v8/src/compiler/js-inlining.cc

710 lines
29 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/js-inlining.h"
#include "src/ast/ast-numbering.h"
#include "src/ast/ast.h"
#include "src/compilation-info.h"
#include "src/compiler.h"
#include "src/compiler/all-nodes.h"
#include "src/compiler/ast-graph-builder.h"
#include "src/compiler/ast-loop-assignment-analyzer.h"
#include "src/compiler/bytecode-graph-builder.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/graph-reducer.h"
#include "src/compiler/js-operator.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/operator-properties.h"
#include "src/compiler/simplified-operator.h"
#include "src/isolate-inl.h"
#include "src/parsing/parse-info.h"
#include "src/parsing/rewriter.h"
namespace v8 {
namespace internal {
namespace compiler {
#define TRACE(...) \
do { \
if (FLAG_trace_turbo_inlining) PrintF(__VA_ARGS__); \
} while (false)
// Provides convenience accessors for the common layout of nodes having either
// the {JSCallFunction} or the {JSCallConstruct} operator.
class JSCallAccessor {
public:
explicit JSCallAccessor(Node* call) : call_(call) {
DCHECK(call->opcode() == IrOpcode::kJSCallFunction ||
call->opcode() == IrOpcode::kJSCallConstruct);
}
Node* target() {
// Both, {JSCallFunction} and {JSCallConstruct}, have same layout here.
return call_->InputAt(0);
}
Node* receiver() {
DCHECK_EQ(IrOpcode::kJSCallFunction, call_->opcode());
return call_->InputAt(1);
}
Node* new_target() {
DCHECK_EQ(IrOpcode::kJSCallConstruct, call_->opcode());
return call_->InputAt(formal_arguments() + 1);
}
Node* frame_state() {
// Both, {JSCallFunction} and {JSCallConstruct}, have frame state.
return NodeProperties::GetFrameStateInput(call_);
}
int formal_arguments() {
// Both, {JSCallFunction} and {JSCallConstruct}, have two extra inputs:
// - JSCallConstruct: Includes target function and new target.
// - JSCallFunction: Includes target function and receiver.
return call_->op()->ValueInputCount() - 2;
}
[turbofan] Collect invocation counts and compute relative call frequencies. Add a notion of "invocation count" to the baseline compilers, which increment a special slot in the TypeFeedbackVector for each invocation of a given function (the optimized code doesn't currently collect this information). Use this invocation count to relativize the call counts on the call sites within the function, so that the inlining heuristic has a view of relative importance of a call site rather than some absolute numbers with unclear meaning for the current function. Also apply the call site frequency as a factor to all frequencies in the inlinee by passing this to the graph builders so that the importance of a call site in an inlinee is relative to the topmost optimized function. Note that all functions that neither have literals nor need type feedback slots will share a single invocation count cell in the canonical empty type feedback vector, so their invocation count is meaningless, but that doesn't matter since we only use the invocation count to relativize call counts within the function, which we only have if we have at least one type feedback vector (the CallIC slot). See the design document for additional details on this change: https://docs.google.com/document/d/1VoYBhpDhJC4VlqMXCKvae-8IGuheBGxy32EOgC2LnT8 BUG=v8:5267,v8:5372 R=mvstanton@chromium.org,rmcilroy@chromium.org,mstarzinger@chromium.org Review-Url: https://codereview.chromium.org/2337123003 Cr-Commit-Position: refs/heads/master@{#39410}
2016-09-14 10:20:08 +00:00
float frequency() const {
return (call_->opcode() == IrOpcode::kJSCallFunction)
? CallFunctionParametersOf(call_->op()).frequency()
: CallConstructParametersOf(call_->op()).frequency();
}
private:
Node* call_;
};
Reduction JSInliner::InlineCall(Node* call, Node* new_target, Node* context,
Node* frame_state, Node* start, Node* end,
Node* exception_target,
const NodeVector& uncaught_subcalls) {
// The scheduler is smart enough to place our code; we just ensure {control}
// becomes the control input of the start of the inlinee, and {effect} becomes
// the effect input of the start of the inlinee.
Node* control = NodeProperties::GetControlInput(call);
Node* effect = NodeProperties::GetEffectInput(call);
int const inlinee_new_target_index =
static_cast<int>(start->op()->ValueOutputCount()) - 3;
int const inlinee_arity_index =
static_cast<int>(start->op()->ValueOutputCount()) - 2;
int const inlinee_context_index =
static_cast<int>(start->op()->ValueOutputCount()) - 1;
// {inliner_inputs} counts JSFunction, receiver, arguments, but not
// new target value, argument count, context, effect or control.
int inliner_inputs = call->op()->ValueInputCount();
// Iterate over all uses of the start node.
for (Edge edge : start->use_edges()) {
Node* use = edge.from();
switch (use->opcode()) {
case IrOpcode::kParameter: {
int index = 1 + ParameterIndexOf(use->op());
DCHECK_LE(index, inlinee_context_index);
if (index < inliner_inputs && index < inlinee_new_target_index) {
// There is an input from the call, and the index is a value
// projection but not the context, so rewire the input.
Replace(use, call->InputAt(index));
} else if (index == inlinee_new_target_index) {
// The projection is requesting the new target value.
Replace(use, new_target);
} else if (index == inlinee_arity_index) {
// The projection is requesting the number of arguments.
Replace(use, jsgraph()->Constant(inliner_inputs - 2));
} else if (index == inlinee_context_index) {
// The projection is requesting the inlinee function context.
Replace(use, context);
} else {
// Call has fewer arguments than required, fill with undefined.
Replace(use, jsgraph()->UndefinedConstant());
}
break;
}
default:
if (NodeProperties::IsEffectEdge(edge)) {
edge.UpdateTo(effect);
} else if (NodeProperties::IsControlEdge(edge)) {
edge.UpdateTo(control);
} else if (NodeProperties::IsFrameStateEdge(edge)) {
edge.UpdateTo(frame_state);
} else {
UNREACHABLE();
}
break;
}
}
if (exception_target != nullptr) {
// Link uncaught calls in the inlinee to {exception_target}
int subcall_count = static_cast<int>(uncaught_subcalls.size());
if (subcall_count > 0) {
TRACE(
"Inlinee contains %d calls without IfException; "
"linking to existing IfException\n",
subcall_count);
}
NodeVector on_exception_nodes(local_zone_);
for (Node* subcall : uncaught_subcalls) {
Node* on_exception =
graph()->NewNode(common()->IfException(), subcall, subcall);
on_exception_nodes.push_back(on_exception);
}
DCHECK_EQ(subcall_count, static_cast<int>(on_exception_nodes.size()));
if (subcall_count > 0) {
Node* control_output =
graph()->NewNode(common()->Merge(subcall_count), subcall_count,
&on_exception_nodes.front());
NodeVector values_effects(local_zone_);
values_effects = on_exception_nodes;
values_effects.push_back(control_output);
Node* value_output = graph()->NewNode(
common()->Phi(MachineRepresentation::kTagged, subcall_count),
subcall_count + 1, &values_effects.front());
Node* effect_output =
graph()->NewNode(common()->EffectPhi(subcall_count),
subcall_count + 1, &values_effects.front());
ReplaceWithValue(exception_target, value_output, effect_output,
control_output);
} else {
ReplaceWithValue(exception_target, exception_target, exception_target,
jsgraph()->Dead());
}
}
NodeVector values(local_zone_);
NodeVector effects(local_zone_);
NodeVector controls(local_zone_);
for (Node* const input : end->inputs()) {
switch (input->opcode()) {
case IrOpcode::kReturn:
values.push_back(NodeProperties::GetValueInput(input, 1));
effects.push_back(NodeProperties::GetEffectInput(input));
controls.push_back(NodeProperties::GetControlInput(input));
break;
case IrOpcode::kDeoptimize:
case IrOpcode::kTerminate:
case IrOpcode::kThrow:
NodeProperties::MergeControlToEnd(graph(), common(), input);
Revisit(graph()->end());
break;
default:
UNREACHABLE();
break;
}
}
DCHECK_EQ(values.size(), effects.size());
DCHECK_EQ(values.size(), controls.size());
// Depending on whether the inlinee produces a value, we either replace value
// uses with said value or kill value uses if no value can be returned.
if (values.size() > 0) {
int const input_count = static_cast<int>(controls.size());
Node* control_output = graph()->NewNode(common()->Merge(input_count),
input_count, &controls.front());
values.push_back(control_output);
effects.push_back(control_output);
Node* value_output = graph()->NewNode(
common()->Phi(MachineRepresentation::kTagged, input_count),
static_cast<int>(values.size()), &values.front());
Node* effect_output =
graph()->NewNode(common()->EffectPhi(input_count),
static_cast<int>(effects.size()), &effects.front());
ReplaceWithValue(call, value_output, effect_output, control_output);
return Changed(value_output);
} else {
ReplaceWithValue(call, call, call, jsgraph()->Dead());
return Changed(call);
}
}
Node* JSInliner::CreateArtificialFrameState(Node* node, Node* outer_frame_state,
int parameter_count,
FrameStateType frame_state_type,
Handle<SharedFunctionInfo> shared) {
const FrameStateFunctionInfo* state_info =
common()->CreateFrameStateFunctionInfo(frame_state_type,
parameter_count + 1, 0, shared);
const Operator* op = common()->FrameState(
BailoutId(-1), OutputFrameStateCombine::Ignore(), state_info);
const Operator* op0 = common()->StateValues(0);
Node* node0 = graph()->NewNode(op0);
NodeVector params(local_zone_);
for (int parameter = 0; parameter < parameter_count + 1; ++parameter) {
params.push_back(node->InputAt(1 + parameter));
}
const Operator* op_param =
common()->StateValues(static_cast<int>(params.size()));
Node* params_node = graph()->NewNode(
op_param, static_cast<int>(params.size()), &params.front());
return graph()->NewNode(op, params_node, node0, node0,
jsgraph()->UndefinedConstant(), node->InputAt(0),
outer_frame_state);
}
Node* JSInliner::CreateTailCallerFrameState(Node* node, Node* frame_state) {
FrameStateInfo const& frame_info = OpParameter<FrameStateInfo>(frame_state);
Handle<SharedFunctionInfo> shared;
frame_info.shared_info().ToHandle(&shared);
Node* function = frame_state->InputAt(kFrameStateFunctionInput);
// If we are inlining a tail call drop caller's frame state and an
// arguments adaptor if it exists.
frame_state = NodeProperties::GetFrameStateInput(frame_state);
if (frame_state->opcode() == IrOpcode::kFrameState) {
FrameStateInfo const& frame_info = OpParameter<FrameStateInfo>(frame_state);
if (frame_info.type() == FrameStateType::kArgumentsAdaptor) {
frame_state = NodeProperties::GetFrameStateInput(frame_state);
}
}
const FrameStateFunctionInfo* state_info =
common()->CreateFrameStateFunctionInfo(
FrameStateType::kTailCallerFunction, 0, 0, shared);
const Operator* op = common()->FrameState(
BailoutId(-1), OutputFrameStateCombine::Ignore(), state_info);
const Operator* op0 = common()->StateValues(0);
Node* node0 = graph()->NewNode(op0);
return graph()->NewNode(op, node0, node0, node0,
jsgraph()->UndefinedConstant(), function,
frame_state);
}
namespace {
// TODO(turbofan): Shall we move this to the NodeProperties? Or some (untyped)
// alias analyzer?
bool IsSame(Node* a, Node* b) {
if (a == b) {
return true;
} else if (a->opcode() == IrOpcode::kCheckHeapObject) {
return IsSame(a->InputAt(0), b);
} else if (b->opcode() == IrOpcode::kCheckHeapObject) {
return IsSame(a, b->InputAt(0));
}
return false;
}
// TODO(bmeurer): Unify this with the witness helper functions in the
// js-builtin-reducer.cc once we have a better understanding of the
// map tracking we want to do, and eventually changed the CheckMaps
// operator to carry map constants on the operator instead of inputs.
// I.e. if the CheckMaps has some kind of SmallMapSet as operator
// parameter, then this could be changed to call a generic
//
// SmallMapSet NodeProperties::CollectMapWitness(receiver, effect)
//
// function, which either returns the map set from the CheckMaps or
// a singleton set from a StoreField.
bool NeedsConvertReceiver(Node* receiver, Node* effect) {
for (Node* dominator = effect;;) {
if (dominator->opcode() == IrOpcode::kCheckMaps &&
IsSame(dominator->InputAt(0), receiver)) {
// Check if all maps have the given {instance_type}.
for (int i = 1; i < dominator->op()->ValueInputCount(); ++i) {
HeapObjectMatcher m(NodeProperties::GetValueInput(dominator, i));
if (!m.HasValue()) return true;
Handle<Map> const map = Handle<Map>::cast(m.Value());
if (!map->IsJSReceiverMap()) return true;
}
return false;
}
switch (dominator->opcode()) {
case IrOpcode::kStoreField: {
FieldAccess const& access = FieldAccessOf(dominator->op());
if (access.base_is_tagged == kTaggedBase &&
access.offset == HeapObject::kMapOffset) {
return true;
}
break;
}
case IrOpcode::kStoreElement:
case IrOpcode::kStoreTypedElement:
break;
default: {
DCHECK_EQ(1, dominator->op()->EffectOutputCount());
if (dominator->op()->EffectInputCount() != 1 ||
!dominator->op()->HasProperty(Operator::kNoWrite)) {
// Didn't find any appropriate CheckMaps node.
return true;
}
break;
}
}
dominator = NodeProperties::GetEffectInput(dominator);
}
}
// TODO(mstarzinger,verwaest): Move this predicate onto SharedFunctionInfo?
bool NeedsImplicitReceiver(Handle<SharedFunctionInfo> shared_info) {
DisallowHeapAllocation no_gc;
Isolate* const isolate = shared_info->GetIsolate();
Code* const construct_stub = shared_info->construct_stub();
return construct_stub != *isolate->builtins()->JSBuiltinsConstructStub() &&
construct_stub !=
*isolate->builtins()->JSBuiltinsConstructStubForDerived() &&
construct_stub != *isolate->builtins()->JSConstructStubApi();
}
bool IsNonConstructible(Handle<SharedFunctionInfo> shared_info) {
DisallowHeapAllocation no_gc;
Isolate* const isolate = shared_info->GetIsolate();
Code* const construct_stub = shared_info->construct_stub();
return construct_stub == *isolate->builtins()->ConstructedNonConstructable();
}
} // namespace
Reduction JSInliner::Reduce(Node* node) {
if (!IrOpcode::IsInlineeOpcode(node->opcode())) return NoChange();
// This reducer can handle both normal function calls as well a constructor
// calls whenever the target is a constant function object, as follows:
// - JSCallFunction(target:constant, receiver, args...)
// - JSCallConstruct(target:constant, args..., new.target)
HeapObjectMatcher match(node->InputAt(0));
if (!match.HasValue() || !match.Value()->IsJSFunction()) return NoChange();
Handle<JSFunction> function = Handle<JSFunction>::cast(match.Value());
return ReduceJSCall(node, function);
}
Reduction JSInliner::ReduceJSCall(Node* node, Handle<JSFunction> function) {
DCHECK(IrOpcode::IsInlineeOpcode(node->opcode()));
JSCallAccessor call(node);
Handle<SharedFunctionInfo> shared_info(function->shared());
// Function must be inlineable.
if (!shared_info->IsInlineable()) {
TRACE("Not inlining %s into %s because callee is not inlineable\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
// Constructor must be constructable.
if (node->opcode() == IrOpcode::kJSCallConstruct &&
IsNonConstructible(shared_info)) {
TRACE("Not inlining %s into %s because constructor is not constructable.\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
// Class constructors are callable, but [[Call]] will raise an exception.
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList ).
if (node->opcode() == IrOpcode::kJSCallFunction &&
IsClassConstructor(shared_info->kind())) {
TRACE("Not inlining %s into %s because callee is a class constructor.\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
// Function contains break points.
if (shared_info->HasDebugInfo()) {
TRACE("Not inlining %s into %s because callee may contain break points\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
// Disallow cross native-context inlining for now. This means that all parts
// of the resulting code will operate on the same global object.
// This also prevents cross context leaks for asm.js code, where we could
// inline functions from a different context and hold on to that context (and
// closure) from the code object.
// TODO(turbofan): We might want to revisit this restriction later when we
// have a need for this, and we know how to model different native contexts
// in the same graph in a compositional way.
if (function->context()->native_context() !=
info_->context()->native_context()) {
TRACE("Not inlining %s into %s because of different native contexts\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
// TODO(turbofan): TranslatedState::GetAdaptedArguments() currently relies on
// not inlining recursive functions. We might want to relax that at some
// point.
for (Node* frame_state = call.frame_state();
frame_state->opcode() == IrOpcode::kFrameState;
frame_state = frame_state->InputAt(kFrameStateOuterStateInput)) {
FrameStateInfo const& frame_info = OpParameter<FrameStateInfo>(frame_state);
Handle<SharedFunctionInfo> frame_shared_info;
if (frame_info.shared_info().ToHandle(&frame_shared_info) &&
*frame_shared_info == *shared_info) {
TRACE("Not inlining %s into %s because call is recursive\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
}
// Find the IfException node, if any.
Node* exception_target = nullptr;
for (Edge edge : node->use_edges()) {
if (NodeProperties::IsControlEdge(edge) &&
edge.from()->opcode() == IrOpcode::kIfException) {
DCHECK_NULL(exception_target);
exception_target = edge.from();
}
}
NodeVector uncaught_subcalls(local_zone_);
if (exception_target != nullptr) {
if (!FLAG_inline_into_try) {
TRACE(
"Try block surrounds #%d:%s and --no-inline-into-try active, so not "
"inlining %s into %s.\n",
exception_target->id(), exception_target->op()->mnemonic(),
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
} else {
TRACE(
"Inlining %s into %s regardless of surrounding try-block to catcher "
"#%d:%s\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get(),
exception_target->id(), exception_target->op()->mnemonic());
}
}
Zone zone(info_->isolate()->allocator(), ZONE_NAME);
ParseInfo parse_info(&zone, shared_info);
CompilationInfo info(&parse_info, function);
if (info_->is_deoptimization_enabled()) info.MarkAsDeoptimizationEnabled();
if (info_->is_optimizing_from_bytecode()) info.MarkAsOptimizeFromBytecode();
if (info.is_optimizing_from_bytecode() && !Compiler::EnsureBytecode(&info)) {
TRACE("Not inlining %s into %s because bytecode generation failed\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
if (info_->isolate()->has_pending_exception()) {
info_->isolate()->clear_pending_exception();
}
return NoChange();
}
if (!info.is_optimizing_from_bytecode() &&
!Compiler::ParseAndAnalyze(info.parse_info())) {
TRACE("Not inlining %s into %s because parsing failed\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
if (info_->isolate()->has_pending_exception()) {
info_->isolate()->clear_pending_exception();
}
return NoChange();
}
if (!info.is_optimizing_from_bytecode() &&
!Compiler::EnsureDeoptimizationSupport(&info)) {
TRACE("Not inlining %s into %s because deoptimization support failed\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
// Remember that we inlined this function. This needs to be called right
// after we ensure deoptimization support so that the code flusher
// does not remove the code with the deoptimization support.
This CL enables precise source positions for all V8 compilers. It merges compiler::SourcePosition and internal::SourcePosition to a single class used throughout the codebase. The new internal::SourcePosition instances store an id identifying an inlined function in addition to a script offset. SourcePosition::InliningId() refers to a the new table DeoptimizationInputData::InliningPositions(), which provides the following data for every inlining id: - The inlined SharedFunctionInfo as an offset into DeoptimizationInfo::LiteralArray - The SourcePosition of the inlining. Recursively, this yields the full inlining stack. Before the Code object is created, the same information can be found in CompilationInfo::inlined_functions(). If SourcePosition::InliningId() is SourcePosition::kNotInlined, it refers to the outer (non-inlined) function. So every SourcePosition has full information about its inlining stack, as long as the corresponding Code object is known. The internal represenation of a source position is a positive 64bit integer. All compilers create now appropriate source positions for inlined functions. In the case of Turbofan, this required using AstGraphBuilderWithPositions for inlined functions too. So this class is now moved to a header file. At the moment, the additional information in source positions is only used in --trace-deopt and --code-comments. The profiler needs to be updated, at the moment it gets the correct script offsets from the deopt info, but the wrong script id from the reconstructed deopt stack, which can lead to wrong outputs. This should be resolved by making the profiler use the new inlining information for deopts. I activated the inlined deoptimization tests in test-cpu-profiler.cc for Turbofan, changing them to a case where the deopt stack and the inlining position agree. It is currently still broken for other cases. The following additional changes were necessary: - The source position table (internal::SourcePositionTableBuilder etc.) supports now 64bit source positions. Encoding source positions in a single 64bit int together with the difference encoding in the source position table results in very little overhead for the inlining id, since only 12% of the source positions in Octane have a changed inlining id. - The class HPositionInfo was effectively dead code and is now removed. - SourcePosition has new printing and information facilities, including computing a full inlining stack. - I had to rename compiler/source-position.{h,cc} to compiler/compiler-source-position-table.{h,cc} to avoid clashes with the new src/source-position.cc file. - I wrote the new wrapper PodArray for ByteArray. It is a template working with any POD-type. This is used in DeoptimizationInputData::InliningPositions(). - I removed HInlinedFunctionInfo and HGraph::inlined_function_infos, because they were only used for the now obsolete Crankshaft inlining ids. - Crankshaft managed a list of inlined functions in Lithium: LChunk::inlined_functions. This is an analog structure to CompilationInfo::inlined_functions. So I removed LChunk::inlined_functions and made Crankshaft use CompilationInfo::inlined_functions instead, because this was necessary to register the offsets into the literal array in a uniform way. This is a safe change because LChunk::inlined_functions has no other uses and the functions in CompilationInfo::inlined_functions have a strictly longer lifespan, being created earlier (in Hydrogen already). BUG=v8:5432 Review-Url: https://codereview.chromium.org/2451853002 Cr-Commit-Position: refs/heads/master@{#40975}
2016-11-14 17:21:37 +00:00
int inlining_id = info_->AddInlinedFunction(
shared_info, source_positions_->GetSourcePosition(node));
// ----------------------------------------------------------------
// After this point, we've made a decision to inline this function.
// We shall not bailout from inlining if we got here.
TRACE("Inlining %s into %s\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
// If function was lazily compiled, its literals array may not yet be set up.
JSFunction::EnsureLiterals(function);
// Create the subgraph for the inlinee.
Node* start;
Node* end;
if (info.is_optimizing_from_bytecode()) {
// Run the BytecodeGraphBuilder to create the subgraph.
Graph::SubgraphScope scope(graph());
BytecodeGraphBuilder graph_builder(&zone, &info, jsgraph(),
This CL enables precise source positions for all V8 compilers. It merges compiler::SourcePosition and internal::SourcePosition to a single class used throughout the codebase. The new internal::SourcePosition instances store an id identifying an inlined function in addition to a script offset. SourcePosition::InliningId() refers to a the new table DeoptimizationInputData::InliningPositions(), which provides the following data for every inlining id: - The inlined SharedFunctionInfo as an offset into DeoptimizationInfo::LiteralArray - The SourcePosition of the inlining. Recursively, this yields the full inlining stack. Before the Code object is created, the same information can be found in CompilationInfo::inlined_functions(). If SourcePosition::InliningId() is SourcePosition::kNotInlined, it refers to the outer (non-inlined) function. So every SourcePosition has full information about its inlining stack, as long as the corresponding Code object is known. The internal represenation of a source position is a positive 64bit integer. All compilers create now appropriate source positions for inlined functions. In the case of Turbofan, this required using AstGraphBuilderWithPositions for inlined functions too. So this class is now moved to a header file. At the moment, the additional information in source positions is only used in --trace-deopt and --code-comments. The profiler needs to be updated, at the moment it gets the correct script offsets from the deopt info, but the wrong script id from the reconstructed deopt stack, which can lead to wrong outputs. This should be resolved by making the profiler use the new inlining information for deopts. I activated the inlined deoptimization tests in test-cpu-profiler.cc for Turbofan, changing them to a case where the deopt stack and the inlining position agree. It is currently still broken for other cases. The following additional changes were necessary: - The source position table (internal::SourcePositionTableBuilder etc.) supports now 64bit source positions. Encoding source positions in a single 64bit int together with the difference encoding in the source position table results in very little overhead for the inlining id, since only 12% of the source positions in Octane have a changed inlining id. - The class HPositionInfo was effectively dead code and is now removed. - SourcePosition has new printing and information facilities, including computing a full inlining stack. - I had to rename compiler/source-position.{h,cc} to compiler/compiler-source-position-table.{h,cc} to avoid clashes with the new src/source-position.cc file. - I wrote the new wrapper PodArray for ByteArray. It is a template working with any POD-type. This is used in DeoptimizationInputData::InliningPositions(). - I removed HInlinedFunctionInfo and HGraph::inlined_function_infos, because they were only used for the now obsolete Crankshaft inlining ids. - Crankshaft managed a list of inlined functions in Lithium: LChunk::inlined_functions. This is an analog structure to CompilationInfo::inlined_functions. So I removed LChunk::inlined_functions and made Crankshaft use CompilationInfo::inlined_functions instead, because this was necessary to register the offsets into the literal array in a uniform way. This is a safe change because LChunk::inlined_functions has no other uses and the functions in CompilationInfo::inlined_functions have a strictly longer lifespan, being created earlier (in Hydrogen already). BUG=v8:5432 Review-Url: https://codereview.chromium.org/2451853002 Cr-Commit-Position: refs/heads/master@{#40975}
2016-11-14 17:21:37 +00:00
call.frequency(), source_positions_,
inlining_id);
graph_builder.CreateGraph(false);
// Extract the inlinee start/end nodes.
start = graph()->start();
end = graph()->end();
} else {
// Run the loop assignment analyzer on the inlinee.
AstLoopAssignmentAnalyzer loop_assignment_analyzer(&zone, &info);
LoopAssignmentAnalysis* loop_assignment =
loop_assignment_analyzer.Analyze();
// Run the AstGraphBuilder to create the subgraph.
Graph::SubgraphScope scope(graph());
This CL enables precise source positions for all V8 compilers. It merges compiler::SourcePosition and internal::SourcePosition to a single class used throughout the codebase. The new internal::SourcePosition instances store an id identifying an inlined function in addition to a script offset. SourcePosition::InliningId() refers to a the new table DeoptimizationInputData::InliningPositions(), which provides the following data for every inlining id: - The inlined SharedFunctionInfo as an offset into DeoptimizationInfo::LiteralArray - The SourcePosition of the inlining. Recursively, this yields the full inlining stack. Before the Code object is created, the same information can be found in CompilationInfo::inlined_functions(). If SourcePosition::InliningId() is SourcePosition::kNotInlined, it refers to the outer (non-inlined) function. So every SourcePosition has full information about its inlining stack, as long as the corresponding Code object is known. The internal represenation of a source position is a positive 64bit integer. All compilers create now appropriate source positions for inlined functions. In the case of Turbofan, this required using AstGraphBuilderWithPositions for inlined functions too. So this class is now moved to a header file. At the moment, the additional information in source positions is only used in --trace-deopt and --code-comments. The profiler needs to be updated, at the moment it gets the correct script offsets from the deopt info, but the wrong script id from the reconstructed deopt stack, which can lead to wrong outputs. This should be resolved by making the profiler use the new inlining information for deopts. I activated the inlined deoptimization tests in test-cpu-profiler.cc for Turbofan, changing them to a case where the deopt stack and the inlining position agree. It is currently still broken for other cases. The following additional changes were necessary: - The source position table (internal::SourcePositionTableBuilder etc.) supports now 64bit source positions. Encoding source positions in a single 64bit int together with the difference encoding in the source position table results in very little overhead for the inlining id, since only 12% of the source positions in Octane have a changed inlining id. - The class HPositionInfo was effectively dead code and is now removed. - SourcePosition has new printing and information facilities, including computing a full inlining stack. - I had to rename compiler/source-position.{h,cc} to compiler/compiler-source-position-table.{h,cc} to avoid clashes with the new src/source-position.cc file. - I wrote the new wrapper PodArray for ByteArray. It is a template working with any POD-type. This is used in DeoptimizationInputData::InliningPositions(). - I removed HInlinedFunctionInfo and HGraph::inlined_function_infos, because they were only used for the now obsolete Crankshaft inlining ids. - Crankshaft managed a list of inlined functions in Lithium: LChunk::inlined_functions. This is an analog structure to CompilationInfo::inlined_functions. So I removed LChunk::inlined_functions and made Crankshaft use CompilationInfo::inlined_functions instead, because this was necessary to register the offsets into the literal array in a uniform way. This is a safe change because LChunk::inlined_functions has no other uses and the functions in CompilationInfo::inlined_functions have a strictly longer lifespan, being created earlier (in Hydrogen already). BUG=v8:5432 Review-Url: https://codereview.chromium.org/2451853002 Cr-Commit-Position: refs/heads/master@{#40975}
2016-11-14 17:21:37 +00:00
AstGraphBuilderWithPositions graph_builder(
&zone, &info, jsgraph(), call.frequency(), loop_assignment,
source_positions_, inlining_id);
graph_builder.CreateGraph(false);
// Extract the inlinee start/end nodes.
start = graph()->start();
end = graph()->end();
}
if (exception_target != nullptr) {
// Find all uncaught 'calls' in the inlinee.
AllNodes inlined_nodes(local_zone_, end, graph());
for (Node* subnode : inlined_nodes.reachable) {
// Every possibly throwing node with an IfSuccess should get an
// IfException.
if (subnode->op()->HasProperty(Operator::kNoThrow)) {
continue;
}
bool hasIfException = false;
for (Node* use : subnode->uses()) {
if (use->opcode() == IrOpcode::kIfException) {
hasIfException = true;
break;
}
}
if (!hasIfException) {
DCHECK_EQ(2, subnode->op()->ControlOutputCount());
uncaught_subcalls.push_back(subnode);
}
}
}
Node* frame_state = call.frame_state();
Node* new_target = jsgraph()->UndefinedConstant();
// Inline {JSCallConstruct} requires some additional magic.
if (node->opcode() == IrOpcode::kJSCallConstruct) {
// Insert nodes around the call that model the behavior required for a
// constructor dispatch (allocate implicit receiver and check return value).
// This models the behavior usually accomplished by our {JSConstructStub}.
// Note that the context has to be the callers context (input to call node).
Node* receiver = jsgraph()->TheHoleConstant(); // Implicit receiver.
if (NeedsImplicitReceiver(shared_info)) {
Node* frame_state_before = NodeProperties::FindFrameStateBefore(node);
Node* effect = NodeProperties::GetEffectInput(node);
Node* context = NodeProperties::GetContextInput(node);
Node* create = graph()->NewNode(javascript()->Create(), call.target(),
call.new_target(), context,
frame_state_before, effect);
NodeProperties::ReplaceEffectInput(node, create);
// Insert a check of the return value to determine whether the return
// value or the implicit receiver should be selected as a result of the
// call.
Node* check = graph()->NewNode(simplified()->ObjectIsReceiver(), node);
Node* select =
graph()->NewNode(common()->Select(MachineRepresentation::kTagged),
check, node, create);
NodeProperties::ReplaceUses(node, select, node, node, node);
// Fix-up inputs that have been mangled by the {ReplaceUses} call above.
NodeProperties::ReplaceValueInput(select, node, 1); // Fix-up input.
NodeProperties::ReplaceValueInput(check, node, 0); // Fix-up input.
receiver = create; // The implicit receiver.
}
// Swizzle the inputs of the {JSCallConstruct} node to look like inputs to a
// normal {JSCallFunction} node so that the rest of the inlining machinery
// behaves as if we were dealing with a regular function invocation.
new_target = call.new_target(); // Retrieve new target value input.
node->RemoveInput(call.formal_arguments() + 1); // Drop new target.
node->InsertInput(graph()->zone(), 1, receiver);
// Insert a construct stub frame into the chain of frame states. This will
// reconstruct the proper frame when deoptimizing within the constructor.
frame_state = CreateArtificialFrameState(
node, frame_state, call.formal_arguments(),
FrameStateType::kConstructStub, info.shared_info());
}
// The inlinee specializes to the context from the JSFunction object.
// TODO(turbofan): We might want to load the context from the JSFunction at
// runtime in case we only know the SharedFunctionInfo once we have dynamic
// type feedback in the compiler.
Node* context = jsgraph()->Constant(handle(function->context()));
// Insert a JSConvertReceiver node for sloppy callees. Note that the context
// passed into this node has to be the callees context (loaded above). Note
// that the frame state passed to the JSConvertReceiver must be the frame
// state _before_ the call; it is not necessary to fiddle with the receiver
// in that frame state tho, as the conversion of the receiver can be repeated
// any number of times, it's not observable.
if (node->opcode() == IrOpcode::kJSCallFunction &&
is_sloppy(shared_info->language_mode()) && !shared_info->native()) {
Node* effect = NodeProperties::GetEffectInput(node);
if (NeedsConvertReceiver(call.receiver(), effect)) {
const CallFunctionParameters& p = CallFunctionParametersOf(node->op());
Node* frame_state_before = NodeProperties::FindFrameStateBefore(node);
Node* convert = effect = graph()->NewNode(
javascript()->ConvertReceiver(p.convert_mode()), call.receiver(),
context, frame_state_before, effect, start);
NodeProperties::ReplaceValueInput(node, convert, 1);
NodeProperties::ReplaceEffectInput(node, effect);
}
}
// If we are inlining a JS call at tail position then we have to pop current
// frame state and its potential arguments adaptor frame state in order to
// make the call stack be consistent with non-inlining case.
// After that we add a tail caller frame state which lets deoptimizer handle
// the case when the outermost function inlines a tail call (it should remove
// potential arguments adaptor frame that belongs to outermost function when
// deopt happens).
if (node->opcode() == IrOpcode::kJSCallFunction) {
const CallFunctionParameters& p = CallFunctionParametersOf(node->op());
if (p.tail_call_mode() == TailCallMode::kAllow) {
frame_state = CreateTailCallerFrameState(node, frame_state);
}
}
// Insert argument adaptor frame if required. The callees formal parameter
// count (i.e. value outputs of start node minus target, receiver, new target,
// arguments count and context) have to match the number of arguments passed
// to the call.
int parameter_count = shared_info->internal_formal_parameter_count();
DCHECK_EQ(parameter_count, start->op()->ValueOutputCount() - 5);
if (call.formal_arguments() != parameter_count) {
frame_state = CreateArtificialFrameState(
node, frame_state, call.formal_arguments(),
FrameStateType::kArgumentsAdaptor, shared_info);
}
return InlineCall(node, new_target, context, frame_state, start, end,
exception_target, uncaught_subcalls);
}
Graph* JSInliner::graph() const { return jsgraph()->graph(); }
JSOperatorBuilder* JSInliner::javascript() const {
return jsgraph()->javascript();
}
CommonOperatorBuilder* JSInliner::common() const { return jsgraph()->common(); }
SimplifiedOperatorBuilder* JSInliner::simplified() const {
return jsgraph()->simplified();
}
} // namespace compiler
} // namespace internal
} // namespace v8