v8/src/builtins.cc

1723 lines
57 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/api.h"
#include "src/arguments.h"
#include "src/base/once.h"
#include "src/bootstrapper.h"
#include "src/builtins.h"
#include "src/cpu-profiler.h"
#include "src/gdb-jit.h"
#include "src/heap-profiler.h"
#include "src/ic-inl.h"
#include "src/mark-compact.h"
#include "src/stub-cache.h"
#include "src/vm-state-inl.h"
namespace v8 {
namespace internal {
namespace {
// Arguments object passed to C++ builtins.
template <BuiltinExtraArguments extra_args>
class BuiltinArguments : public Arguments {
public:
BuiltinArguments(int length, Object** arguments)
: Arguments(length, arguments) { }
Object*& operator[] (int index) {
ASSERT(index < length());
return Arguments::operator[](index);
}
template <class S> Handle<S> at(int index) {
ASSERT(index < length());
return Arguments::at<S>(index);
}
Handle<Object> receiver() {
return Arguments::at<Object>(0);
}
Handle<JSFunction> called_function() {
STATIC_ASSERT(extra_args == NEEDS_CALLED_FUNCTION);
return Arguments::at<JSFunction>(Arguments::length() - 1);
}
// Gets the total number of arguments including the receiver (but
// excluding extra arguments).
int length() const {
STATIC_ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
return Arguments::length();
}
#ifdef DEBUG
void Verify() {
// Check we have at least the receiver.
ASSERT(Arguments::length() >= 1);
}
#endif
};
// Specialize BuiltinArguments for the called function extra argument.
template <>
int BuiltinArguments<NEEDS_CALLED_FUNCTION>::length() const {
return Arguments::length() - 1;
}
#ifdef DEBUG
template <>
void BuiltinArguments<NEEDS_CALLED_FUNCTION>::Verify() {
// Check we have at least the receiver and the called function.
ASSERT(Arguments::length() >= 2);
// Make sure cast to JSFunction succeeds.
called_function();
}
#endif
#define DEF_ARG_TYPE(name, spec) \
typedef BuiltinArguments<spec> name##ArgumentsType;
BUILTIN_LIST_C(DEF_ARG_TYPE)
#undef DEF_ARG_TYPE
} // namespace
// ----------------------------------------------------------------------------
// Support macro for defining builtins in C++.
// ----------------------------------------------------------------------------
//
// A builtin function is defined by writing:
//
// BUILTIN(name) {
// ...
// }
//
// In the body of the builtin function the arguments can be accessed
// through the BuiltinArguments object args.
#ifdef DEBUG
#define BUILTIN(name) \
MUST_USE_RESULT static Object* Builtin_Impl_##name( \
name##ArgumentsType args, Isolate* isolate); \
MUST_USE_RESULT static Object* Builtin_##name( \
int args_length, Object** args_object, Isolate* isolate) { \
name##ArgumentsType args(args_length, args_object); \
args.Verify(); \
return Builtin_Impl_##name(args, isolate); \
} \
MUST_USE_RESULT static Object* Builtin_Impl_##name( \
name##ArgumentsType args, Isolate* isolate)
#else // For release mode.
#define BUILTIN(name) \
static Object* Builtin_impl##name( \
name##ArgumentsType args, Isolate* isolate); \
static Object* Builtin_##name( \
int args_length, Object** args_object, Isolate* isolate) { \
name##ArgumentsType args(args_length, args_object); \
return Builtin_impl##name(args, isolate); \
} \
static Object* Builtin_impl##name( \
name##ArgumentsType args, Isolate* isolate)
#endif
#ifdef DEBUG
static inline bool CalledAsConstructor(Isolate* isolate) {
// Calculate the result using a full stack frame iterator and check
// that the state of the stack is as we assume it to be in the
// code below.
StackFrameIterator it(isolate);
ASSERT(it.frame()->is_exit());
it.Advance();
StackFrame* frame = it.frame();
bool reference_result = frame->is_construct();
Address fp = Isolate::c_entry_fp(isolate->thread_local_top());
// Because we know fp points to an exit frame we can use the relevant
// part of ExitFrame::ComputeCallerState directly.
const int kCallerOffset = ExitFrameConstants::kCallerFPOffset;
Address caller_fp = Memory::Address_at(fp + kCallerOffset);
// This inlines the part of StackFrame::ComputeType that grabs the
// type of the current frame. Note that StackFrame::ComputeType
// has been specialized for each architecture so if any one of them
// changes this code has to be changed as well.
const int kMarkerOffset = StandardFrameConstants::kMarkerOffset;
const Smi* kConstructMarker = Smi::FromInt(StackFrame::CONSTRUCT);
Object* marker = Memory::Object_at(caller_fp + kMarkerOffset);
bool result = (marker == kConstructMarker);
ASSERT_EQ(result, reference_result);
return result;
}
#endif
// ----------------------------------------------------------------------------
BUILTIN(Illegal) {
UNREACHABLE();
return isolate->heap()->undefined_value(); // Make compiler happy.
}
BUILTIN(EmptyFunction) {
return isolate->heap()->undefined_value();
}
static void MoveDoubleElements(FixedDoubleArray* dst, int dst_index,
FixedDoubleArray* src, int src_index, int len) {
if (len == 0) return;
MemMove(dst->data_start() + dst_index, src->data_start() + src_index,
len * kDoubleSize);
}
static FixedArrayBase* LeftTrimFixedArray(Heap* heap,
FixedArrayBase* elms,
int to_trim) {
ASSERT(heap->CanMoveObjectStart(elms));
Map* map = elms->map();
int entry_size;
if (elms->IsFixedArray()) {
entry_size = kPointerSize;
} else {
entry_size = kDoubleSize;
}
ASSERT(elms->map() != heap->fixed_cow_array_map());
// For now this trick is only applied to fixed arrays in new and paged space.
// In large object space the object's start must coincide with chunk
// and thus the trick is just not applicable.
ASSERT(!heap->lo_space()->Contains(elms));
STATIC_ASSERT(FixedArrayBase::kMapOffset == 0);
STATIC_ASSERT(FixedArrayBase::kLengthOffset == kPointerSize);
STATIC_ASSERT(FixedArrayBase::kHeaderSize == 2 * kPointerSize);
Object** former_start = HeapObject::RawField(elms, 0);
const int len = elms->length();
if (to_trim * entry_size > FixedArrayBase::kHeaderSize &&
elms->IsFixedArray() &&
!heap->new_space()->Contains(elms)) {
// If we are doing a big trim in old space then we zap the space that was
// formerly part of the array so that the GC (aided by the card-based
// remembered set) won't find pointers to new-space there.
Object** zap = reinterpret_cast<Object**>(elms->address());
zap++; // Header of filler must be at least one word so skip that.
for (int i = 1; i < to_trim; i++) {
*zap++ = Smi::FromInt(0);
}
}
// Technically in new space this write might be omitted (except for
// debug mode which iterates through the heap), but to play safer
// we still do it.
// Since left trimming is only performed on pages which are not concurrently
// swept creating a filler object does not require synchronization.
heap->CreateFillerObjectAt(elms->address(), to_trim * entry_size);
int new_start_index = to_trim * (entry_size / kPointerSize);
former_start[new_start_index] = map;
former_start[new_start_index + 1] = Smi::FromInt(len - to_trim);
// Maintain marking consistency for HeapObjectIterator and
// IncrementalMarking.
int size_delta = to_trim * entry_size;
Address new_start = elms->address() + size_delta;
heap->marking()->TransferMark(elms->address(), new_start);
heap->AdjustLiveBytes(new_start, -size_delta, Heap::FROM_MUTATOR);
FixedArrayBase* new_elms =
FixedArrayBase::cast(HeapObject::FromAddress(new_start));
heap->OnMoveEvent(new_elms, elms, new_elms->Size());
return new_elms;
}
static bool ArrayPrototypeHasNoElements(Heap* heap,
Context* native_context,
JSObject* array_proto) {
DisallowHeapAllocation no_gc;
// This method depends on non writability of Object and Array prototype
// fields.
if (array_proto->elements() != heap->empty_fixed_array()) return false;
// Object.prototype
Object* proto = array_proto->GetPrototype();
if (proto == heap->null_value()) return false;
array_proto = JSObject::cast(proto);
if (array_proto != native_context->initial_object_prototype()) return false;
if (array_proto->elements() != heap->empty_fixed_array()) return false;
return array_proto->GetPrototype()->IsNull();
}
// Returns empty handle if not applicable.
MUST_USE_RESULT
static inline MaybeHandle<FixedArrayBase> EnsureJSArrayWithWritableFastElements(
Isolate* isolate,
Handle<Object> receiver,
Arguments* args,
int first_added_arg) {
if (!receiver->IsJSArray()) return MaybeHandle<FixedArrayBase>();
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
// If there may be elements accessors in the prototype chain, the fast path
// cannot be used if there arguments to add to the array.
if (args != NULL && array->map()->DictionaryElementsInPrototypeChainOnly()) {
return MaybeHandle<FixedArrayBase>();
}
if (array->map()->is_observed()) return MaybeHandle<FixedArrayBase>();
if (!array->map()->is_extensible()) return MaybeHandle<FixedArrayBase>();
Handle<FixedArrayBase> elms(array->elements(), isolate);
Heap* heap = isolate->heap();
Map* map = elms->map();
if (map == heap->fixed_array_map()) {
if (args == NULL || array->HasFastObjectElements()) return elms;
} else if (map == heap->fixed_cow_array_map()) {
elms = JSObject::EnsureWritableFastElements(array);
if (args == NULL || array->HasFastObjectElements()) return elms;
} else if (map == heap->fixed_double_array_map()) {
if (args == NULL) return elms;
} else {
return MaybeHandle<FixedArrayBase>();
}
// Need to ensure that the arguments passed in args can be contained in
// the array.
int args_length = args->length();
if (first_added_arg >= args_length) return handle(array->elements(), isolate);
ElementsKind origin_kind = array->map()->elements_kind();
ASSERT(!IsFastObjectElementsKind(origin_kind));
ElementsKind target_kind = origin_kind;
{
DisallowHeapAllocation no_gc;
int arg_count = args->length() - first_added_arg;
Object** arguments = args->arguments() - first_added_arg - (arg_count - 1);
for (int i = 0; i < arg_count; i++) {
Object* arg = arguments[i];
if (arg->IsHeapObject()) {
if (arg->IsHeapNumber()) {
target_kind = FAST_DOUBLE_ELEMENTS;
} else {
target_kind = FAST_ELEMENTS;
break;
}
}
}
}
if (target_kind != origin_kind) {
JSObject::TransitionElementsKind(array, target_kind);
return handle(array->elements(), isolate);
}
return elms;
}
static inline bool IsJSArrayFastElementMovingAllowed(Heap* heap,
JSArray* receiver) {
if (!FLAG_clever_optimizations) return false;
DisallowHeapAllocation no_gc;
Context* native_context = heap->isolate()->context()->native_context();
JSObject* array_proto =
JSObject::cast(native_context->array_function()->prototype());
Copy-on-write arrays. Object model changes ---------------------------------------- New fixed_cow_array_map is used for the elements array of a JSObject to mark it as COW. The JSObject's map and other fields are not affected. The JSObject's map still has the "fast elements" bit set. It means we can do only the receiver map check in keyed loads and the receiver and the elements map checks in keyed stores. So introducing COW arrays doesn't hurt performance of these operations. But note that the elements map check is necessary in all mutating operations because the "has fast elements" bit now means "has fast elements for reading". EnsureWritableFastElements can be used in runtime functions to perform the necessary lazy copying. Generated code changes ---------------------------------------- Generic keyed load is updated to only do the receiver map check (this could have been done earlier). FastCloneShallowArrayStub now has two modes: clone elements and use COW elements. AssertFastElements macro is added to check the elements when necessary. The custom call IC generators for Array.prototype.{push,pop} are updated to avoid going to the slow case (and patching the IC) when calling the builtin should work. COW enablement ---------------------------------------- Currently we only put shallow and simple literal arrays in the COW mode. This is done by the parser. Review URL: http://codereview.chromium.org/3144002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5275 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-08-16 16:06:46 +00:00
return receiver->GetPrototype() == array_proto &&
ArrayPrototypeHasNoElements(heap, native_context, array_proto);
}
MUST_USE_RESULT static Object* CallJsBuiltin(
Isolate* isolate,
const char* name,
BuiltinArguments<NO_EXTRA_ARGUMENTS> args) {
HandleScope handleScope(isolate);
Handle<Object> js_builtin = Object::GetProperty(
isolate,
handle(isolate->native_context()->builtins(), isolate),
name).ToHandleChecked();
Handle<JSFunction> function = Handle<JSFunction>::cast(js_builtin);
int argc = args.length() - 1;
ScopedVector<Handle<Object> > argv(argc);
for (int i = 0; i < argc; ++i) {
argv[i] = args.at<Object>(i + 1);
}
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
Execution::Call(isolate,
function,
args.receiver(),
argc,
argv.start()));
return *result;
}
BUILTIN(ArrayPush) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj)) {
return CallJsBuiltin(isolate, "ArrayPush", args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
int len = Smi::cast(array->length())->value();
int to_add = args.length() - 1;
if (to_add > 0 && JSArray::WouldChangeReadOnlyLength(array, len + to_add)) {
return CallJsBuiltin(isolate, "ArrayPush", args);
}
ASSERT(!array->map()->is_observed());
ElementsKind kind = array->GetElementsKind();
if (IsFastSmiOrObjectElementsKind(kind)) {
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
if (to_add == 0) {
return Smi::FromInt(len);
}
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
ASSERT(to_add <= (Smi::kMaxValue - len));
int new_length = len + to_add;
if (new_length > elms->length()) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
Handle<FixedArray> new_elms =
isolate->factory()->NewUninitializedFixedArray(capacity);
ElementsAccessor* accessor = array->GetElementsAccessor();
accessor->CopyElements(
elms_obj, 0, kind, new_elms, 0,
ElementsAccessor::kCopyToEndAndInitializeToHole);
elms = new_elms;
}
// Add the provided values.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
for (int index = 0; index < to_add; index++) {
elms->set(index + len, args[index + 1], mode);
}
if (*elms != array->elements()) {
array->set_elements(*elms);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return Smi::FromInt(new_length);
} else {
int elms_len = elms_obj->length();
if (to_add == 0) {
return Smi::FromInt(len);
}
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
ASSERT(to_add <= (Smi::kMaxValue - len));
int new_length = len + to_add;
Handle<FixedDoubleArray> new_elms;
if (new_length > elms_len) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
// Create new backing store; since capacity > 0, we can
// safely cast to FixedDoubleArray.
new_elms = Handle<FixedDoubleArray>::cast(
isolate->factory()->NewFixedDoubleArray(capacity));
ElementsAccessor* accessor = array->GetElementsAccessor();
accessor->CopyElements(
elms_obj, 0, kind, new_elms, 0,
ElementsAccessor::kCopyToEndAndInitializeToHole);
} else {
// to_add is > 0 and new_length <= elms_len, so elms_obj cannot be the
// empty_fixed_array.
new_elms = Handle<FixedDoubleArray>::cast(elms_obj);
}
// Add the provided values.
DisallowHeapAllocation no_gc;
int index;
for (index = 0; index < to_add; index++) {
Object* arg = args[index + 1];
new_elms->set(index + len, arg->Number());
}
if (*new_elms != array->elements()) {
array->set_elements(*new_elms);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return Smi::FromInt(new_length);
}
}
BUILTIN(ArrayPop) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, NULL, 0);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj)) {
return CallJsBuiltin(isolate, "ArrayPop", args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
ASSERT(!array->map()->is_observed());
int len = Smi::cast(array->length())->value();
if (len == 0) return isolate->heap()->undefined_value();
ElementsAccessor* accessor = array->GetElementsAccessor();
int new_length = len - 1;
Handle<Object> element =
accessor->Get(array, array, new_length, elms_obj).ToHandleChecked();
if (element->IsTheHole()) {
return CallJsBuiltin(isolate, "ArrayPop", args);
}
RETURN_FAILURE_ON_EXCEPTION(
isolate,
accessor->SetLength(array, handle(Smi::FromInt(new_length), isolate)));
return *element;
}
BUILTIN(ArrayShift) {
HandleScope scope(isolate);
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, NULL, 0);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj) ||
!IsJSArrayFastElementMovingAllowed(heap,
*Handle<JSArray>::cast(receiver))) {
return CallJsBuiltin(isolate, "ArrayShift", args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
ASSERT(!array->map()->is_observed());
int len = Smi::cast(array->length())->value();
if (len == 0) return heap->undefined_value();
// Get first element
ElementsAccessor* accessor = array->GetElementsAccessor();
Handle<Object> first =
accessor->Get(array, array, 0, elms_obj).ToHandleChecked();
if (first->IsTheHole()) {
return CallJsBuiltin(isolate, "ArrayShift", args);
}
if (heap->CanMoveObjectStart(*elms_obj)) {
array->set_elements(LeftTrimFixedArray(heap, *elms_obj, 1));
} else {
// Shift the elements.
if (elms_obj->IsFixedArray()) {
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
DisallowHeapAllocation no_gc;
heap->MoveElements(*elms, 0, 1, len - 1);
elms->set(len - 1, heap->the_hole_value());
} else {
Handle<FixedDoubleArray> elms = Handle<FixedDoubleArray>::cast(elms_obj);
MoveDoubleElements(*elms, 0, *elms, 1, len - 1);
elms->set_the_hole(len - 1);
}
}
// Set the length.
array->set_length(Smi::FromInt(len - 1));
return *first;
}
BUILTIN(ArrayUnshift) {
HandleScope scope(isolate);
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, NULL, 0);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj) ||
!IsJSArrayFastElementMovingAllowed(heap,
*Handle<JSArray>::cast(receiver))) {
return CallJsBuiltin(isolate, "ArrayUnshift", args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
ASSERT(!array->map()->is_observed());
if (!array->HasFastSmiOrObjectElements()) {
return CallJsBuiltin(isolate, "ArrayUnshift", args);
}
int len = Smi::cast(array->length())->value();
int to_add = args.length() - 1;
int new_length = len + to_add;
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
ASSERT(to_add <= (Smi::kMaxValue - len));
if (to_add > 0 && JSArray::WouldChangeReadOnlyLength(array, len + to_add)) {
return CallJsBuiltin(isolate, "ArrayUnshift", args);
}
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
JSObject::EnsureCanContainElements(array, &args, 1, to_add,
DONT_ALLOW_DOUBLE_ELEMENTS);
if (new_length > elms->length()) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
Handle<FixedArray> new_elms =
isolate->factory()->NewUninitializedFixedArray(capacity);
ElementsKind kind = array->GetElementsKind();
ElementsAccessor* accessor = array->GetElementsAccessor();
accessor->CopyElements(
elms, 0, kind, new_elms, to_add,
ElementsAccessor::kCopyToEndAndInitializeToHole);
elms = new_elms;
array->set_elements(*elms);
} else {
DisallowHeapAllocation no_gc;
heap->MoveElements(*elms, to_add, 0, len);
}
// Add the provided values.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
for (int i = 0; i < to_add; i++) {
elms->set(i, args[i + 1], mode);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return Smi::FromInt(new_length);
}
BUILTIN(ArraySlice) {
HandleScope scope(isolate);
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
int len = -1;
int relative_start = 0;
int relative_end = 0;
{
DisallowHeapAllocation no_gc;
if (receiver->IsJSArray()) {
JSArray* array = JSArray::cast(*receiver);
if (!IsJSArrayFastElementMovingAllowed(heap, array)) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
if (!array->HasFastElements()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
len = Smi::cast(array->length())->value();
} else {
// Array.slice(arguments, ...) is quite a common idiom (notably more
// than 50% of invocations in Web apps). Treat it in C++ as well.
Map* arguments_map = isolate->context()->native_context()->
sloppy_arguments_boilerplate()->map();
bool is_arguments_object_with_fast_elements =
receiver->IsJSObject() &&
JSObject::cast(*receiver)->map() == arguments_map;
if (!is_arguments_object_with_fast_elements) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
JSObject* object = JSObject::cast(*receiver);
if (!object->HasFastElements()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
Object* len_obj = object->InObjectPropertyAt(Heap::kArgumentsLengthIndex);
if (!len_obj->IsSmi()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
len = Smi::cast(len_obj)->value();
if (len > object->elements()->length()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
}
ASSERT(len >= 0);
int n_arguments = args.length() - 1;
// Note carefully choosen defaults---if argument is missing,
// it's undefined which gets converted to 0 for relative_start
// and to len for relative_end.
relative_start = 0;
relative_end = len;
if (n_arguments > 0) {
Object* arg1 = args[1];
if (arg1->IsSmi()) {
relative_start = Smi::cast(arg1)->value();
} else if (arg1->IsHeapNumber()) {
double start = HeapNumber::cast(arg1)->value();
if (start < kMinInt || start > kMaxInt) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
relative_start = std::isnan(start) ? 0 : static_cast<int>(start);
} else if (!arg1->IsUndefined()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
if (n_arguments > 1) {
Object* arg2 = args[2];
if (arg2->IsSmi()) {
relative_end = Smi::cast(arg2)->value();
} else if (arg2->IsHeapNumber()) {
double end = HeapNumber::cast(arg2)->value();
if (end < kMinInt || end > kMaxInt) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
relative_end = std::isnan(end) ? 0 : static_cast<int>(end);
} else if (!arg2->IsUndefined()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
}
}
}
// ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6.
int k = (relative_start < 0) ? Max(len + relative_start, 0)
: Min(relative_start, len);
// ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8.
int final = (relative_end < 0) ? Max(len + relative_end, 0)
: Min(relative_end, len);
// Calculate the length of result array.
int result_len = Max(final - k, 0);
Handle<JSObject> object = Handle<JSObject>::cast(receiver);
Handle<FixedArrayBase> elms(object->elements(), isolate);
ElementsKind kind = object->GetElementsKind();
if (IsHoleyElementsKind(kind)) {
DisallowHeapAllocation no_gc;
bool packed = true;
ElementsAccessor* accessor = ElementsAccessor::ForKind(kind);
for (int i = k; i < final; i++) {
if (!accessor->HasElement(object, object, i, elms)) {
packed = false;
break;
}
}
if (packed) {
kind = GetPackedElementsKind(kind);
} else if (!receiver->IsJSArray()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
}
Handle<JSArray> result_array =
isolate->factory()->NewJSArray(kind, result_len, result_len);
DisallowHeapAllocation no_gc;
if (result_len == 0) return *result_array;
ElementsAccessor* accessor = object->GetElementsAccessor();
accessor->CopyElements(
elms, k, kind, handle(result_array->elements(), isolate), 0, result_len);
return *result_array;
}
BUILTIN(ArraySplice) {
HandleScope scope(isolate);
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj) ||
!IsJSArrayFastElementMovingAllowed(heap,
*Handle<JSArray>::cast(receiver))) {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
ASSERT(!array->map()->is_observed());
int len = Smi::cast(array->length())->value();
int n_arguments = args.length() - 1;
int relative_start = 0;
if (n_arguments > 0) {
DisallowHeapAllocation no_gc;
Object* arg1 = args[1];
if (arg1->IsSmi()) {
relative_start = Smi::cast(arg1)->value();
} else if (arg1->IsHeapNumber()) {
double start = HeapNumber::cast(arg1)->value();
if (start < kMinInt || start > kMaxInt) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySplice", args);
}
relative_start = std::isnan(start) ? 0 : static_cast<int>(start);
} else if (!arg1->IsUndefined()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySplice", args);
}
}
int actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
: Min(relative_start, len);
// SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is
// given as a request to delete all the elements from the start.
// And it differs from the case of undefined delete count.
// This does not follow ECMA-262, but we do the same for
// compatibility.
int actual_delete_count;
if (n_arguments == 1) {
ASSERT(len - actual_start >= 0);
actual_delete_count = len - actual_start;
} else {
int value = 0; // ToInteger(undefined) == 0
if (n_arguments > 1) {
DisallowHeapAllocation no_gc;
Object* arg2 = args[2];
if (arg2->IsSmi()) {
value = Smi::cast(arg2)->value();
} else {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySplice", args);
}
}
actual_delete_count = Min(Max(value, 0), len - actual_start);
}
ElementsKind elements_kind = array->GetElementsKind();
int item_count = (n_arguments > 1) ? (n_arguments - 2) : 0;
int new_length = len - actual_delete_count + item_count;
// For double mode we do not support changing the length.
if (new_length > len && IsFastDoubleElementsKind(elements_kind)) {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
if (new_length == 0) {
Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(
elms_obj, elements_kind, actual_delete_count);
array->set_elements(heap->empty_fixed_array());
array->set_length(Smi::FromInt(0));
return *result;
}
Handle<JSArray> result_array =
isolate->factory()->NewJSArray(elements_kind,
actual_delete_count,
actual_delete_count);
if (actual_delete_count > 0) {
DisallowHeapAllocation no_gc;
ElementsAccessor* accessor = array->GetElementsAccessor();
accessor->CopyElements(
elms_obj, actual_start, elements_kind,
handle(result_array->elements(), isolate), 0, actual_delete_count);
}
bool elms_changed = false;
if (item_count < actual_delete_count) {
// Shrink the array.
const bool trim_array = !heap->lo_space()->Contains(*elms_obj) &&
((actual_start + item_count) <
(len - actual_delete_count - actual_start));
if (trim_array) {
const int delta = actual_delete_count - item_count;
if (elms_obj->IsFixedDoubleArray()) {
Handle<FixedDoubleArray> elms =
Handle<FixedDoubleArray>::cast(elms_obj);
MoveDoubleElements(*elms, delta, *elms, 0, actual_start);
} else {
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
DisallowHeapAllocation no_gc;
heap->MoveElements(*elms, delta, 0, actual_start);
}
if (heap->CanMoveObjectStart(*elms_obj)) {
// On the fast path we move the start of the object in memory.
elms_obj = handle(LeftTrimFixedArray(heap, *elms_obj, delta), isolate);
} else {
// This is the slow path. We are going to move the elements to the left
// by copying them. For trimmed values we store the hole.
if (elms_obj->IsFixedDoubleArray()) {
Handle<FixedDoubleArray> elms =
Handle<FixedDoubleArray>::cast(elms_obj);
MoveDoubleElements(*elms, 0, *elms, delta, len - delta);
elms->FillWithHoles(len - delta, len);
} else {
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
DisallowHeapAllocation no_gc;
heap->MoveElements(*elms, 0, delta, len - delta);
elms->FillWithHoles(len - delta, len);
}
}
elms_changed = true;
} else {
if (elms_obj->IsFixedDoubleArray()) {
Handle<FixedDoubleArray> elms =
Handle<FixedDoubleArray>::cast(elms_obj);
MoveDoubleElements(*elms, actual_start + item_count,
*elms, actual_start + actual_delete_count,
(len - actual_delete_count - actual_start));
elms->FillWithHoles(new_length, len);
} else {
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
DisallowHeapAllocation no_gc;
heap->MoveElements(*elms, actual_start + item_count,
actual_start + actual_delete_count,
(len - actual_delete_count - actual_start));
elms->FillWithHoles(new_length, len);
}
}
} else if (item_count > actual_delete_count) {
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
ASSERT((item_count - actual_delete_count) <= (Smi::kMaxValue - len));
// Check if array need to grow.
if (new_length > elms->length()) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
Handle<FixedArray> new_elms =
isolate->factory()->NewUninitializedFixedArray(capacity);
DisallowHeapAllocation no_gc;
ElementsKind kind = array->GetElementsKind();
ElementsAccessor* accessor = array->GetElementsAccessor();
if (actual_start > 0) {
// Copy the part before actual_start as is.
accessor->CopyElements(
elms, 0, kind, new_elms, 0, actual_start);
}
accessor->CopyElements(
elms, actual_start + actual_delete_count, kind,
new_elms, actual_start + item_count,
ElementsAccessor::kCopyToEndAndInitializeToHole);
elms_obj = new_elms;
elms_changed = true;
} else {
DisallowHeapAllocation no_gc;
heap->MoveElements(*elms, actual_start + item_count,
actual_start + actual_delete_count,
(len - actual_delete_count - actual_start));
}
}
if (IsFastDoubleElementsKind(elements_kind)) {
Handle<FixedDoubleArray> elms = Handle<FixedDoubleArray>::cast(elms_obj);
for (int k = actual_start; k < actual_start + item_count; k++) {
Object* arg = args[3 + k - actual_start];
if (arg->IsSmi()) {
elms->set(k, Smi::cast(arg)->value());
} else {
elms->set(k, HeapNumber::cast(arg)->value());
}
}
} else {
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
for (int k = actual_start; k < actual_start + item_count; k++) {
elms->set(k, args[3 + k - actual_start], mode);
}
}
if (elms_changed) {
array->set_elements(*elms_obj);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return *result_array;
}
BUILTIN(ArrayConcat) {
HandleScope scope(isolate);
int n_arguments = args.length();
int result_len = 0;
ElementsKind elements_kind = GetInitialFastElementsKind();
bool has_double = false;
{
DisallowHeapAllocation no_gc;
Heap* heap = isolate->heap();
Context* native_context = isolate->context()->native_context();
JSObject* array_proto =
JSObject::cast(native_context->array_function()->prototype());
if (!ArrayPrototypeHasNoElements(heap, native_context, array_proto)) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArrayConcatJS", args);
}
// Iterate through all the arguments performing checks
// and calculating total length.
bool is_holey = false;
for (int i = 0; i < n_arguments; i++) {
Object* arg = args[i];
if (!arg->IsJSArray() ||
!JSArray::cast(arg)->HasFastElements() ||
JSArray::cast(arg)->GetPrototype() != array_proto) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArrayConcatJS", args);
}
int len = Smi::cast(JSArray::cast(arg)->length())->value();
// We shouldn't overflow when adding another len.
const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2);
STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt);
USE(kHalfOfMaxInt);
result_len += len;
ASSERT(result_len >= 0);
if (result_len > FixedDoubleArray::kMaxLength) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArrayConcatJS", args);
}
ElementsKind arg_kind = JSArray::cast(arg)->map()->elements_kind();
has_double = has_double || IsFastDoubleElementsKind(arg_kind);
is_holey = is_holey || IsFastHoleyElementsKind(arg_kind);
if (IsMoreGeneralElementsKindTransition(elements_kind, arg_kind)) {
elements_kind = arg_kind;
}
}
if (is_holey) elements_kind = GetHoleyElementsKind(elements_kind);
}
// If a double array is concatted into a fast elements array, the fast
// elements array needs to be initialized to contain proper holes, since
// boxing doubles may cause incremental marking.
ArrayStorageAllocationMode mode =
has_double && IsFastObjectElementsKind(elements_kind)
? INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE : DONT_INITIALIZE_ARRAY_ELEMENTS;
Handle<JSArray> result_array =
isolate->factory()->NewJSArray(elements_kind,
result_len,
result_len,
mode);
if (result_len == 0) return *result_array;
int j = 0;
Handle<FixedArrayBase> storage(result_array->elements(), isolate);
ElementsAccessor* accessor = ElementsAccessor::ForKind(elements_kind);
for (int i = 0; i < n_arguments; i++) {
// TODO(ishell): It is crucial to keep |array| as a raw pointer to avoid
// performance degradation. Revisit this later.
JSArray* array = JSArray::cast(args[i]);
int len = Smi::cast(array->length())->value();
ElementsKind from_kind = array->GetElementsKind();
if (len > 0) {
accessor->CopyElements(array, 0, from_kind, storage, j, len);
j += len;
}
}
ASSERT(j == result_len);
return *result_array;
}
// -----------------------------------------------------------------------------
// Generator and strict mode poison pills
BUILTIN(StrictModePoisonPill) {
HandleScope scope(isolate);
return isolate->Throw(*isolate->factory()->NewTypeError(
"strict_poison_pill", HandleVector<Object>(NULL, 0)));
}
BUILTIN(GeneratorPoisonPill) {
HandleScope scope(isolate);
return isolate->Throw(*isolate->factory()->NewTypeError(
"generator_poison_pill", HandleVector<Object>(NULL, 0)));
}
// -----------------------------------------------------------------------------
//
// Searches the hidden prototype chain of the given object for the first
// object that is an instance of the given type. If no such object can
// be found then Heap::null_value() is returned.
static inline Object* FindHidden(Heap* heap,
Object* object,
FunctionTemplateInfo* type) {
if (type->IsTemplateFor(object)) return object;
Object* proto = object->GetPrototype(heap->isolate());
if (proto->IsJSObject() &&
JSObject::cast(proto)->map()->is_hidden_prototype()) {
return FindHidden(heap, proto, type);
}
return heap->null_value();
}
// Returns the holder JSObject if the function can legally be called
// with this receiver. Returns Heap::null_value() if the call is
// illegal. Any arguments that don't fit the expected type is
// overwritten with undefined. Note that holder and the arguments are
// implicitly rewritten with the first object in the hidden prototype
// chain that actually has the expected type.
static inline Object* TypeCheck(Heap* heap,
int argc,
Object** argv,
FunctionTemplateInfo* info) {
Object* recv = argv[0];
// API calls are only supported with JSObject receivers.
if (!recv->IsJSObject()) return heap->null_value();
Object* sig_obj = info->signature();
if (sig_obj->IsUndefined()) return recv;
SignatureInfo* sig = SignatureInfo::cast(sig_obj);
// If necessary, check the receiver
Object* recv_type = sig->receiver();
Object* holder = recv;
if (!recv_type->IsUndefined()) {
holder = FindHidden(heap, holder, FunctionTemplateInfo::cast(recv_type));
if (holder == heap->null_value()) return heap->null_value();
}
Object* args_obj = sig->args();
// If there is no argument signature we're done
if (args_obj->IsUndefined()) return holder;
FixedArray* args = FixedArray::cast(args_obj);
int length = args->length();
if (argc <= length) length = argc - 1;
for (int i = 0; i < length; i++) {
Object* argtype = args->get(i);
if (argtype->IsUndefined()) continue;
Object** arg = &argv[-1 - i];
Object* current = *arg;
current = FindHidden(heap, current, FunctionTemplateInfo::cast(argtype));
if (current == heap->null_value()) current = heap->undefined_value();
*arg = current;
}
return holder;
}
template <bool is_construct>
MUST_USE_RESULT static Object* HandleApiCallHelper(
BuiltinArguments<NEEDS_CALLED_FUNCTION> args, Isolate* isolate) {
ASSERT(is_construct == CalledAsConstructor(isolate));
Heap* heap = isolate->heap();
HandleScope scope(isolate);
Handle<JSFunction> function = args.called_function();
ASSERT(function->shared()->IsApiFunction());
Handle<FunctionTemplateInfo> fun_data(
function->shared()->get_api_func_data(), isolate);
if (is_construct) {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, fun_data,
isolate->factory()->ConfigureInstance(
fun_data, Handle<JSObject>::cast(args.receiver())));
}
SharedFunctionInfo* shared = function->shared();
if (shared->strict_mode() == SLOPPY && !shared->native()) {
Object* recv = args[0];
ASSERT(!recv->IsNull());
if (recv->IsUndefined()) {
args[0] = function->context()->global_object()->global_receiver();
}
}
Object* raw_holder = TypeCheck(heap, args.length(), &args[0], *fun_data);
if (raw_holder->IsNull()) {
// This function cannot be called with the given receiver. Abort!
Handle<Object> obj =
isolate->factory()->NewTypeError(
"illegal_invocation", HandleVector(&function, 1));
return isolate->Throw(*obj);
}
Object* raw_call_data = fun_data->call_code();
if (!raw_call_data->IsUndefined()) {
CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data);
Object* callback_obj = call_data->callback();
v8::FunctionCallback callback =
v8::ToCData<v8::FunctionCallback>(callback_obj);
Object* data_obj = call_data->data();
Object* result;
LOG(isolate, ApiObjectAccess("call", JSObject::cast(*args.receiver())));
ASSERT(raw_holder->IsJSObject());
FunctionCallbackArguments custom(isolate,
data_obj,
*function,
raw_holder,
&args[0] - 1,
args.length() - 1,
is_construct);
v8::Handle<v8::Value> value = custom.Call(callback);
if (value.IsEmpty()) {
result = heap->undefined_value();
} else {
result = *reinterpret_cast<Object**>(*value);
result->VerifyApiCallResultType();
}
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
if (!is_construct || result->IsJSObject()) return result;
}
return *args.receiver();
}
BUILTIN(HandleApiCall) {
return HandleApiCallHelper<false>(args, isolate);
}
BUILTIN(HandleApiCallConstruct) {
return HandleApiCallHelper<true>(args, isolate);
}
// Helper function to handle calls to non-function objects created through the
// API. The object can be called as either a constructor (using new) or just as
// a function (without new).
MUST_USE_RESULT static Object* HandleApiCallAsFunctionOrConstructor(
Isolate* isolate,
bool is_construct_call,
BuiltinArguments<NO_EXTRA_ARGUMENTS> args) {
// Non-functions are never called as constructors. Even if this is an object
// called as a constructor the delegate call is not a construct call.
ASSERT(!CalledAsConstructor(isolate));
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
// Get the object called.
JSObject* obj = JSObject::cast(*receiver);
// Get the invocation callback from the function descriptor that was
// used to create the called object.
ASSERT(obj->map()->has_instance_call_handler());
JSFunction* constructor = JSFunction::cast(obj->map()->constructor());
ASSERT(constructor->shared()->IsApiFunction());
Object* handler =
constructor->shared()->get_api_func_data()->instance_call_handler();
ASSERT(!handler->IsUndefined());
CallHandlerInfo* call_data = CallHandlerInfo::cast(handler);
Object* callback_obj = call_data->callback();
v8::FunctionCallback callback =
v8::ToCData<v8::FunctionCallback>(callback_obj);
// Get the data for the call and perform the callback.
Object* result;
{
HandleScope scope(isolate);
LOG(isolate, ApiObjectAccess("call non-function", obj));
FunctionCallbackArguments custom(isolate,
call_data->data(),
constructor,
obj,
&args[0] - 1,
args.length() - 1,
is_construct_call);
v8::Handle<v8::Value> value = custom.Call(callback);
if (value.IsEmpty()) {
result = heap->undefined_value();
} else {
result = *reinterpret_cast<Object**>(*value);
result->VerifyApiCallResultType();
}
}
// Check for exceptions and return result.
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return result;
}
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a normal function call.
BUILTIN(HandleApiCallAsFunction) {
return HandleApiCallAsFunctionOrConstructor(isolate, false, args);
}
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a construct call.
BUILTIN(HandleApiCallAsConstructor) {
return HandleApiCallAsFunctionOrConstructor(isolate, true, args);
}
static void Generate_LoadIC_Miss(MacroAssembler* masm) {
LoadIC::GenerateMiss(masm);
}
static void Generate_LoadIC_Normal(MacroAssembler* masm) {
LoadIC::GenerateNormal(masm);
}
static void Generate_LoadIC_Getter_ForDeopt(MacroAssembler* masm) {
LoadStubCompiler::GenerateLoadViaGetterForDeopt(masm);
}
static void Generate_LoadIC_Slow(MacroAssembler* masm) {
LoadIC::GenerateRuntimeGetProperty(masm);
}
static void Generate_KeyedLoadIC_Initialize(MacroAssembler* masm) {
KeyedLoadIC::GenerateInitialize(masm);
}
static void Generate_KeyedLoadIC_Slow(MacroAssembler* masm) {
KeyedLoadIC::GenerateRuntimeGetProperty(masm);
}
static void Generate_KeyedLoadIC_Miss(MacroAssembler* masm) {
KeyedLoadIC::GenerateMiss(masm);
}
static void Generate_KeyedLoadIC_Generic(MacroAssembler* masm) {
KeyedLoadIC::GenerateGeneric(masm);
}
static void Generate_KeyedLoadIC_String(MacroAssembler* masm) {
KeyedLoadIC::GenerateString(masm);
}
static void Generate_KeyedLoadIC_PreMonomorphic(MacroAssembler* masm) {
KeyedLoadIC::GeneratePreMonomorphic(masm);
}
static void Generate_KeyedLoadIC_IndexedInterceptor(MacroAssembler* masm) {
KeyedLoadIC::GenerateIndexedInterceptor(masm);
}
static void Generate_KeyedLoadIC_SloppyArguments(MacroAssembler* masm) {
KeyedLoadIC::GenerateSloppyArguments(masm);
}
static void Generate_StoreIC_Slow(MacroAssembler* masm) {
StoreIC::GenerateSlow(masm);
}
static void Generate_StoreIC_Miss(MacroAssembler* masm) {
StoreIC::GenerateMiss(masm);
}
static void Generate_StoreIC_Normal(MacroAssembler* masm) {
StoreIC::GenerateNormal(masm);
}
static void Generate_StoreIC_Setter_ForDeopt(MacroAssembler* masm) {
StoreStubCompiler::GenerateStoreViaSetterForDeopt(masm);
}
static void Generate_KeyedStoreIC_Generic(MacroAssembler* masm) {
KeyedStoreIC::GenerateGeneric(masm, SLOPPY);
}
static void Generate_KeyedStoreIC_Generic_Strict(MacroAssembler* masm) {
KeyedStoreIC::GenerateGeneric(masm, STRICT);
}
static void Generate_KeyedStoreIC_Miss(MacroAssembler* masm) {
KeyedStoreIC::GenerateMiss(masm);
}
static void Generate_KeyedStoreIC_Slow(MacroAssembler* masm) {
KeyedStoreIC::GenerateSlow(masm);
}
static void Generate_KeyedStoreIC_Initialize(MacroAssembler* masm) {
KeyedStoreIC::GenerateInitialize(masm);
}
static void Generate_KeyedStoreIC_Initialize_Strict(MacroAssembler* masm) {
KeyedStoreIC::GenerateInitialize(masm);
}
static void Generate_KeyedStoreIC_PreMonomorphic(MacroAssembler* masm) {
KeyedStoreIC::GeneratePreMonomorphic(masm);
}
static void Generate_KeyedStoreIC_PreMonomorphic_Strict(MacroAssembler* masm) {
KeyedStoreIC::GeneratePreMonomorphic(masm);
}
static void Generate_KeyedStoreIC_SloppyArguments(MacroAssembler* masm) {
KeyedStoreIC::GenerateSloppyArguments(masm);
}
static void Generate_CallICStub_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateCallICStubDebugBreak(masm);
}
static void Generate_LoadIC_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateLoadICDebugBreak(masm);
}
static void Generate_StoreIC_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateStoreICDebugBreak(masm);
}
static void Generate_KeyedLoadIC_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateKeyedLoadICDebugBreak(masm);
}
static void Generate_KeyedStoreIC_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateKeyedStoreICDebugBreak(masm);
}
static void Generate_CompareNilIC_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateCompareNilICDebugBreak(masm);
}
static void Generate_Return_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateReturnDebugBreak(masm);
}
static void Generate_CallFunctionStub_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateCallFunctionStubDebugBreak(masm);
}
static void Generate_CallConstructStub_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateCallConstructStubDebugBreak(masm);
}
static void Generate_CallConstructStub_Recording_DebugBreak(
MacroAssembler* masm) {
DebugCodegen::GenerateCallConstructStubRecordDebugBreak(masm);
}
static void Generate_Slot_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateSlotDebugBreak(masm);
}
static void Generate_PlainReturn_LiveEdit(MacroAssembler* masm) {
DebugCodegen::GeneratePlainReturnLiveEdit(masm);
}
static void Generate_FrameDropper_LiveEdit(MacroAssembler* masm) {
DebugCodegen::GenerateFrameDropperLiveEdit(masm);
}
Builtins::Builtins() : initialized_(false) {
memset(builtins_, 0, sizeof(builtins_[0]) * builtin_count);
memset(names_, 0, sizeof(names_[0]) * builtin_count);
}
Builtins::~Builtins() {
}
#define DEF_ENUM_C(name, ignore) FUNCTION_ADDR(Builtin_##name),
Address const Builtins::c_functions_[cfunction_count] = {
BUILTIN_LIST_C(DEF_ENUM_C)
};
#undef DEF_ENUM_C
#define DEF_JS_NAME(name, ignore) #name,
#define DEF_JS_ARGC(ignore, argc) argc,
const char* const Builtins::javascript_names_[id_count] = {
BUILTINS_LIST_JS(DEF_JS_NAME)
};
int const Builtins::javascript_argc_[id_count] = {
BUILTINS_LIST_JS(DEF_JS_ARGC)
};
#undef DEF_JS_NAME
#undef DEF_JS_ARGC
struct BuiltinDesc {
byte* generator;
byte* c_code;
const char* s_name; // name is only used for generating log information.
int name;
Code::Flags flags;
BuiltinExtraArguments extra_args;
};
#define BUILTIN_FUNCTION_TABLE_INIT { V8_ONCE_INIT, {} }
class BuiltinFunctionTable {
public:
BuiltinDesc* functions() {
base::CallOnce(&once_, &Builtins::InitBuiltinFunctionTable);
return functions_;
}
base::OnceType once_;
BuiltinDesc functions_[Builtins::builtin_count + 1];
friend class Builtins;
};
static BuiltinFunctionTable builtin_function_table =
BUILTIN_FUNCTION_TABLE_INIT;
// Define array of pointers to generators and C builtin functions.
// We do this in a sort of roundabout way so that we can do the initialization
// within the lexical scope of Builtins:: and within a context where
// Code::Flags names a non-abstract type.
void Builtins::InitBuiltinFunctionTable() {
BuiltinDesc* functions = builtin_function_table.functions_;
functions[builtin_count].generator = NULL;
functions[builtin_count].c_code = NULL;
functions[builtin_count].s_name = NULL;
functions[builtin_count].name = builtin_count;
functions[builtin_count].flags = static_cast<Code::Flags>(0);
functions[builtin_count].extra_args = NO_EXTRA_ARGUMENTS;
#define DEF_FUNCTION_PTR_C(aname, aextra_args) \
functions->generator = FUNCTION_ADDR(Generate_Adaptor); \
functions->c_code = FUNCTION_ADDR(Builtin_##aname); \
functions->s_name = #aname; \
functions->name = c_##aname; \
functions->flags = Code::ComputeFlags(Code::BUILTIN); \
functions->extra_args = aextra_args; \
++functions;
#define DEF_FUNCTION_PTR_A(aname, kind, state, extra) \
functions->generator = FUNCTION_ADDR(Generate_##aname); \
functions->c_code = NULL; \
functions->s_name = #aname; \
functions->name = k##aname; \
functions->flags = Code::ComputeFlags(Code::kind, \
state, \
extra); \
functions->extra_args = NO_EXTRA_ARGUMENTS; \
++functions;
#define DEF_FUNCTION_PTR_H(aname, kind) \
functions->generator = FUNCTION_ADDR(Generate_##aname); \
functions->c_code = NULL; \
functions->s_name = #aname; \
functions->name = k##aname; \
functions->flags = Code::ComputeHandlerFlags(Code::kind); \
functions->extra_args = NO_EXTRA_ARGUMENTS; \
++functions;
BUILTIN_LIST_C(DEF_FUNCTION_PTR_C)
BUILTIN_LIST_A(DEF_FUNCTION_PTR_A)
BUILTIN_LIST_H(DEF_FUNCTION_PTR_H)
BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A)
#undef DEF_FUNCTION_PTR_C
#undef DEF_FUNCTION_PTR_A
}
void Builtins::SetUp(Isolate* isolate, bool create_heap_objects) {
ASSERT(!initialized_);
// Create a scope for the handles in the builtins.
HandleScope scope(isolate);
const BuiltinDesc* functions = builtin_function_table.functions();
// For now we generate builtin adaptor code into a stack-allocated
// buffer, before copying it into individual code objects. Be careful
// with alignment, some platforms don't like unaligned code.
#ifdef DEBUG
// We can generate a lot of debug code on Arm64.
const size_t buffer_size = 32*KB;
#else
const size_t buffer_size = 8*KB;
#endif
union { int force_alignment; byte buffer[buffer_size]; } u;
// Traverse the list of builtins and generate an adaptor in a
// separate code object for each one.
for (int i = 0; i < builtin_count; i++) {
if (create_heap_objects) {
MacroAssembler masm(isolate, u.buffer, sizeof u.buffer);
// Generate the code/adaptor.
typedef void (*Generator)(MacroAssembler*, int, BuiltinExtraArguments);
Generator g = FUNCTION_CAST<Generator>(functions[i].generator);
// We pass all arguments to the generator, but it may not use all of
// them. This works because the first arguments are on top of the
// stack.
ASSERT(!masm.has_frame());
g(&masm, functions[i].name, functions[i].extra_args);
// Move the code into the object heap.
CodeDesc desc;
masm.GetCode(&desc);
Code::Flags flags = functions[i].flags;
Handle<Code> code =
isolate->factory()->NewCode(desc, flags, masm.CodeObject());
// Log the event and add the code to the builtins array.
PROFILE(isolate,
CodeCreateEvent(Logger::BUILTIN_TAG, *code, functions[i].s_name));
GDBJIT(AddCode(GDBJITInterface::BUILTIN, functions[i].s_name, *code));
builtins_[i] = *code;
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_builtin_code) {
CodeTracer::Scope trace_scope(isolate->GetCodeTracer());
PrintF(trace_scope.file(), "Builtin: %s\n", functions[i].s_name);
code->Disassemble(functions[i].s_name, trace_scope.file());
PrintF(trace_scope.file(), "\n");
}
#endif
} else {
// Deserializing. The values will be filled in during IterateBuiltins.
builtins_[i] = NULL;
}
names_[i] = functions[i].s_name;
}
// Mark as initialized.
initialized_ = true;
}
void Builtins::TearDown() {
initialized_ = false;
}
void Builtins::IterateBuiltins(ObjectVisitor* v) {
v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count);
}
const char* Builtins::Lookup(byte* pc) {
// may be called during initialization (disassembler!)
if (initialized_) {
for (int i = 0; i < builtin_count; i++) {
Code* entry = Code::cast(builtins_[i]);
if (entry->contains(pc)) {
return names_[i];
}
}
}
return NULL;
}
void Builtins::Generate_InterruptCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kInterrupt, 0, 1);
}
void Builtins::Generate_StackCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kStackGuard, 0, 1);
}
#define DEFINE_BUILTIN_ACCESSOR_C(name, ignore) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
#define DEFINE_BUILTIN_ACCESSOR_A(name, kind, state, extra) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
#define DEFINE_BUILTIN_ACCESSOR_H(name, kind) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
BUILTIN_LIST_C(DEFINE_BUILTIN_ACCESSOR_C)
BUILTIN_LIST_A(DEFINE_BUILTIN_ACCESSOR_A)
BUILTIN_LIST_H(DEFINE_BUILTIN_ACCESSOR_H)
BUILTIN_LIST_DEBUG_A(DEFINE_BUILTIN_ACCESSOR_A)
#undef DEFINE_BUILTIN_ACCESSOR_C
#undef DEFINE_BUILTIN_ACCESSOR_A
} } // namespace v8::internal