v8/src/ia32/stub-cache-ia32.cc

1897 lines
65 KiB
C++
Raw Normal View History

// Copyright 2006-2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "ic-inl.h"
#include "codegen-inl.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void ProbeTable(MacroAssembler* masm,
Code::Flags flags,
StubCache::Table table,
Register name,
Register offset,
Register extra) {
ExternalReference key_offset(SCTableReference::keyReference(table));
ExternalReference value_offset(SCTableReference::valueReference(table));
Label miss;
if (extra.is_valid()) {
// Get the code entry from the cache.
__ mov(extra, Operand::StaticArray(offset, times_2, value_offset));
// Check that the key in the entry matches the name.
__ cmp(name, Operand::StaticArray(offset, times_2, key_offset));
__ j(not_equal, &miss, not_taken);
// Check that the flags match what we're looking for.
__ mov(offset, FieldOperand(extra, Code::kFlagsOffset));
__ and_(offset, ~Code::kFlagsNotUsedInLookup);
__ cmp(offset, flags);
__ j(not_equal, &miss);
// Jump to the first instruction in the code stub.
__ add(Operand(extra), Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(Operand(extra));
__ bind(&miss);
} else {
// Save the offset on the stack.
__ push(offset);
// Check that the key in the entry matches the name.
__ cmp(name, Operand::StaticArray(offset, times_2, key_offset));
__ j(not_equal, &miss, not_taken);
// Get the code entry from the cache.
__ mov(offset, Operand::StaticArray(offset, times_2, value_offset));
// Check that the flags match what we're looking for.
__ mov(offset, FieldOperand(offset, Code::kFlagsOffset));
__ and_(offset, ~Code::kFlagsNotUsedInLookup);
__ cmp(offset, flags);
__ j(not_equal, &miss);
// Restore offset and re-load code entry from cache.
__ pop(offset);
__ mov(offset, Operand::StaticArray(offset, times_2, value_offset));
// Jump to the first instruction in the code stub.
__ add(Operand(offset), Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(Operand(offset));
// Pop at miss.
__ bind(&miss);
__ pop(offset);
}
}
void StubCache::GenerateProbe(MacroAssembler* masm,
Code::Flags flags,
Register receiver,
Register name,
Register scratch,
Register extra) {
Label miss;
// Make sure that code is valid. The shifting code relies on the
// entry size being 8.
ASSERT(sizeof(Entry) == 8);
// Make sure the flags does not name a specific type.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Make sure that there are no register conflicts.
ASSERT(!scratch.is(receiver));
ASSERT(!scratch.is(name));
ASSERT(!extra.is(receiver));
ASSERT(!extra.is(name));
ASSERT(!extra.is(scratch));
// Check that the receiver isn't a smi.
__ test(receiver, Immediate(kSmiTagMask));
__ j(zero, &miss, not_taken);
// Get the map of the receiver and compute the hash.
__ mov(scratch, FieldOperand(name, String::kLengthOffset));
__ add(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(scratch, flags);
__ and_(scratch, (kPrimaryTableSize - 1) << kHeapObjectTagSize);
// Probe the primary table.
ProbeTable(masm, flags, kPrimary, name, scratch, extra);
// Primary miss: Compute hash for secondary probe.
__ mov(scratch, FieldOperand(name, String::kLengthOffset));
__ add(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(scratch, flags);
__ and_(scratch, (kPrimaryTableSize - 1) << kHeapObjectTagSize);
__ sub(scratch, Operand(name));
__ add(Operand(scratch), Immediate(flags));
__ and_(scratch, (kSecondaryTableSize - 1) << kHeapObjectTagSize);
// Probe the secondary table.
ProbeTable(masm, flags, kSecondary, name, scratch, extra);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
}
template <typename Pushable>
static void PushInterceptorArguments(MacroAssembler* masm,
Register receiver,
Register holder,
Pushable name,
JSObject* holder_obj) {
__ push(receiver);
__ push(holder);
__ push(name);
InterceptorInfo* interceptor = holder_obj->GetNamedInterceptor();
__ mov(receiver, Immediate(Handle<Object>(interceptor)));
__ push(receiver);
__ push(FieldOperand(receiver, InterceptorInfo::kDataOffset));
}
void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype) {
// Load the global or builtins object from the current context.
__ mov(prototype, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
// Load the global context from the global or builtins object.
__ mov(prototype,
FieldOperand(prototype, GlobalObject::kGlobalContextOffset));
// Load the function from the global context.
__ mov(prototype, Operand(prototype, Context::SlotOffset(index)));
// Load the initial map. The global functions all have initial maps.
__ mov(prototype,
FieldOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset));
// Load the prototype from the initial map.
__ mov(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* miss_label) {
// Check that the receiver isn't a smi.
__ test(receiver, Immediate(kSmiTagMask));
__ j(zero, miss_label, not_taken);
// Check that the object is a JS array.
__ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch);
__ j(not_equal, miss_label, not_taken);
// Load length directly from the JS array.
__ mov(eax, FieldOperand(receiver, JSArray::kLengthOffset));
__ ret(0);
}
// Generate code to check if an object is a string. If the object is
// a string, the map's instance type is left in the scratch register.
static void GenerateStringCheck(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* smi,
Label* non_string_object) {
// Check that the object isn't a smi.
__ test(receiver, Immediate(kSmiTagMask));
__ j(zero, smi, not_taken);
// Check that the object is a string.
__ mov(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
ASSERT(kNotStringTag != 0);
__ test(scratch, Immediate(kNotStringTag));
__ j(not_zero, non_string_object, not_taken);
}
void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* miss) {
Label load_length, check_wrapper;
// Check if the object is a string leaving the instance type in the
// scratch register.
GenerateStringCheck(masm, receiver, scratch, miss, &check_wrapper);
// Load length directly from the string.
__ bind(&load_length);
__ and_(scratch, kStringSizeMask);
__ mov(eax, FieldOperand(receiver, String::kLengthOffset));
// ecx is also the receiver.
__ lea(ecx, Operand(scratch, String::kLongLengthShift));
__ shr_cl(eax);
__ shl(eax, kSmiTagSize);
__ ret(0);
// Check if the object is a JSValue wrapper.
__ bind(&check_wrapper);
__ cmp(scratch, JS_VALUE_TYPE);
__ j(not_equal, miss, not_taken);
// Check if the wrapped value is a string and load the length
// directly if it is.
__ mov(receiver, FieldOperand(receiver, JSValue::kValueOffset));
GenerateStringCheck(masm, receiver, scratch, miss, miss);
__ jmp(&load_length);
}
void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss_label) {
__ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
__ mov(eax, Operand(scratch1));
__ ret(0);
}
// Load a fast property out of a holder object (src). In-object properties
// are loaded directly otherwise the property is loaded from the properties
// fixed array.
void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm,
Register dst, Register src,
JSObject* holder, int index) {
// Adjust for the number of properties stored in the holder.
index -= holder->map()->inobject_properties();
if (index < 0) {
// Get the property straight out of the holder.
int offset = holder->map()->instance_size() + (index * kPointerSize);
__ mov(dst, FieldOperand(src, offset));
} else {
// Calculate the offset into the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
__ mov(dst, FieldOperand(src, JSObject::kPropertiesOffset));
__ mov(dst, FieldOperand(dst, offset));
}
}
template <class Pushable>
static void CompileCallLoadPropertyWithInterceptor(MacroAssembler* masm,
Register receiver,
Register holder,
Pushable name,
JSObject* holder_obj) {
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly));
__ mov(eax, Immediate(5));
__ mov(ebx, Immediate(ref));
CEntryStub stub(1);
__ CallStub(&stub);
}
template <class Compiler>
static void CompileLoadInterceptor(Compiler* compiler,
StubCompiler* stub_compiler,
MacroAssembler* masm,
JSObject* object,
JSObject* holder,
String* name,
LookupResult* lookup,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss) {
ASSERT(holder->HasNamedInterceptor());
ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ test(receiver, Immediate(kSmiTagMask));
__ j(zero, miss, not_taken);
// Check that the maps haven't changed.
Register reg =
stub_compiler->CheckPrototypes(object, receiver, holder,
scratch1, scratch2, name, miss);
if (lookup->IsValid() && lookup->IsCacheable()) {
compiler->CompileCacheable(masm,
stub_compiler,
receiver,
reg,
scratch1,
scratch2,
holder,
lookup,
name,
miss);
} else {
compiler->CompileRegular(masm,
receiver,
reg,
scratch2,
holder,
miss);
}
}
static void LookupPostInterceptor(JSObject* holder,
String* name,
LookupResult* lookup) {
holder->LocalLookupRealNamedProperty(name, lookup);
if (lookup->IsNotFound()) {
Object* proto = holder->GetPrototype();
if (proto != Heap::null_value()) {
proto->Lookup(name, lookup);
}
}
}
class LoadInterceptorCompiler BASE_EMBEDDED {
public:
explicit LoadInterceptorCompiler(Register name) : name_(name) {}
void CompileCacheable(MacroAssembler* masm,
StubCompiler* stub_compiler,
Register receiver,
Register holder,
Register scratch1,
Register scratch2,
JSObject* holder_obj,
LookupResult* lookup,
String* name,
Label* miss_label) {
AccessorInfo* callback = 0;
bool optimize = false;
// So far the most popular follow ups for interceptor loads are FIELD
// and CALLBACKS, so inline only them, other cases may be added
// later.
if (lookup->type() == FIELD) {
optimize = true;
} else if (lookup->type() == CALLBACKS) {
Object* callback_object = lookup->GetCallbackObject();
if (callback_object->IsAccessorInfo()) {
callback = AccessorInfo::cast(callback_object);
optimize = callback->getter() != NULL;
}
}
if (!optimize) {
CompileRegular(masm, receiver, holder, scratch2, holder_obj, miss_label);
return;
}
// Note: starting a frame here makes GC aware of pointers pushed below.
__ EnterInternalFrame();
if (lookup->type() == CALLBACKS) {
__ push(receiver);
}
__ push(holder);
__ push(name_);
CompileCallLoadPropertyWithInterceptor(masm,
receiver,
holder,
name_,
holder_obj);
Label interceptor_failed;
__ cmp(eax, Factory::no_interceptor_result_sentinel());
__ j(equal, &interceptor_failed);
__ LeaveInternalFrame();
__ ret(0);
__ bind(&interceptor_failed);
__ pop(name_);
__ pop(holder);
if (lookup->type() == CALLBACKS) {
__ pop(receiver);
}
__ LeaveInternalFrame();
if (lookup->type() == FIELD) {
holder = stub_compiler->CheckPrototypes(holder_obj, holder,
lookup->holder(), scratch1,
scratch2,
name,
miss_label);
stub_compiler->GenerateFastPropertyLoad(masm, eax,
holder, lookup->holder(),
lookup->GetFieldIndex());
__ ret(0);
} else {
ASSERT(lookup->type() == CALLBACKS);
ASSERT(lookup->GetCallbackObject()->IsAccessorInfo());
ASSERT(callback != NULL);
ASSERT(callback->getter() != NULL);
Label cleanup;
__ pop(scratch2);
__ push(receiver);
__ push(scratch2);
holder = stub_compiler->CheckPrototypes(holder_obj, holder,
lookup->holder(), scratch1,
scratch2,
name,
&cleanup);
__ pop(scratch2); // save old return address
__ push(holder);
__ mov(holder, Immediate(Handle<AccessorInfo>(callback)));
__ push(holder);
__ push(FieldOperand(holder, AccessorInfo::kDataOffset));
__ push(name_);
__ push(scratch2); // restore old return address
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadCallbackProperty));
__ TailCallRuntime(ref, 5, 1);
__ bind(&cleanup);
__ pop(scratch1);
__ pop(scratch2);
__ push(scratch1);
}
}
void CompileRegular(MacroAssembler* masm,
Register receiver,
Register holder,
Register scratch,
JSObject* holder_obj,
Label* miss_label) {
__ pop(scratch); // save old return address
PushInterceptorArguments(masm, receiver, holder, name_, holder_obj);
__ push(scratch); // restore old return address
ExternalReference ref = ExternalReference(
IC_Utility(IC::kLoadPropertyWithInterceptorForLoad));
__ TailCallRuntime(ref, 5, 1);
}
private:
Register name_;
};
class CallInterceptorCompiler BASE_EMBEDDED {
public:
explicit CallInterceptorCompiler(const ParameterCount& arguments)
: arguments_(arguments), argc_(arguments.immediate()) {}
void CompileCacheable(MacroAssembler* masm,
StubCompiler* stub_compiler,
Register receiver,
Register holder,
Register scratch1,
Register scratch2,
JSObject* holder_obj,
LookupResult* lookup,
String* name,
Label* miss_label) {
JSFunction* function = 0;
bool optimize = false;
// So far the most popular case for failed interceptor is
// CONSTANT_FUNCTION sitting below.
if (lookup->type() == CONSTANT_FUNCTION) {
function = lookup->GetConstantFunction();
// JSArray holder is a special case for call constant function
// (see the corresponding code).
if (function->is_compiled() && !holder_obj->IsJSArray()) {
optimize = true;
}
}
if (!optimize) {
CompileRegular(masm, receiver, holder, scratch2, holder_obj, miss_label);
return;
}
__ EnterInternalFrame();
__ push(holder); // save the holder
CompileCallLoadPropertyWithInterceptor(
masm,
receiver,
holder,
// Under EnterInternalFrame this refers to name.
Operand(ebp, (argc_ + 3) * kPointerSize),
holder_obj);
__ pop(receiver); // restore holder
__ LeaveInternalFrame();
__ cmp(eax, Factory::no_interceptor_result_sentinel());
Label invoke;
__ j(not_equal, &invoke);
stub_compiler->CheckPrototypes(holder_obj, receiver,
lookup->holder(), scratch1,
scratch2,
name,
miss_label);
if (lookup->holder()->IsGlobalObject()) {
__ mov(edx, Operand(esp, (argc_ + 1) * kPointerSize));
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc_ + 1) * kPointerSize), edx);
}
ASSERT(function->is_compiled());
// Get the function and setup the context.
__ mov(edi, Immediate(Handle<JSFunction>(function)));
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Jump to the cached code (tail call).
ASSERT(function->is_compiled());
Handle<Code> code(function->code());
ParameterCount expected(function->shared()->formal_parameter_count());
__ InvokeCode(code, expected, arguments_,
RelocInfo::CODE_TARGET, JUMP_FUNCTION);
__ bind(&invoke);
}
void CompileRegular(MacroAssembler* masm,
Register receiver,
Register holder,
Register scratch,
JSObject* holder_obj,
Label* miss_label) {
__ EnterInternalFrame();
PushInterceptorArguments(masm,
receiver,
holder,
Operand(ebp, (argc_ + 3) * kPointerSize),
holder_obj);
ExternalReference ref = ExternalReference(
IC_Utility(IC::kLoadPropertyWithInterceptorForCall));
__ mov(eax, Immediate(5));
__ mov(ebx, Immediate(ref));
CEntryStub stub(1);
__ CallStub(&stub);
__ LeaveInternalFrame();
}
private:
const ParameterCount& arguments_;
int argc_;
};
void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) {
ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC);
Code* code = NULL;
if (kind == Code::LOAD_IC) {
code = Builtins::builtin(Builtins::LoadIC_Miss);
} else {
code = Builtins::builtin(Builtins::KeyedLoadIC_Miss);
}
Handle<Code> ic(code);
__ jmp(ic, RelocInfo::CODE_TARGET);
}
void StubCompiler::GenerateStoreField(MacroAssembler* masm,
Builtins::Name storage_extend,
JSObject* object,
int index,
Map* transition,
Register receiver_reg,
Register name_reg,
Register scratch,
Label* miss_label) {
// Check that the object isn't a smi.
__ test(receiver_reg, Immediate(kSmiTagMask));
__ j(zero, miss_label, not_taken);
// Check that the map of the object hasn't changed.
__ cmp(FieldOperand(receiver_reg, HeapObject::kMapOffset),
Immediate(Handle<Map>(object->map())));
__ j(not_equal, miss_label, not_taken);
// Perform global security token check if needed.
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(receiver_reg, scratch, miss_label);
}
// Stub never generated for non-global objects that require access
// checks.
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
// Perform map transition for the receiver if necessary.
if ((transition != NULL) && (object->map()->unused_property_fields() == 0)) {
// The properties must be extended before we can store the value.
// We jump to a runtime call that extends the properties array.
__ mov(ecx, Immediate(Handle<Map>(transition)));
Handle<Code> ic(Builtins::builtin(storage_extend));
__ jmp(ic, RelocInfo::CODE_TARGET);
return;
}
if (transition != NULL) {
// Update the map of the object; no write barrier updating is
// needed because the map is never in new space.
__ mov(FieldOperand(receiver_reg, HeapObject::kMapOffset),
Immediate(Handle<Map>(transition)));
}
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= object->map()->inobject_properties();
if (index < 0) {
// Set the property straight into the object.
int offset = object->map()->instance_size() + (index * kPointerSize);
__ mov(FieldOperand(receiver_reg, offset), eax);
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ mov(name_reg, Operand(eax));
__ RecordWrite(receiver_reg, offset, name_reg, scratch);
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array (optimistically).
__ mov(scratch, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
__ mov(FieldOperand(scratch, offset), eax);
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ mov(name_reg, Operand(eax));
__ RecordWrite(scratch, offset, name_reg, receiver_reg);
}
// Return the value (register eax).
__ ret(0);
}
#undef __
#define __ ACCESS_MASM(masm())
Register StubCompiler::CheckPrototypes(JSObject* object,
Register object_reg,
JSObject* holder,
Register holder_reg,
Register scratch,
String* name,
Label* miss) {
// Check that the maps haven't changed.
Register result =
masm()->CheckMaps(object, object_reg, holder, holder_reg, scratch, miss);
// If we've skipped any global objects, it's not enough to verify
// that their maps haven't changed.
while (object != holder) {
if (object->IsGlobalObject()) {
GlobalObject* global = GlobalObject::cast(object);
Object* probe = global->EnsurePropertyCell(name);
if (probe->IsFailure()) {
set_failure(Failure::cast(probe));
return result;
}
JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(probe);
ASSERT(cell->value()->IsTheHole());
__ mov(scratch, Immediate(Handle<Object>(cell)));
__ cmp(FieldOperand(scratch, JSGlobalPropertyCell::kValueOffset),
Immediate(Factory::the_hole_value()));
__ j(not_equal, miss, not_taken);
}
object = JSObject::cast(object->GetPrototype());
}
// Return the register containin the holder.
return result;
}
void StubCompiler::GenerateLoadField(JSObject* object,
JSObject* holder,
Register receiver,
Register scratch1,
Register scratch2,
int index,
String* name,
Label* miss) {
// Check that the receiver isn't a smi.
__ test(receiver, Immediate(kSmiTagMask));
__ j(zero, miss, not_taken);
// Check the prototype chain.
Register reg =
CheckPrototypes(object, receiver, holder,
scratch1, scratch2, name, miss);
// Get the value from the properties.
GenerateFastPropertyLoad(masm(), eax, reg, holder, index);
__ ret(0);
}
void StubCompiler::GenerateLoadCallback(JSObject* object,
JSObject* holder,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
AccessorInfo* callback,
String* name,
Label* miss) {
// Check that the receiver isn't a smi.
__ test(receiver, Immediate(kSmiTagMask));
__ j(zero, miss, not_taken);
// Check that the maps haven't changed.
Register reg =
CheckPrototypes(object, receiver, holder,
scratch1, scratch2, name, miss);
Handle<AccessorInfo> callback_handle(callback);
Register other = reg.is(scratch1) ? scratch2 : scratch1;
__ EnterInternalFrame();
__ PushHandleScope(other);
// Push the stack address where the list of arguments ends
__ mov(other, esp);
__ sub(Operand(other), Immediate(2 * kPointerSize));
__ push(other);
__ push(receiver); // receiver
__ push(reg); // holder
__ mov(other, Immediate(callback_handle));
__ push(other);
__ push(FieldOperand(other, AccessorInfo::kDataOffset)); // data
__ push(name_reg); // name
// Save a pointer to where we pushed the arguments pointer.
// This will be passed as the const Arguments& to the C++ callback.
__ mov(eax, esp);
__ add(Operand(eax), Immediate(5 * kPointerSize));
__ mov(ebx, esp);
// Do call through the api.
ASSERT_EQ(6, ApiGetterEntryStub::kStackSpace);
Address getter_address = v8::ToCData<Address>(callback->getter());
ApiFunction fun(getter_address);
ApiGetterEntryStub stub(callback_handle, &fun);
__ CallStub(&stub);
// We need to avoid using eax since that now holds the result.
Register tmp = other.is(eax) ? reg : other;
__ PopHandleScope(eax, tmp);
__ LeaveInternalFrame();
__ ret(0);
}
void StubCompiler::GenerateLoadConstant(JSObject* object,
JSObject* holder,
Register receiver,
Register scratch1,
Register scratch2,
Object* value,
String* name,
Label* miss) {
// Check that the receiver isn't a smi.
__ test(receiver, Immediate(kSmiTagMask));
__ j(zero, miss, not_taken);
// Check that the maps haven't changed.
Register reg =
CheckPrototypes(object, receiver, holder,
scratch1, scratch2, name, miss);
// Return the constant value.
__ mov(eax, Handle<Object>(value));
__ ret(0);
}
void StubCompiler::GenerateLoadInterceptor(JSObject* object,
JSObject* holder,
LookupResult* lookup,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
String* name,
Label* miss) {
LoadInterceptorCompiler compiler(name_reg);
CompileLoadInterceptor(&compiler,
this,
masm(),
object,
holder,
name,
lookup,
receiver,
scratch1,
scratch2,
miss);
}
// TODO(1241006): Avoid having lazy compile stubs specialized by the
// number of arguments. It is not needed anymore.
Object* StubCompiler::CompileLazyCompile(Code::Flags flags) {
// Enter an internal frame.
__ EnterInternalFrame();
// Push a copy of the function onto the stack.
__ push(edi);
__ push(edi); // function is also the parameter to the runtime call
__ CallRuntime(Runtime::kLazyCompile, 1);
__ pop(edi);
// Tear down temporary frame.
__ LeaveInternalFrame();
// Do a tail-call of the compiled function.
__ lea(ecx, FieldOperand(eax, Code::kHeaderSize));
__ jmp(Operand(ecx));
return GetCodeWithFlags(flags, "LazyCompileStub");
}
Object* CallStubCompiler::CompileCallField(Object* object,
JSObject* holder,
int index,
String* name) {
// ----------- S t a t e -------------
// -----------------------------------
Label miss;
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &miss, not_taken);
// Do the right check and compute the holder register.
Register reg =
CheckPrototypes(JSObject::cast(object), edx, holder,
ebx, ecx, name, &miss);
GenerateFastPropertyLoad(masm(), edi, reg, holder, index);
// Check that the function really is a function.
__ test(edi, Immediate(kSmiTagMask));
__ j(zero, &miss, not_taken);
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ebx);
__ j(not_equal, &miss, not_taken);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
// Invoke the function.
__ InvokeFunction(edi, arguments(), JUMP_FUNCTION);
// Handle call cache miss.
__ bind(&miss);
Handle<Code> ic = ComputeCallMiss(arguments().immediate());
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(FIELD, name);
}
Object* CallStubCompiler::CompileCallConstant(Object* object,
JSObject* holder,
JSFunction* function,
String* name,
CheckType check) {
// ----------- S t a t e -------------
// -----------------------------------
Label miss;
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
if (check != NUMBER_CHECK) {
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &miss, not_taken);
}
// Make sure that it's okay not to patch the on stack receiver
// unless we're doing a receiver map check.
ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK);
switch (check) {
case RECEIVER_MAP_CHECK:
// Check that the maps haven't changed.
CheckPrototypes(JSObject::cast(object), edx, holder,
ebx, ecx, name, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
break;
case STRING_CHECK:
// Check that the object is a two-byte string or a symbol.
__ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
__ cmp(ecx, FIRST_NONSTRING_TYPE);
__ j(above_equal, &miss, not_taken);
// Check that the maps starting from the prototype haven't changed.
GenerateLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
ecx);
CheckPrototypes(JSObject::cast(object->GetPrototype()), ecx, holder,
ebx, edx, name, &miss);
break;
case NUMBER_CHECK: {
Label fast;
// Check that the object is a smi or a heap number.
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &fast, taken);
__ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
__ j(not_equal, &miss, not_taken);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateLoadGlobalFunctionPrototype(masm(),
Context::NUMBER_FUNCTION_INDEX,
ecx);
CheckPrototypes(JSObject::cast(object->GetPrototype()), ecx, holder,
ebx, edx, name, &miss);
break;
}
case BOOLEAN_CHECK: {
Label fast;
// Check that the object is a boolean.
__ cmp(edx, Factory::true_value());
__ j(equal, &fast, taken);
__ cmp(edx, Factory::false_value());
__ j(not_equal, &miss, not_taken);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateLoadGlobalFunctionPrototype(masm(),
Context::BOOLEAN_FUNCTION_INDEX,
ecx);
CheckPrototypes(JSObject::cast(object->GetPrototype()), ecx, holder,
ebx, edx, name, &miss);
break;
}
case JSARRAY_HAS_FAST_ELEMENTS_CHECK:
CheckPrototypes(JSObject::cast(object), edx, holder,
ebx, ecx, name, &miss);
// Make sure object->HasFastElements().
// Get the elements array of the object.
__ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset));
// Check that the object is in fast mode (not dictionary).
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(Factory::fixed_array_map()));
__ j(not_equal, &miss, not_taken);
break;
default:
UNREACHABLE();
}
// Get the function and setup the context.
__ mov(edi, Immediate(Handle<JSFunction>(function)));
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Jump to the cached code (tail call).
ASSERT(function->is_compiled());
Handle<Code> code(function->code());
ParameterCount expected(function->shared()->formal_parameter_count());
__ InvokeCode(code, expected, arguments(),
RelocInfo::CODE_TARGET, JUMP_FUNCTION);
// Handle call cache miss.
__ bind(&miss);
Handle<Code> ic = ComputeCallMiss(arguments().immediate());
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
String* function_name = NULL;
if (function->shared()->name()->IsString()) {
function_name = String::cast(function->shared()->name());
}
return GetCode(CONSTANT_FUNCTION, function_name);
}
Object* CallStubCompiler::CompileCallInterceptor(Object* object,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// -----------------------------------
Label miss;
// Get the number of arguments.
const int argc = arguments().immediate();
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
// Get the receiver from the stack.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
CallInterceptorCompiler compiler(arguments());
CompileLoadInterceptor(&compiler,
this,
masm(),
JSObject::cast(object),
holder,
name,
&lookup,
edx,
ebx,
ecx,
&miss);
// Restore receiver.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the function really is a function.
__ test(eax, Immediate(kSmiTagMask));
__ j(zero, &miss, not_taken);
__ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx);
__ j(not_equal, &miss, not_taken);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
// Invoke the function.
__ mov(edi, eax);
__ InvokeFunction(edi, arguments(), JUMP_FUNCTION);
// Handle load cache miss.
__ bind(&miss);
Handle<Code> ic = ComputeCallMiss(argc);
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Object* CallStubCompiler::CompileCallGlobal(JSObject* object,
GlobalObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -----------------------------------
Label miss;
// Get the number of arguments.
const int argc = arguments().immediate();
// Get the receiver from the stack.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// If the object is the holder then we know that it's a global
// object which can only happen for contextual calls. In this case,
// the receiver cannot be a smi.
if (object != holder) {
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &miss, not_taken);
}
// Check that the maps haven't changed.
CheckPrototypes(object, edx, holder, ebx, ecx, name, &miss);
// Get the value from the cell.
__ mov(edi, Immediate(Handle<JSGlobalPropertyCell>(cell)));
__ mov(edi, FieldOperand(edi, JSGlobalPropertyCell::kValueOffset));
// Check that the cell contains the same function.
__ cmp(Operand(edi), Immediate(Handle<JSFunction>(function)));
__ j(not_equal, &miss, not_taken);
// Patch the receiver on the stack with the global proxy.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
// Setup the context (function already in edi).
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Jump to the cached code (tail call).
__ IncrementCounter(&Counters::call_global_inline, 1);
ASSERT(function->is_compiled());
Handle<Code> code(function->code());
ParameterCount expected(function->shared()->formal_parameter_count());
__ InvokeCode(code, expected, arguments(),
RelocInfo::CODE_TARGET, JUMP_FUNCTION);
// Handle call cache miss.
__ bind(&miss);
__ IncrementCounter(&Counters::call_global_inline_miss, 1);
Handle<Code> ic = ComputeCallMiss(arguments().immediate());
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, name);
}
Object* StoreStubCompiler::CompileStoreField(JSObject* object,
int index,
Map* transition,
String* name) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- esp[0] : return address
// -- esp[4] : receiver
// -----------------------------------
Label miss;
// Get the object from the stack.
__ mov(ebx, Operand(esp, 1 * kPointerSize));
// Generate store field code. Trashes the name register.
GenerateStoreField(masm(),
Builtins::StoreIC_ExtendStorage,
object,
index,
transition,
ebx, ecx, edx,
&miss);
// Handle store cache miss.
__ bind(&miss);
__ mov(ecx, Immediate(Handle<String>(name))); // restore name
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Miss));
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name);
}
Object* StoreStubCompiler::CompileStoreCallback(JSObject* object,
AccessorInfo* callback,
String* name) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- esp[0] : return address
// -- esp[4] : receiver
// -----------------------------------
Label miss;
// Get the object from the stack.
__ mov(ebx, Operand(esp, 1 * kPointerSize));
// Check that the object isn't a smi.
__ test(ebx, Immediate(kSmiTagMask));
__ j(zero, &miss, not_taken);
// Check that the map of the object hasn't changed.
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(Handle<Map>(object->map())));
__ j(not_equal, &miss, not_taken);
// Perform global security token check if needed.
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(ebx, edx, &miss);
}
// Stub never generated for non-global objects that require access
// checks.
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
__ pop(ebx); // remove the return address
__ push(Operand(esp, 0)); // receiver
__ push(Immediate(Handle<AccessorInfo>(callback))); // callback info
__ push(ecx); // name
__ push(eax); // value
__ push(ebx); // restore return address
// Do tail-call to the runtime system.
ExternalReference store_callback_property =
ExternalReference(IC_Utility(IC::kStoreCallbackProperty));
__ TailCallRuntime(store_callback_property, 4, 1);
// Handle store cache miss.
__ bind(&miss);
__ mov(ecx, Immediate(Handle<String>(name))); // restore name
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Miss));
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Object* StoreStubCompiler::CompileStoreInterceptor(JSObject* receiver,
String* name) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- esp[0] : return address
// -- esp[4] : receiver
// -----------------------------------
Label miss;
// Get the object from the stack.
__ mov(ebx, Operand(esp, 1 * kPointerSize));
// Check that the object isn't a smi.
__ test(ebx, Immediate(kSmiTagMask));
__ j(zero, &miss, not_taken);
// Check that the map of the object hasn't changed.
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(Handle<Map>(receiver->map())));
__ j(not_equal, &miss, not_taken);
// Perform global security token check if needed.
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
if (receiver->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(ebx, edx, &miss);
}
// Stub never generated for non-global objects that require access
// checks.
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded());
__ pop(ebx); // remove the return address
__ push(Operand(esp, 0)); // receiver
__ push(ecx); // name
__ push(eax); // value
__ push(ebx); // restore return address
// Do tail-call to the runtime system.
ExternalReference store_ic_property =
ExternalReference(IC_Utility(IC::kStoreInterceptorProperty));
__ TailCallRuntime(store_ic_property, 3, 1);
// Handle store cache miss.
__ bind(&miss);
__ mov(ecx, Immediate(Handle<String>(name))); // restore name
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Miss));
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Object* StoreStubCompiler::CompileStoreGlobal(GlobalObject* object,
JSGlobalPropertyCell* cell,
String* name) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- esp[0] : return address
// -- esp[4] : receiver
// -----------------------------------
Label miss;
// Check that the map of the global has not changed.
__ mov(ebx, Operand(esp, kPointerSize));
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(Handle<Map>(object->map())));
__ j(not_equal, &miss, not_taken);
// Store the value in the cell.
__ mov(ecx, Immediate(Handle<JSGlobalPropertyCell>(cell)));
__ mov(FieldOperand(ecx, JSGlobalPropertyCell::kValueOffset), eax);
// Return the value (register eax).
__ IncrementCounter(&Counters::named_store_global_inline, 1);
__ ret(0);
// Handle store cache miss.
__ bind(&miss);
__ IncrementCounter(&Counters::named_store_global_inline_miss, 1);
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Miss));
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, name);
}
Object* KeyedStoreStubCompiler::CompileStoreField(JSObject* object,
int index,
Map* transition,
String* name) {
// ----------- S t a t e -------------
// -- eax : value
// -- esp[0] : return address
// -- esp[4] : key
// -- esp[8] : receiver
// -----------------------------------
Label miss;
__ IncrementCounter(&Counters::keyed_store_field, 1);
// Get the name from the stack.
__ mov(ecx, Operand(esp, 1 * kPointerSize));
// Check that the name has not changed.
__ cmp(Operand(ecx), Immediate(Handle<String>(name)));
__ j(not_equal, &miss, not_taken);
// Get the object from the stack.
__ mov(ebx, Operand(esp, 2 * kPointerSize));
// Generate store field code. Trashes the name register.
GenerateStoreField(masm(),
Builtins::KeyedStoreIC_ExtendStorage,
object,
index,
transition,
ebx, ecx, edx,
&miss);
// Handle store cache miss.
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_store_field, 1);
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Miss));
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name);
}
Object* LoadStubCompiler::CompileLoadField(JSObject* object,
JSObject* holder,
int index,
String* name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[4] : receiver
// -----------------------------------
Label miss;
__ mov(eax, Operand(esp, kPointerSize));
GenerateLoadField(object, holder, eax, ebx, edx, index, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(FIELD, name);
}
Object* LoadStubCompiler::CompileLoadCallback(JSObject* object,
JSObject* holder,
AccessorInfo* callback,
String* name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[4] : receiver
// -----------------------------------
Label miss;
__ mov(eax, Operand(esp, kPointerSize));
GenerateLoadCallback(object, holder, eax, ecx, ebx, edx,
callback, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Object* LoadStubCompiler::CompileLoadConstant(JSObject* object,
JSObject* holder,
Object* value,
String* name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[4] : receiver
// -----------------------------------
Label miss;
__ mov(eax, Operand(esp, kPointerSize));
GenerateLoadConstant(object, holder, eax, ebx, edx, value, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
Object* LoadStubCompiler::CompileLoadInterceptor(JSObject* receiver,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[4] : receiver
// -----------------------------------
Label miss;
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
__ mov(eax, Operand(esp, kPointerSize));
// TODO(368): Compile in the whole chain: all the interceptors in
// prototypes and ultimate answer.
GenerateLoadInterceptor(receiver,
holder,
&lookup,
eax,
ecx,
edx,
ebx,
name,
&miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Object* LoadStubCompiler::CompileLoadGlobal(JSObject* object,
GlobalObject* holder,
JSGlobalPropertyCell* cell,
String* name,
bool is_dont_delete) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[4] : receiver
// -----------------------------------
Label miss;
// Get the receiver from the stack.
__ mov(eax, Operand(esp, kPointerSize));
// If the object is the holder then we know that it's a global
// object which can only happen for contextual loads. In this case,
// the receiver cannot be a smi.
if (object != holder) {
__ test(eax, Immediate(kSmiTagMask));
__ j(zero, &miss, not_taken);
}
// Check that the maps haven't changed.
CheckPrototypes(object, eax, holder, ebx, edx, name, &miss);
// Get the value from the cell.
__ mov(eax, Immediate(Handle<JSGlobalPropertyCell>(cell)));
__ mov(eax, FieldOperand(eax, JSGlobalPropertyCell::kValueOffset));
// Check for deleted property if property can actually be deleted.
if (!is_dont_delete) {
__ cmp(eax, Factory::the_hole_value());
__ j(equal, &miss, not_taken);
} else if (FLAG_debug_code) {
__ cmp(eax, Factory::the_hole_value());
__ Check(not_equal, "DontDelete cells can't contain the hole");
}
__ IncrementCounter(&Counters::named_load_global_inline, 1);
__ ret(0);
__ bind(&miss);
__ IncrementCounter(&Counters::named_load_global_inline_miss, 1);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NORMAL, name);
}
Object* KeyedLoadStubCompiler::CompileLoadField(String* name,
JSObject* receiver,
JSObject* holder,
int index) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[4] : name
// -- esp[8] : receiver
// -----------------------------------
Label miss;
__ mov(eax, Operand(esp, kPointerSize));
__ mov(ecx, Operand(esp, 2 * kPointerSize));
__ IncrementCounter(&Counters::keyed_load_field, 1);
// Check that the name has not changed.
__ cmp(Operand(eax), Immediate(Handle<String>(name)));
__ j(not_equal, &miss, not_taken);
GenerateLoadField(receiver, holder, ecx, ebx, edx, index, name, &miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_field, 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(FIELD, name);
}
Object* KeyedLoadStubCompiler::CompileLoadCallback(String* name,
JSObject* receiver,
JSObject* holder,
AccessorInfo* callback) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[4] : name
// -- esp[8] : receiver
// -----------------------------------
Label miss;
__ mov(eax, Operand(esp, kPointerSize));
__ mov(ecx, Operand(esp, 2 * kPointerSize));
__ IncrementCounter(&Counters::keyed_load_callback, 1);
// Check that the name has not changed.
__ cmp(Operand(eax), Immediate(Handle<String>(name)));
__ j(not_equal, &miss, not_taken);
GenerateLoadCallback(receiver, holder, ecx, eax, ebx, edx,
callback, name, &miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_callback, 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Object* KeyedLoadStubCompiler::CompileLoadConstant(String* name,
JSObject* receiver,
JSObject* holder,
Object* value) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[4] : name
// -- esp[8] : receiver
// -----------------------------------
Label miss;
__ mov(eax, Operand(esp, kPointerSize));
__ mov(ecx, Operand(esp, 2 * kPointerSize));
__ IncrementCounter(&Counters::keyed_load_constant_function, 1);
// Check that the name has not changed.
__ cmp(Operand(eax), Immediate(Handle<String>(name)));
__ j(not_equal, &miss, not_taken);
GenerateLoadConstant(receiver, holder, ecx, ebx, edx,
value, name, &miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_constant_function, 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
Object* KeyedLoadStubCompiler::CompileLoadInterceptor(JSObject* receiver,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[4] : name
// -- esp[8] : receiver
// -----------------------------------
Label miss;
__ mov(eax, Operand(esp, kPointerSize));
__ mov(ecx, Operand(esp, 2 * kPointerSize));
__ IncrementCounter(&Counters::keyed_load_interceptor, 1);
// Check that the name has not changed.
__ cmp(Operand(eax), Immediate(Handle<String>(name)));
__ j(not_equal, &miss, not_taken);
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
GenerateLoadInterceptor(receiver,
holder,
&lookup,
ecx,
eax,
edx,
ebx,
name,
&miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_interceptor, 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Object* KeyedLoadStubCompiler::CompileLoadArrayLength(String* name) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[4] : name
// -- esp[8] : receiver
// -----------------------------------
Label miss;
__ mov(eax, Operand(esp, kPointerSize));
__ mov(ecx, Operand(esp, 2 * kPointerSize));
__ IncrementCounter(&Counters::keyed_load_array_length, 1);
// Check that the name has not changed.
__ cmp(Operand(eax), Immediate(Handle<String>(name)));
__ j(not_equal, &miss, not_taken);
GenerateLoadArrayLength(masm(), ecx, edx, &miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_array_length, 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Object* KeyedLoadStubCompiler::CompileLoadStringLength(String* name) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[4] : name
// -- esp[8] : receiver
// -----------------------------------
Label miss;
__ mov(eax, Operand(esp, kPointerSize));
__ mov(ecx, Operand(esp, 2 * kPointerSize));
__ IncrementCounter(&Counters::keyed_load_string_length, 1);
// Check that the name has not changed.
__ cmp(Operand(eax), Immediate(Handle<String>(name)));
__ j(not_equal, &miss, not_taken);
GenerateLoadStringLength(masm(), ecx, edx, &miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_string_length, 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Object* KeyedLoadStubCompiler::CompileLoadFunctionPrototype(String* name) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[4] : name
// -- esp[8] : receiver
// -----------------------------------
Label miss;
__ mov(eax, Operand(esp, kPointerSize));
__ mov(ecx, Operand(esp, 2 * kPointerSize));
__ IncrementCounter(&Counters::keyed_load_function_prototype, 1);
// Check that the name has not changed.
__ cmp(Operand(eax), Immediate(Handle<String>(name)));
__ j(not_equal, &miss, not_taken);
GenerateLoadFunctionPrototype(masm(), ecx, edx, ebx, &miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_function_prototype, 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
// Specialized stub for constructing objects from functions which only have only
// simple assignments of the form this.x = ...; in their body.
Object* ConstructStubCompiler::CompileConstructStub(
SharedFunctionInfo* shared) {
// ----------- S t a t e -------------
// -- eax : argc
// -- edi : constructor
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
Label generic_stub_call;
#ifdef ENABLE_DEBUGGER_SUPPORT
// Check to see whether there are any break points in the function code. If
// there are jump to the generic constructor stub which calls the actual
// code for the function thereby hitting the break points.
__ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kDebugInfoOffset));
__ cmp(ebx, Factory::undefined_value());
__ j(not_equal, &generic_stub_call, not_taken);
#endif
// Load the initial map and verify that it is in fact a map.
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ test(ebx, Immediate(kSmiTagMask));
__ j(zero, &generic_stub_call);
__ CmpObjectType(ebx, MAP_TYPE, ecx);
__ j(not_equal, &generic_stub_call);
#ifdef DEBUG
// Cannot construct functions this way.
// edi: constructor
// ebx: initial map
__ CmpInstanceType(ebx, JS_FUNCTION_TYPE);
__ Assert(not_equal, "Function constructed by construct stub.");
#endif
// Now allocate the JSObject on the heap by moving the new space allocation
// top forward.
// edi: constructor
// ebx: initial map
__ movzx_b(ecx, FieldOperand(ebx, Map::kInstanceSizeOffset));
__ shl(ecx, kPointerSizeLog2);
__ AllocateInNewSpace(ecx,
edx,
ecx,
no_reg,
&generic_stub_call,
NO_ALLOCATION_FLAGS);
// Allocated the JSObject, now initialize the fields and add the heap tag.
// ebx: initial map
// edx: JSObject (untagged)
__ mov(Operand(edx, JSObject::kMapOffset), ebx);
__ mov(ebx, Factory::empty_fixed_array());
__ mov(Operand(edx, JSObject::kPropertiesOffset), ebx);
__ mov(Operand(edx, JSObject::kElementsOffset), ebx);
// Push the allocated object to the stack. This is the object that will be
// returned (after it is tagged).
__ push(edx);
// eax: argc
// edx: JSObject (untagged)
// Load the address of the first in-object property into edx.
__ lea(edx, Operand(edx, JSObject::kHeaderSize));
// Calculate the location of the first argument. The stack contains the
// allocated object and the return address on top of the argc arguments.
__ lea(ecx, Operand(esp, eax, times_4, 1 * kPointerSize));
// Use edi for holding undefined which is used in several places below.
__ mov(edi, Factory::undefined_value());
// eax: argc
// ecx: first argument
// edx: first in-object property of the JSObject
// edi: undefined
// Fill the initialized properties with a constant value or a passed argument
// depending on the this.x = ...; assignment in the function.
for (int i = 0; i < shared->this_property_assignments_count(); i++) {
if (shared->IsThisPropertyAssignmentArgument(i)) {
Label not_passed;
// Set the property to undefined.
__ mov(Operand(edx, i * kPointerSize), edi);
// Check if the argument assigned to the property is actually passed.
int arg_number = shared->GetThisPropertyAssignmentArgument(i);
__ cmp(eax, arg_number);
__ j(below_equal, &not_passed);
// Argument passed - find it on the stack.
__ mov(ebx, Operand(ecx, arg_number * -kPointerSize));
__ mov(Operand(edx, i * kPointerSize), ebx);
__ bind(&not_passed);
} else {
// Set the property to the constant value.
Handle<Object> constant(shared->GetThisPropertyAssignmentConstant(i));
__ mov(Operand(edx, i * kPointerSize), Immediate(constant));
}
}
// Fill the unused in-object property fields with undefined.
for (int i = shared->this_property_assignments_count();
i < shared->CalculateInObjectProperties();
i++) {
__ mov(Operand(edx, i * kPointerSize), edi);
}
// Move argc to ebx and retrieve and tag the JSObject to return.
__ mov(ebx, eax);
__ pop(eax);
__ or_(Operand(eax), Immediate(kHeapObjectTag));
// Remove caller arguments and receiver from the stack and return.
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_pointer_size, 1 * kPointerSize));
__ push(ecx);
__ IncrementCounter(&Counters::constructed_objects, 1);
__ IncrementCounter(&Counters::constructed_objects_stub, 1);
__ ret(0);
// Jump to the generic stub in case the specialized code cannot handle the
// construction.
__ bind(&generic_stub_call);
Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric);
Handle<Code> generic_construct_stub(code);
__ jmp(generic_construct_stub, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode();
}
#undef __
} } // namespace v8::internal