v8/src/counters.cc

364 lines
10 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/counters.h"
#include <iomanip>
#include "src/base/platform/platform.h"
#include "src/isolate.h"
#include "src/log-inl.h"
#include "src/log.h"
namespace v8 {
namespace internal {
StatsTable::StatsTable()
: lookup_function_(NULL),
create_histogram_function_(NULL),
add_histogram_sample_function_(NULL) {}
int* StatsCounter::FindLocationInStatsTable() const {
return isolate_->stats_table()->FindLocation(name_);
}
void Histogram::AddSample(int sample) {
if (Enabled()) {
isolate()->stats_table()->AddHistogramSample(histogram_, sample);
}
}
void* Histogram::CreateHistogram() const {
return isolate()->stats_table()->
CreateHistogram(name_, min_, max_, num_buckets_);
}
// Start the timer.
void HistogramTimer::Start() {
if (Enabled()) {
timer_.Start();
}
Logger::CallEventLogger(isolate(), name(), Logger::START, true);
}
// Stop the timer and record the results.
void HistogramTimer::Stop() {
if (Enabled()) {
int64_t sample = resolution_ == MICROSECOND
? timer_.Elapsed().InMicroseconds()
: timer_.Elapsed().InMilliseconds();
// Compute the delta between start and stop, in microseconds.
AddSample(static_cast<int>(sample));
timer_.Stop();
}
Logger::CallEventLogger(isolate(), name(), Logger::END, true);
}
Counters::Counters(Isolate* isolate) {
#define HR(name, caption, min, max, num_buckets) \
name##_ = Histogram(#caption, min, max, num_buckets, isolate);
HISTOGRAM_RANGE_LIST(HR)
#undef HR
#define HT(name, caption, max, res) \
name##_ = HistogramTimer(#caption, 0, max, HistogramTimer::res, 50, isolate);
HISTOGRAM_TIMER_LIST(HT)
#undef HT
#define AHT(name, caption) \
name##_ = AggregatableHistogramTimer(#caption, 0, 10000000, 50, isolate);
AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT)
#undef AHT
#define HP(name, caption) \
name##_ = Histogram(#caption, 0, 101, 100, isolate);
HISTOGRAM_PERCENTAGE_LIST(HP)
#undef HP
// Exponential histogram assigns bucket limits to points
// p[1], p[2], ... p[n] such that p[i+1] / p[i] = constant.
// The constant factor is equal to the n-th root of (high / low),
// where the n is the number of buckets, the low is the lower limit,
// the high is the upper limit.
// For n = 50, low = 1000, high = 500000: the factor = 1.13.
#define HM(name, caption) \
name##_ = Histogram(#caption, 1000, 500000, 50, isolate);
HISTOGRAM_LEGACY_MEMORY_LIST(HM)
#undef HM
// For n = 100, low = 4000, high = 2000000: the factor = 1.06.
#define HM(name, caption) \
name##_ = Histogram(#caption, 4000, 2000000, 100, isolate);
HISTOGRAM_MEMORY_LIST(HM)
#undef HM
#define HM(name, caption) \
aggregated_##name##_ = AggregatedMemoryHistogram<Histogram>(&name##_);
HISTOGRAM_MEMORY_LIST(HM)
#undef HM
#define SC(name, caption) \
name##_ = StatsCounter(isolate, "c:" #caption);
STATS_COUNTER_LIST_1(SC)
STATS_COUNTER_LIST_2(SC)
#undef SC
#define SC(name) \
count_of_##name##_ = StatsCounter(isolate, "c:" "V8.CountOf_" #name); \
size_of_##name##_ = StatsCounter(isolate, "c:" "V8.SizeOf_" #name);
INSTANCE_TYPE_LIST(SC)
#undef SC
#define SC(name) \
count_of_CODE_TYPE_##name##_ = \
StatsCounter(isolate, "c:" "V8.CountOf_CODE_TYPE-" #name); \
size_of_CODE_TYPE_##name##_ = \
StatsCounter(isolate, "c:" "V8.SizeOf_CODE_TYPE-" #name);
CODE_KIND_LIST(SC)
#undef SC
#define SC(name) \
count_of_FIXED_ARRAY_##name##_ = \
StatsCounter(isolate, "c:" "V8.CountOf_FIXED_ARRAY-" #name); \
size_of_FIXED_ARRAY_##name##_ = \
StatsCounter(isolate, "c:" "V8.SizeOf_FIXED_ARRAY-" #name);
FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(SC)
#undef SC
#define SC(name) \
count_of_CODE_AGE_##name##_ = \
StatsCounter(isolate, "c:" "V8.CountOf_CODE_AGE-" #name); \
size_of_CODE_AGE_##name##_ = \
StatsCounter(isolate, "c:" "V8.SizeOf_CODE_AGE-" #name);
CODE_AGE_LIST_COMPLETE(SC)
#undef SC
}
void Counters::ResetCounters() {
#define SC(name, caption) name##_.Reset();
STATS_COUNTER_LIST_1(SC)
STATS_COUNTER_LIST_2(SC)
#undef SC
#define SC(name) \
count_of_##name##_.Reset(); \
size_of_##name##_.Reset();
INSTANCE_TYPE_LIST(SC)
#undef SC
#define SC(name) \
count_of_CODE_TYPE_##name##_.Reset(); \
size_of_CODE_TYPE_##name##_.Reset();
CODE_KIND_LIST(SC)
#undef SC
#define SC(name) \
count_of_FIXED_ARRAY_##name##_.Reset(); \
size_of_FIXED_ARRAY_##name##_.Reset();
FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(SC)
#undef SC
#define SC(name) \
count_of_CODE_AGE_##name##_.Reset(); \
size_of_CODE_AGE_##name##_.Reset();
CODE_AGE_LIST_COMPLETE(SC)
#undef SC
}
void Counters::ResetHistograms() {
#define HR(name, caption, min, max, num_buckets) name##_.Reset();
HISTOGRAM_RANGE_LIST(HR)
#undef HR
#define HT(name, caption, max, res) name##_.Reset();
HISTOGRAM_TIMER_LIST(HT)
#undef HT
#define AHT(name, caption) name##_.Reset();
AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT)
#undef AHT
#define HP(name, caption) name##_.Reset();
HISTOGRAM_PERCENTAGE_LIST(HP)
#undef HP
#define HM(name, caption) name##_.Reset();
HISTOGRAM_LEGACY_MEMORY_LIST(HM)
#undef HM
}
class RuntimeCallStatEntries {
public:
void Print(std::ostream& os) {
if (total_call_count == 0) return;
std::sort(entries.rbegin(), entries.rend());
os << std::setw(50) << "Runtime Function/C++ Builtin" << std::setw(12)
<< "Time" << std::setw(18) << "Count" << std::endl
<< std::string(88, '=') << std::endl;
for (Entry& entry : entries) {
entry.SetTotal(total_time, total_call_count);
entry.Print(os);
}
os << std::string(88, '-') << std::endl;
Entry("Total", total_time, total_call_count).Print(os);
}
// By default, the compiler will usually inline this, which results in a large
// binary size increase: std::vector::push_back expands to a large amount of
// instructions, and this function is invoked repeatedly by macros.
V8_NOINLINE void Add(RuntimeCallCounter* counter) {
if (counter->count == 0) return;
entries.push_back(Entry(counter->name, counter->time, counter->count));
total_time += counter->time;
total_call_count += counter->count;
}
private:
class Entry {
public:
Entry(const char* name, base::TimeDelta time, uint64_t count)
: name_(name),
time_(time.InMicroseconds()),
count_(count),
time_percent_(100),
count_percent_(100) {}
bool operator<(const Entry& other) const {
if (time_ < other.time_) return true;
if (time_ > other.time_) return false;
return count_ < other.count_;
}
void Print(std::ostream& os) {
os.precision(2);
os << std::fixed << std::setprecision(2);
os << std::setw(50) << name_;
os << std::setw(10) << static_cast<double>(time_) / 1000 << "ms ";
os << std::setw(6) << time_percent_ << "%";
os << std::setw(10) << count_ << " ";
os << std::setw(6) << count_percent_ << "%";
os << std::endl;
}
void SetTotal(base::TimeDelta total_time, uint64_t total_count) {
if (total_time.InMicroseconds() == 0) {
time_percent_ = 0;
} else {
time_percent_ = 100.0 * time_ / total_time.InMicroseconds();
}
count_percent_ = 100.0 * count_ / total_count;
}
private:
const char* name_;
int64_t time_;
uint64_t count_;
double time_percent_;
double count_percent_;
};
uint64_t total_call_count = 0;
base::TimeDelta total_time;
std::vector<Entry> entries;
};
void RuntimeCallCounter::Reset() {
count = 0;
time = base::TimeDelta();
}
// static
void RuntimeCallStats::Enter(Isolate* isolate, RuntimeCallTimer* timer,
CounterId counter_id) {
RuntimeCallStats* stats = isolate->counters()->runtime_call_stats();
RuntimeCallCounter* counter = &(stats->*counter_id);
timer->Start(counter, stats->current_timer_);
stats->current_timer_ = timer;
}
// static
void RuntimeCallStats::Leave(Isolate* isolate, RuntimeCallTimer* timer) {
RuntimeCallStats* stats = isolate->counters()->runtime_call_stats();
if (stats->current_timer_ == timer) {
stats->current_timer_ = timer->Stop();
} else {
// Must be a Threading cctest. Walk the chain of Timers to find the
// buried one that's leaving. We don't care about keeping nested timings
// accurate, just avoid crashing by keeping the chain intact.
RuntimeCallTimer* next = stats->current_timer_;
while (next->parent_ != timer) next = next->parent_;
next->parent_ = timer->Stop();
}
}
// static
void RuntimeCallStats::CorrectCurrentCounterId(Isolate* isolate,
CounterId counter_id) {
RuntimeCallStats* stats = isolate->counters()->runtime_call_stats();
DCHECK_NOT_NULL(stats->current_timer_);
RuntimeCallCounter* counter = &(stats->*counter_id);
stats->current_timer_->counter_ = counter;
}
void RuntimeCallStats::Print(std::ostream& os) {
RuntimeCallStatEntries entries;
#define PRINT_COUNTER(name) entries.Add(&this->name);
FOR_EACH_MANUAL_COUNTER(PRINT_COUNTER)
#undef PRINT_COUNTER
#define PRINT_COUNTER(name, nargs, ressize) entries.Add(&this->Runtime_##name);
FOR_EACH_INTRINSIC(PRINT_COUNTER)
#undef PRINT_COUNTER
#define PRINT_COUNTER(name) entries.Add(&this->Builtin_##name);
BUILTIN_LIST_C(PRINT_COUNTER)
#undef PRINT_COUNTER
#define PRINT_COUNTER(name) entries.Add(&this->API_##name);
FOR_EACH_API_COUNTER(PRINT_COUNTER)
#undef PRINT_COUNTER
#define PRINT_COUNTER(name) entries.Add(&this->Handler_##name);
FOR_EACH_HANDLER_COUNTER(PRINT_COUNTER)
#undef PRINT_COUNTER
entries.Print(os);
}
void RuntimeCallStats::Reset() {
if (!FLAG_runtime_call_stats) return;
#define RESET_COUNTER(name) this->name.Reset();
FOR_EACH_MANUAL_COUNTER(RESET_COUNTER)
#undef RESET_COUNTER
#define RESET_COUNTER(name, nargs, result_size) this->Runtime_##name.Reset();
FOR_EACH_INTRINSIC(RESET_COUNTER)
#undef RESET_COUNTER
#define RESET_COUNTER(name) this->Builtin_##name.Reset();
BUILTIN_LIST_C(RESET_COUNTER)
#undef RESET_COUNTER
#define RESET_COUNTER(name) this->API_##name.Reset();
FOR_EACH_API_COUNTER(RESET_COUNTER)
#undef RESET_COUNTER
#define RESET_COUNTER(name) this->Handler_##name.Reset();
FOR_EACH_HANDLER_COUNTER(RESET_COUNTER)
#undef RESET_COUNTER
}
} // namespace internal
} // namespace v8