex) and the
specified rectangle is contained by this region. Returning false is not
a guarantee that the rectangle is not contained by this region, but
return true is a guarantee that the rectangle is contained by this region.
*/
bool quickContains(const SkIRect& r) const {
return this->quickContains(r.fLeft, r.fTop, r.fRight, r.fBottom);
}
/** Return true if this region is a single rectangle (not complex) and the
specified rectangle is contained by this region. Returning false is not
a guarantee that the rectangle is not contained by this region, but
return true is a guarantee that the rectangle is contained by this
region.
*/
bool quickContains(int32_t left, int32_t top, int32_t right,
int32_t bottom) const {
SkASSERT(this->isEmpty() == fBounds.isEmpty()); // valid region
return left < right && top < bottom &&
fRunHead == SkRegion_gRectRunHeadPtr && // this->isRect()
/* fBounds.contains(left, top, right, bottom); */
fBounds.fLeft <= left && fBounds.fTop <= top &&
fBounds.fRight >= right && fBounds.fBottom >= bottom;
}
/** Return true if this region is empty, or if the specified rectangle does
not intersect the region. Returning false is not a guarantee that they
intersect, but returning true is a guarantee that they do not.
*/
bool quickReject(const SkIRect& rect) const
{
return this->isEmpty() || rect.isEmpty() ||
!SkIRect::Intersects(fBounds, rect);
}
/** Return true if this region, or rgn, is empty, or if their bounds do not
intersect. Returning false is not a guarantee that they intersect, but
returning true is a guarantee that they do not.
*/
bool quickReject(const SkRegion& rgn) const {
return this->isEmpty() || rgn.isEmpty() ||
!SkIRect::Intersects(fBounds, rgn.fBounds);
}
/** Translate the region by the specified (dx, dy) amount.
*/
void translate(int dx, int dy) { this->translate(dx, dy, this); }
/** Translate the region by the specified (dx, dy) amount, writing the
resulting region into dst. Note: it is legal to pass this region as the
dst parameter, effectively translating the region in place. If dst is
null, nothing happens.
*/
void translate(int dx, int dy, SkRegion* dst) const;
/** The logical operations that can be performed when combining two regions.
*/
enum Op {
kDifference_Op, //!< subtract the op region from the first region
kIntersect_Op, //!< intersect the two regions
kUnion_Op, //!< union (inclusive-or) the two regions
kXOR_Op, //!< exclusive-or the two regions
/** subtract the first region from the op region */
kReverseDifference_Op,
kReplace_Op //!< replace the dst region with the op region
};
/** Set this region to the result of applying the Op to this region and the
specified rectangle: this = (this op rect).
Return true if the resulting region is non-empty.
*/
bool op(const SkIRect& rect, Op op) { return this->op(*this, rect, op); }
/** Set this region to the result of applying the Op to this region and the
specified rectangle: this = (this op rect).
Return true if the resulting region is non-empty.
*/
bool op(int left, int top, int right, int bottom, Op op) {
SkIRect rect;
rect.set(left, top, right, bottom);
return this->op(*this, rect, op);
}
/** Set this region to the result of applying the Op to this region and the
specified region: this = (this op rgn).
Return true if the resulting region is non-empty.
*/
bool op(const SkRegion& rgn, Op op) { return this->op(*this, rgn, op); }
/** Set this region to the result of applying the Op to the specified
rectangle and region: this = (rect op rgn).
Return true if the resulting region is non-empty.
*/
bool op(const SkIRect& rect, const SkRegion& rgn, Op);
/** Set this region to the result of applying the Op to the specified
region and rectangle: this = (rgn op rect).
Return true if the resulting region is non-empty.
*/
bool op(const SkRegion& rgn, const SkIRect& rect, Op);
/** Set this region to the result of applying the Op to the specified
regions: this = (rgna op rgnb).
Return true if the resulting region is non-empty.
*/
bool op(const SkRegion& rgna, const SkRegion& rgnb, Op op);
#ifdef ANDROID
/** Returns a new char* containing the list of rectangles in this region
*/
char* toString();
#endif
/** Returns the sequence of rectangles, sorted in Y and X, that make up
this region.
*/
class Iterator {
public:
Iterator() : fRgn(NULL), fDone(true) {}
Iterator(const SkRegion&);
// if we have a region, reset to it and return true, else return false
bool rewind();
// reset the iterator, using the new region
void reset(const SkRegion&);
bool done() const { return fDone; }
void next();
const SkIRect& rect() const { return fRect; }
// may return null
const SkRegion* rgn() const { return fRgn; }
private:
const SkRegion* fRgn;
const RunType* fRuns;
SkIRect fRect;
bool fDone;
};
/** Returns the sequence of rectangles, sorted in Y and X, that make up
this region intersected with the specified clip rectangle.
*/
class Cliperator {
public:
Cliperator(const SkRegion&, const SkIRect& clip);
bool done() { return fDone; }
void next();
const SkIRect& rect() const { return fRect; }
private:
Iterator fIter;
SkIRect fClip;
SkIRect fRect;
bool fDone;
};
/** Returns the sequence of runs that make up this region for the specified
Y scanline, clipped to the specified left and right X values.
*/
class Spanerator {
public:
Spanerator(const SkRegion&, int y, int left, int right);
bool next(int* left, int* right);
private:
const SkRegion::RunType* fRuns;
int fLeft, fRight;
bool fDone;
};
/** Write the region to the buffer, and return the number of bytes written.
If buffer is NULL, it still returns the number of bytes.
*/
uint32_t flatten(void* buffer) const;
/** Initialized the region from the buffer, returning the number
of bytes actually read.
*/
uint32_t unflatten(const void* buffer);
SkDEBUGCODE(void dump() const;)
SkDEBUGCODE(void validate() const;)
SkDEBUGCODE(static void UnitTest();)
// expose this to allow for regression test on complex regions
SkDEBUGCODE(bool debugSetRuns(const RunType runs[], int count);)
private:
enum {
kOpCount = kReplace_Op + 1
};
enum {
kRectRegionRuns = 6 // need to store a region of a rect [T B L R S S]
};
friend class android::Region; // needed for marshalling efficiently
void allocateRuns(int count); // allocate space for count runs
struct RunHead;
SkIRect fBounds;
RunHead* fRunHead;
void freeRuns();
const RunType* getRuns(RunType tmpStorage[], int* count) const;
bool setRuns(RunType runs[], int count);
int count_runtype_values(int* itop, int* ibot) const;
static void BuildRectRuns(const SkIRect& bounds,
RunType runs[kRectRegionRuns]);
// returns true if runs are just a rect
static bool ComputeRunBounds(const RunType runs[], int count,
SkIRect* bounds);
friend struct RunHead;
friend class Iterator;
friend class Spanerator;
friend class SkRgnBuilder;
friend class SkFlatRegion;
};
#endif