v8/src/conversions.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1410 lines
45 KiB
C++
Raw Normal View History

// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/conversions.h"
#include <limits.h>
#include <stdarg.h>
#include <cmath>
#include "src/allocation.h"
#include "src/assert-scope.h"
#include "src/char-predicates-inl.h"
#include "src/dtoa.h"
#include "src/handles.h"
#include "src/heap/factory.h"
#include "src/objects-inl.h"
#include "src/objects/bigint.h"
#include "src/strtod.h"
#include "src/unicode-cache-inl.h"
#include "src/utils.h"
#if defined(_STLP_VENDOR_CSTD)
// STLPort doesn't import fpclassify into the std namespace.
#define FPCLASSIFY_NAMESPACE
#else
#define FPCLASSIFY_NAMESPACE std
#endif
namespace v8 {
namespace internal {
namespace {
inline double JunkStringValue() {
return bit_cast<double, uint64_t>(kQuietNaNMask);
}
inline double SignedZero(bool negative) {
return negative ? uint64_to_double(Double::kSignMask) : 0.0;
}
inline bool isDigit(int x, int radix) {
return (x >= '0' && x <= '9' && x < '0' + radix) ||
(radix > 10 && x >= 'a' && x < 'a' + radix - 10) ||
(radix > 10 && x >= 'A' && x < 'A' + radix - 10);
}
inline bool isBinaryDigit(int x) { return x == '0' || x == '1'; }
template <class Iterator, class EndMark>
bool SubStringEquals(Iterator* current, EndMark end, const char* substring) {
DCHECK(**current == *substring);
for (substring++; *substring != '\0'; substring++) {
++*current;
if (*current == end || **current != *substring) return false;
}
++*current;
return true;
}
// Returns true if a nonspace character has been found and false if the
// end was been reached before finding a nonspace character.
template <class Iterator, class EndMark>
inline bool AdvanceToNonspace(UnicodeCache* unicode_cache, Iterator* current,
EndMark end) {
while (*current != end) {
if (!unicode_cache->IsWhiteSpaceOrLineTerminator(**current)) return true;
++*current;
}
return false;
}
// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
template <int radix_log_2, class Iterator, class EndMark>
double InternalStringToIntDouble(UnicodeCache* unicode_cache, Iterator current,
EndMark end, bool negative,
bool allow_trailing_junk) {
DCHECK(current != end);
// Skip leading 0s.
while (*current == '0') {
++current;
if (current == end) return SignedZero(negative);
}
int64_t number = 0;
int exponent = 0;
const int radix = (1 << radix_log_2);
int lim_0 = '0' + (radix < 10 ? radix : 10);
int lim_a = 'a' + (radix - 10);
int lim_A = 'A' + (radix - 10);
do {
int digit;
if (*current >= '0' && *current < lim_0) {
digit = static_cast<char>(*current) - '0';
} else if (*current >= 'a' && *current < lim_a) {
digit = static_cast<char>(*current) - 'a' + 10;
} else if (*current >= 'A' && *current < lim_A) {
digit = static_cast<char>(*current) - 'A' + 10;
} else {
if (allow_trailing_junk ||
!AdvanceToNonspace(unicode_cache, &current, end)) {
break;
} else {
return JunkStringValue();
}
}
number = number * radix + digit;
int overflow = static_cast<int>(number >> 53);
if (overflow != 0) {
// Overflow occurred. Need to determine which direction to round the
// result.
int overflow_bits_count = 1;
while (overflow > 1) {
overflow_bits_count++;
overflow >>= 1;
}
int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
number >>= overflow_bits_count;
exponent = overflow_bits_count;
bool zero_tail = true;
while (true) {
++current;
if (current == end || !isDigit(*current, radix)) break;
zero_tail = zero_tail && *current == '0';
exponent += radix_log_2;
}
if (!allow_trailing_junk &&
AdvanceToNonspace(unicode_cache, &current, end)) {
return JunkStringValue();
}
int middle_value = (1 << (overflow_bits_count - 1));
if (dropped_bits > middle_value) {
number++; // Rounding up.
} else if (dropped_bits == middle_value) {
// Rounding to even to consistency with decimals: half-way case rounds
// up if significant part is odd and down otherwise.
if ((number & 1) != 0 || !zero_tail) {
number++; // Rounding up.
}
}
// Rounding up may cause overflow.
if ((number & (static_cast<int64_t>(1) << 53)) != 0) {
exponent++;
number >>= 1;
}
break;
}
++current;
} while (current != end);
DCHECK(number < ((int64_t)1 << 53));
DCHECK(static_cast<int64_t>(static_cast<double>(number)) == number);
if (exponent == 0) {
if (negative) {
if (number == 0) return -0.0;
number = -number;
}
return static_cast<double>(number);
}
DCHECK_NE(number, 0);
return std::ldexp(static_cast<double>(negative ? -number : number), exponent);
}
// ES6 18.2.5 parseInt(string, radix) (with NumberParseIntHelper subclass);
// and BigInt parsing cases from https://tc39.github.io/proposal-bigint/
// (with StringToBigIntHelper subclass).
class StringToIntHelper {
public:
StringToIntHelper(Isolate* isolate, Handle<String> subject, int radix)
: isolate_(isolate), subject_(subject), radix_(radix) {
DCHECK(subject->IsFlat());
}
// Used for the StringToBigInt operation.
StringToIntHelper(Isolate* isolate, Handle<String> subject)
: isolate_(isolate), subject_(subject) {
DCHECK(subject->IsFlat());
}
// Used for parsing BigInt literals, where the input is a Zone-allocated
// buffer of one-byte digits, along with an optional radix prefix.
StringToIntHelper(Isolate* isolate, const uint8_t* subject, int length)
: isolate_(isolate), raw_one_byte_subject_(subject), length_(length) {}
virtual ~StringToIntHelper() {}
protected:
// Subclasses must implement these:
virtual void AllocateResult() = 0;
virtual void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) = 0;
// Subclasses must call this to do all the work.
void ParseInt();
// Subclasses may override this.
virtual void HandleSpecialCases() {}
// Subclass constructors should call these for configuration before calling
// ParseInt().
void set_allow_binary_and_octal_prefixes() {
allow_binary_and_octal_prefixes_ = true;
}
void set_disallow_trailing_junk() { allow_trailing_junk_ = false; }
bool IsOneByte() const {
return raw_one_byte_subject_ != nullptr ||
subject_->IsOneByteRepresentationUnderneath();
}
Vector<const uint8_t> GetOneByteVector() {
if (raw_one_byte_subject_ != nullptr) {
return Vector<const uint8_t>(raw_one_byte_subject_, length_);
}
return subject_->GetFlatContent().ToOneByteVector();
}
Vector<const uc16> GetTwoByteVector() {
return subject_->GetFlatContent().ToUC16Vector();
}
// Subclasses get access to internal state:
enum State { kRunning, kError, kJunk, kEmpty, kZero, kDone };
enum class Sign { kNegative, kPositive, kNone };
Isolate* isolate() { return isolate_; }
int radix() { return radix_; }
int cursor() { return cursor_; }
int length() { return length_; }
bool negative() { return sign_ == Sign::kNegative; }
Sign sign() { return sign_; }
State state() { return state_; }
void set_state(State state) { state_ = state; }
private:
template <class Char>
void DetectRadixInternal(Char current, int length);
template <class Char>
void ParseInternal(Char start);
Isolate* isolate_;
Handle<String> subject_;
const uint8_t* raw_one_byte_subject_ = nullptr;
int radix_ = 0;
int cursor_ = 0;
int length_ = 0;
Sign sign_ = Sign::kNone;
bool leading_zero_ = false;
bool allow_binary_and_octal_prefixes_ = false;
bool allow_trailing_junk_ = true;
State state_ = kRunning;
};
void StringToIntHelper::ParseInt() {
{
DisallowHeapAllocation no_gc;
if (IsOneByte()) {
Vector<const uint8_t> vector = GetOneByteVector();
DetectRadixInternal(vector.start(), vector.length());
} else {
Vector<const uc16> vector = GetTwoByteVector();
DetectRadixInternal(vector.start(), vector.length());
}
}
if (state_ != kRunning) return;
AllocateResult();
HandleSpecialCases();
if (state_ != kRunning) return;
{
DisallowHeapAllocation no_gc;
if (IsOneByte()) {
Vector<const uint8_t> vector = GetOneByteVector();
DCHECK_EQ(length_, vector.length());
ParseInternal(vector.start());
} else {
Vector<const uc16> vector = GetTwoByteVector();
DCHECK_EQ(length_, vector.length());
ParseInternal(vector.start());
}
}
DCHECK_NE(state_, kRunning);
}
template <class Char>
void StringToIntHelper::DetectRadixInternal(Char current, int length) {
Char start = current;
length_ = length;
Char end = start + length;
UnicodeCache* unicode_cache = isolate_->unicode_cache();
if (!AdvanceToNonspace(unicode_cache, &current, end)) {
return set_state(kEmpty);
}
if (*current == '+') {
// Ignore leading sign; skip following spaces.
++current;
if (current == end) {
return set_state(kJunk);
}
sign_ = Sign::kPositive;
} else if (*current == '-') {
++current;
if (current == end) {
return set_state(kJunk);
}
sign_ = Sign::kNegative;
}
if (radix_ == 0) {
// Radix detection.
radix_ = 10;
if (*current == '0') {
++current;
if (current == end) return set_state(kZero);
if (*current == 'x' || *current == 'X') {
radix_ = 16;
++current;
if (current == end) return set_state(kJunk);
} else if (allow_binary_and_octal_prefixes_ &&
(*current == 'o' || *current == 'O')) {
radix_ = 8;
++current;
if (current == end) return set_state(kJunk);
} else if (allow_binary_and_octal_prefixes_ &&
(*current == 'b' || *current == 'B')) {
radix_ = 2;
++current;
if (current == end) return set_state(kJunk);
} else {
leading_zero_ = true;
}
}
} else if (radix_ == 16) {
if (*current == '0') {
// Allow "0x" prefix.
++current;
if (current == end) return set_state(kZero);
if (*current == 'x' || *current == 'X') {
++current;
if (current == end) return set_state(kJunk);
} else {
leading_zero_ = true;
}
}
}
// Skip leading zeros.
while (*current == '0') {
leading_zero_ = true;
++current;
if (current == end) return set_state(kZero);
}
if (!leading_zero_ && !isDigit(*current, radix_)) {
return set_state(kJunk);
}
DCHECK(radix_ >= 2 && radix_ <= 36);
STATIC_ASSERT(String::kMaxLength <= INT_MAX);
cursor_ = static_cast<int>(current - start);
}
template <class Char>
void StringToIntHelper::ParseInternal(Char start) {
Char current = start + cursor_;
Char end = start + length_;
// The following code causes accumulating rounding error for numbers greater
// than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
// 16, or 32, then mathInt may be an implementation-dependent approximation to
// the mathematical integer value" (15.1.2.2).
int lim_0 = '0' + (radix_ < 10 ? radix_ : 10);
int lim_a = 'a' + (radix_ - 10);
int lim_A = 'A' + (radix_ - 10);
// NOTE: The code for computing the value may seem a bit complex at
// first glance. It is structured to use 32-bit multiply-and-add
// loops as long as possible to avoid losing precision.
bool done = false;
do {
// Parse the longest part of the string starting at {current}
// possible while keeping the multiplier, and thus the part
// itself, within 32 bits.
uint32_t part = 0, multiplier = 1;
while (true) {
uint32_t d;
if (*current >= '0' && *current < lim_0) {
d = *current - '0';
} else if (*current >= 'a' && *current < lim_a) {
d = *current - 'a' + 10;
} else if (*current >= 'A' && *current < lim_A) {
d = *current - 'A' + 10;
} else {
done = true;
break;
}
// Update the value of the part as long as the multiplier fits
// in 32 bits. When we can't guarantee that the next iteration
// will not overflow the multiplier, we stop parsing the part
// by leaving the loop.
const uint32_t kMaximumMultiplier = 0xFFFFFFFFU / 36;
uint32_t m = multiplier * static_cast<uint32_t>(radix_);
if (m > kMaximumMultiplier) break;
part = part * radix_ + d;
multiplier = m;
DCHECK(multiplier > part);
++current;
if (current == end) {
done = true;
break;
}
}
// Update the value and skip the part in the string.
ResultMultiplyAdd(multiplier, part);
} while (!done);
if (!allow_trailing_junk_ &&
AdvanceToNonspace(isolate_->unicode_cache(), &current, end)) {
return set_state(kJunk);
}
return set_state(kDone);
}
class NumberParseIntHelper : public StringToIntHelper {
public:
NumberParseIntHelper(Isolate* isolate, Handle<String> string, int radix)
: StringToIntHelper(isolate, string, radix) {}
double GetResult() {
ParseInt();
switch (state()) {
case kJunk:
case kEmpty:
return JunkStringValue();
case kZero:
return SignedZero(negative());
case kDone:
return negative() ? -result_ : result_;
case kError:
case kRunning:
break;
}
UNREACHABLE();
}
protected:
virtual void AllocateResult() {}
virtual void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) {
result_ = result_ * multiplier + part;
}
private:
virtual void HandleSpecialCases() {
bool is_power_of_two = base::bits::IsPowerOfTwo(radix());
if (!is_power_of_two && radix() != 10) return;
DisallowHeapAllocation no_gc;
if (IsOneByte()) {
Vector<const uint8_t> vector = GetOneByteVector();
DCHECK_EQ(length(), vector.length());
result_ = is_power_of_two ? HandlePowerOfTwoCase(vector.start())
: HandleBaseTenCase(vector.start());
} else {
Vector<const uc16> vector = GetTwoByteVector();
DCHECK_EQ(length(), vector.length());
result_ = is_power_of_two ? HandlePowerOfTwoCase(vector.start())
: HandleBaseTenCase(vector.start());
}
set_state(kDone);
}
template <class Char>
double HandlePowerOfTwoCase(Char start) {
Char current = start + cursor();
Char end = start + length();
UnicodeCache* unicode_cache = isolate()->unicode_cache();
const bool allow_trailing_junk = true;
// GetResult() will take care of the sign bit, so ignore it for now.
const bool negative = false;
switch (radix()) {
case 2:
return InternalStringToIntDouble<1>(unicode_cache, current, end,
negative, allow_trailing_junk);
case 4:
return InternalStringToIntDouble<2>(unicode_cache, current, end,
negative, allow_trailing_junk);
case 8:
return InternalStringToIntDouble<3>(unicode_cache, current, end,
negative, allow_trailing_junk);
case 16:
return InternalStringToIntDouble<4>(unicode_cache, current, end,
negative, allow_trailing_junk);
case 32:
return InternalStringToIntDouble<5>(unicode_cache, current, end,
negative, allow_trailing_junk);
default:
UNREACHABLE();
}
}
template <class Char>
double HandleBaseTenCase(Char start) {
// Parsing with strtod.
Char current = start + cursor();
Char end = start + length();
const int kMaxSignificantDigits = 309; // Doubles are less than 1.8e308.
// The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
// end.
const int kBufferSize = kMaxSignificantDigits + 2;
char buffer[kBufferSize];
int buffer_pos = 0;
while (*current >= '0' && *current <= '9') {
if (buffer_pos <= kMaxSignificantDigits) {
// If the number has more than kMaxSignificantDigits it will be parsed
// as infinity.
DCHECK_LT(buffer_pos, kBufferSize);
buffer[buffer_pos++] = static_cast<char>(*current);
}
++current;
if (current == end) break;
}
SLOW_DCHECK(buffer_pos < kBufferSize);
buffer[buffer_pos] = '\0';
Vector<const char> buffer_vector(buffer, buffer_pos);
return Strtod(buffer_vector, 0);
}
double result_ = 0;
};
// Converts a string to a double value. Assumes the Iterator supports
// the following operations:
// 1. current == end (other ops are not allowed), current != end.
// 2. *current - gets the current character in the sequence.
// 3. ++current (advances the position).
template <class Iterator, class EndMark>
double InternalStringToDouble(UnicodeCache* unicode_cache, Iterator current,
EndMark end, int flags, double empty_string_val) {
// To make sure that iterator dereferencing is valid the following
// convention is used:
// 1. Each '++current' statement is followed by check for equality to 'end'.
// 2. If AdvanceToNonspace returned false then current == end.
// 3. If 'current' becomes be equal to 'end' the function returns or goes to
// 'parsing_done'.
// 4. 'current' is not dereferenced after the 'parsing_done' label.
// 5. Code before 'parsing_done' may rely on 'current != end'.
if (!AdvanceToNonspace(unicode_cache, &current, end)) {
return empty_string_val;
}
const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;
// Maximum number of significant digits in decimal representation.
// The longest possible double in decimal representation is
// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
// (768 digits). If we parse a number whose first digits are equal to a
// mean of 2 adjacent doubles (that could have up to 769 digits) the result
// must be rounded to the bigger one unless the tail consists of zeros, so
// we don't need to preserve all the digits.
const int kMaxSignificantDigits = 772;
// The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
const int kBufferSize = kMaxSignificantDigits + 10;
char buffer[kBufferSize]; // NOLINT: size is known at compile time.
int buffer_pos = 0;
// Exponent will be adjusted if insignificant digits of the integer part
// or insignificant leading zeros of the fractional part are dropped.
int exponent = 0;
int significant_digits = 0;
int insignificant_digits = 0;
bool nonzero_digit_dropped = false;
enum Sign { NONE, NEGATIVE, POSITIVE };
Sign sign = NONE;
if (*current == '+') {
// Ignore leading sign.
++current;
if (current == end) return JunkStringValue();
sign = POSITIVE;
} else if (*current == '-') {
++current;
if (current == end) return JunkStringValue();
sign = NEGATIVE;
}
static const char kInfinityString[] = "Infinity";
if (*current == kInfinityString[0]) {
if (!SubStringEquals(&current, end, kInfinityString)) {
return JunkStringValue();
}
if (!allow_trailing_junk &&
AdvanceToNonspace(unicode_cache, &current, end)) {
return JunkStringValue();
}
DCHECK_EQ(buffer_pos, 0);
return (sign == NEGATIVE) ? -V8_INFINITY : V8_INFINITY;
}
bool leading_zero = false;
if (*current == '0') {
++current;
if (current == end) return SignedZero(sign == NEGATIVE);
leading_zero = true;
// It could be hexadecimal value.
if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
++current;
if (current == end || !isDigit(*current, 16) || sign != NONE) {
return JunkStringValue(); // "0x".
}
return InternalStringToIntDouble<4>(unicode_cache, current, end, false,
allow_trailing_junk);
// It could be an explicit octal value.
} else if ((flags & ALLOW_OCTAL) && (*current == 'o' || *current == 'O')) {
++current;
if (current == end || !isDigit(*current, 8) || sign != NONE) {
return JunkStringValue(); // "0o".
}
return InternalStringToIntDouble<3>(unicode_cache, current, end, false,
allow_trailing_junk);
// It could be a binary value.
} else if ((flags & ALLOW_BINARY) && (*current == 'b' || *current == 'B')) {
++current;
if (current == end || !isBinaryDigit(*current) || sign != NONE) {
return JunkStringValue(); // "0b".
}
return InternalStringToIntDouble<1>(unicode_cache, current, end, false,
allow_trailing_junk);
}
// Ignore leading zeros in the integer part.
while (*current == '0') {
++current;
if (current == end) return SignedZero(sign == NEGATIVE);
}
}
bool octal = leading_zero && (flags & ALLOW_IMPLICIT_OCTAL) != 0;
// Copy significant digits of the integer part (if any) to the buffer.
while (*current >= '0' && *current <= '9') {
if (significant_digits < kMaxSignificantDigits) {
DCHECK_LT(buffer_pos, kBufferSize);
buffer[buffer_pos++] = static_cast<char>(*current);
significant_digits++;
// Will later check if it's an octal in the buffer.
} else {
insignificant_digits++; // Move the digit into the exponential part.
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
}
octal = octal && *current < '8';
++current;
if (current == end) goto parsing_done;
}
if (significant_digits == 0) {
octal = false;
}
if (*current == '.') {
if (octal && !allow_trailing_junk) return JunkStringValue();
if (octal) goto parsing_done;
++current;
if (current == end) {
if (significant_digits == 0 && !leading_zero) {
return JunkStringValue();
} else {
goto parsing_done;
}
}
if (significant_digits == 0) {
// octal = false;
// Integer part consists of 0 or is absent. Significant digits start after
// leading zeros (if any).
while (*current == '0') {
++current;
if (current == end) return SignedZero(sign == NEGATIVE);
exponent--; // Move this 0 into the exponent.
}
}
// There is a fractional part. We don't emit a '.', but adjust the exponent
// instead.
while (*current >= '0' && *current <= '9') {
if (significant_digits < kMaxSignificantDigits) {
DCHECK_LT(buffer_pos, kBufferSize);
buffer[buffer_pos++] = static_cast<char>(*current);
significant_digits++;
exponent--;
} else {
// Ignore insignificant digits in the fractional part.
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
}
++current;
if (current == end) goto parsing_done;
}
}
if (!leading_zero && exponent == 0 && significant_digits == 0) {
// If leading_zeros is true then the string contains zeros.
// If exponent < 0 then string was [+-]\.0*...
// If significant_digits != 0 the string is not equal to 0.
// Otherwise there are no digits in the string.
return JunkStringValue();
}
// Parse exponential part.
if (*current == 'e' || *current == 'E') {
if (octal) return JunkStringValue();
++current;
if (current == end) {
if (allow_trailing_junk) {
goto parsing_done;
} else {
return JunkStringValue();
}
}
char sign = '+';
if (*current == '+' || *current == '-') {
sign = static_cast<char>(*current);
++current;
if (current == end) {
if (allow_trailing_junk) {
goto parsing_done;
} else {
return JunkStringValue();
}
}
}
if (current == end || *current < '0' || *current > '9') {
if (allow_trailing_junk) {
goto parsing_done;
} else {
return JunkStringValue();
}
}
const int max_exponent = INT_MAX / 2;
DCHECK(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
int num = 0;
do {
// Check overflow.
int digit = *current - '0';
if (num >= max_exponent / 10 &&
!(num == max_exponent / 10 && digit <= max_exponent % 10)) {
num = max_exponent;
} else {
num = num * 10 + digit;
}
++current;
} while (current != end && *current >= '0' && *current <= '9');
exponent += (sign == '-' ? -num : num);
}
if (!allow_trailing_junk && AdvanceToNonspace(unicode_cache, &current, end)) {
return JunkStringValue();
}
parsing_done:
exponent += insignificant_digits;
if (octal) {
return InternalStringToIntDouble<3>(unicode_cache, buffer,
buffer + buffer_pos, sign == NEGATIVE,
allow_trailing_junk);
}
if (nonzero_digit_dropped) {
buffer[buffer_pos++] = '1';
exponent--;
}
SLOW_DCHECK(buffer_pos < kBufferSize);
buffer[buffer_pos] = '\0';
double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
return (sign == NEGATIVE) ? -converted : converted;
}
} // namespace
double StringToDouble(UnicodeCache* unicode_cache,
const char* str, int flags, double empty_string_val) {
// We cast to const uint8_t* here to avoid instantiating the
// InternalStringToDouble() template for const char* as well.
const uint8_t* start = reinterpret_cast<const uint8_t*>(str);
const uint8_t* end = start + StrLength(str);
return InternalStringToDouble(unicode_cache, start, end, flags,
empty_string_val);
}
double StringToDouble(UnicodeCache* unicode_cache,
Vector<const uint8_t> str,
int flags,
double empty_string_val) {
// We cast to const uint8_t* here to avoid instantiating the
// InternalStringToDouble() template for const char* as well.
const uint8_t* start = reinterpret_cast<const uint8_t*>(str.start());
const uint8_t* end = start + str.length();
return InternalStringToDouble(unicode_cache, start, end, flags,
empty_string_val);
}
double StringToDouble(UnicodeCache* unicode_cache,
Vector<const uc16> str,
int flags,
double empty_string_val) {
const uc16* end = str.start() + str.length();
return InternalStringToDouble(unicode_cache, str.start(), end, flags,
empty_string_val);
}
double StringToInt(Isolate* isolate, Handle<String> string, int radix) {
NumberParseIntHelper helper(isolate, string, radix);
return helper.GetResult();
}
class StringToBigIntHelper : public StringToIntHelper {
public:
enum class Behavior { kStringToBigInt, kLiteral };
// Used for StringToBigInt operation (BigInt constructor and == operator).
StringToBigIntHelper(Isolate* isolate, Handle<String> string)
: StringToIntHelper(isolate, string),
behavior_(Behavior::kStringToBigInt) {
set_allow_binary_and_octal_prefixes();
set_disallow_trailing_junk();
}
// Used for parsing BigInt literals, where the input is a buffer of
// one-byte ASCII digits, along with an optional radix prefix.
StringToBigIntHelper(Isolate* isolate, const uint8_t* string, int length)
: StringToIntHelper(isolate, string, length),
behavior_(Behavior::kLiteral) {
set_allow_binary_and_octal_prefixes();
}
MaybeHandle<BigInt> GetResult() {
ParseInt();
if (behavior_ == Behavior::kStringToBigInt && sign() != Sign::kNone &&
radix() != 10) {
return MaybeHandle<BigInt>();
}
if (state() == kEmpty) {
if (behavior_ == Behavior::kStringToBigInt) {
set_state(kZero);
} else {
UNREACHABLE();
}
}
switch (state()) {
case kJunk:
if (should_throw() == kThrowOnError) {
THROW_NEW_ERROR(isolate(),
NewSyntaxError(MessageTemplate::kBigIntInvalidString),
BigInt);
} else {
DCHECK_EQ(should_throw(), kDontThrow);
return MaybeHandle<BigInt>();
}
case kZero:
return BigInt::Zero(isolate());
case kError:
DCHECK_EQ(should_throw() == kThrowOnError,
isolate()->has_pending_exception());
return MaybeHandle<BigInt>();
case kDone:
return BigInt::Finalize(result_, negative());
case kEmpty:
case kRunning:
break;
}
UNREACHABLE();
}
protected:
virtual void AllocateResult() {
// We have to allocate a BigInt that's big enough to fit the result.
// Conseratively assume that all remaining digits are significant.
// Optimization opportunity: Would it makes sense to scan for trailing
// junk before allocating the result?
int charcount = length() - cursor();
// For literals, we pretenure the allocated BigInt, since it's about
// to be stored in the interpreter's constants array.
PretenureFlag pretenure =
behavior_ == Behavior::kLiteral ? TENURED : NOT_TENURED;
MaybeHandle<FreshlyAllocatedBigInt> maybe = BigInt::AllocateFor(
isolate(), radix(), charcount, should_throw(), pretenure);
if (!maybe.ToHandle(&result_)) {
set_state(kError);
}
}
virtual void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) {
BigInt::InplaceMultiplyAdd(result_, static_cast<uintptr_t>(multiplier),
static_cast<uintptr_t>(part));
}
private:
ShouldThrow should_throw() const { return kDontThrow; }
Handle<FreshlyAllocatedBigInt> result_;
Behavior behavior_;
};
MaybeHandle<BigInt> StringToBigInt(Isolate* isolate, Handle<String> string) {
string = String::Flatten(string);
StringToBigIntHelper helper(isolate, string);
return helper.GetResult();
}
MaybeHandle<BigInt> BigIntLiteral(Isolate* isolate, const char* string) {
StringToBigIntHelper helper(isolate, reinterpret_cast<const uint8_t*>(string),
static_cast<int>(strlen(string)));
return helper.GetResult();
}
const char* DoubleToCString(double v, Vector<char> buffer) {
switch (FPCLASSIFY_NAMESPACE::fpclassify(v)) {
case FP_NAN: return "NaN";
case FP_INFINITE: return (v < 0.0 ? "-Infinity" : "Infinity");
case FP_ZERO: return "0";
default: {
SimpleStringBuilder builder(buffer.start(), buffer.length());
int decimal_point;
int sign;
const int kV8DtoaBufferCapacity = kBase10MaximalLength + 1;
char decimal_rep[kV8DtoaBufferCapacity];
int length;
DoubleToAscii(v, DTOA_SHORTEST, 0,
Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
&sign, &length, &decimal_point);
if (sign) builder.AddCharacter('-');
if (length <= decimal_point && decimal_point <= 21) {
// ECMA-262 section 9.8.1 step 6.
builder.AddString(decimal_rep);
builder.AddPadding('0', decimal_point - length);
} else if (0 < decimal_point && decimal_point <= 21) {
// ECMA-262 section 9.8.1 step 7.
builder.AddSubstring(decimal_rep, decimal_point);
builder.AddCharacter('.');
builder.AddString(decimal_rep + decimal_point);
} else if (decimal_point <= 0 && decimal_point > -6) {
// ECMA-262 section 9.8.1 step 8.
builder.AddString("0.");
builder.AddPadding('0', -decimal_point);
builder.AddString(decimal_rep);
} else {
// ECMA-262 section 9.8.1 step 9 and 10 combined.
builder.AddCharacter(decimal_rep[0]);
if (length != 1) {
builder.AddCharacter('.');
builder.AddString(decimal_rep + 1);
}
builder.AddCharacter('e');
builder.AddCharacter((decimal_point >= 0) ? '+' : '-');
int exponent = decimal_point - 1;
if (exponent < 0) exponent = -exponent;
builder.AddDecimalInteger(exponent);
}
return builder.Finalize();
}
}
}
const char* IntToCString(int n, Vector<char> buffer) {
bool negative = false;
if (n < 0) {
// We must not negate the most negative int.
if (n == kMinInt) return DoubleToCString(n, buffer);
negative = true;
n = -n;
}
// Build the string backwards from the least significant digit.
int i = buffer.length();
buffer[--i] = '\0';
do {
buffer[--i] = '0' + (n % 10);
n /= 10;
} while (n);
if (negative) buffer[--i] = '-';
return buffer.start() + i;
}
char* DoubleToFixedCString(double value, int f) {
const int kMaxDigitsBeforePoint = 21;
const double kFirstNonFixed = 1e21;
DCHECK_GE(f, 0);
DCHECK_LE(f, kMaxFractionDigits);
bool negative = false;
double abs_value = value;
if (value < 0) {
abs_value = -value;
negative = true;
}
// If abs_value has more than kMaxDigitsBeforePoint digits before the point
// use the non-fixed conversion routine.
if (abs_value >= kFirstNonFixed) {
char arr[kMaxFractionDigits];
Vector<char> buffer(arr, arraysize(arr));
return StrDup(DoubleToCString(value, buffer));
}
// Find a sufficiently precise decimal representation of n.
int decimal_point;
int sign;
// Add space for the '\0' byte.
const int kDecimalRepCapacity =
kMaxDigitsBeforePoint + kMaxFractionDigits + 1;
char decimal_rep[kDecimalRepCapacity];
int decimal_rep_length;
DoubleToAscii(value, DTOA_FIXED, f,
Vector<char>(decimal_rep, kDecimalRepCapacity),
&sign, &decimal_rep_length, &decimal_point);
// Create a representation that is padded with zeros if needed.
int zero_prefix_length = 0;
int zero_postfix_length = 0;
if (decimal_point <= 0) {
zero_prefix_length = -decimal_point + 1;
decimal_point = 1;
}
if (zero_prefix_length + decimal_rep_length < decimal_point + f) {
zero_postfix_length = decimal_point + f - decimal_rep_length -
zero_prefix_length;
}
unsigned rep_length =
zero_prefix_length + decimal_rep_length + zero_postfix_length;
SimpleStringBuilder rep_builder(rep_length + 1);
rep_builder.AddPadding('0', zero_prefix_length);
rep_builder.AddString(decimal_rep);
rep_builder.AddPadding('0', zero_postfix_length);
char* rep = rep_builder.Finalize();
// Create the result string by appending a minus and putting in a
// decimal point if needed.
unsigned result_size = decimal_point + f + 2;
SimpleStringBuilder builder(result_size + 1);
if (negative) builder.AddCharacter('-');
builder.AddSubstring(rep, decimal_point);
if (f > 0) {
builder.AddCharacter('.');
builder.AddSubstring(rep + decimal_point, f);
}
DeleteArray(rep);
return builder.Finalize();
}
static char* CreateExponentialRepresentation(char* decimal_rep,
int exponent,
bool negative,
int significant_digits) {
bool negative_exponent = false;
if (exponent < 0) {
negative_exponent = true;
exponent = -exponent;
}
// Leave room in the result for appending a minus, for a period, the
// letter 'e', a minus or a plus depending on the exponent, and a
// three digit exponent.
unsigned result_size = significant_digits + 7;
SimpleStringBuilder builder(result_size + 1);
if (negative) builder.AddCharacter('-');
builder.AddCharacter(decimal_rep[0]);
if (significant_digits != 1) {
builder.AddCharacter('.');
builder.AddString(decimal_rep + 1);
int rep_length = StrLength(decimal_rep);
builder.AddPadding('0', significant_digits - rep_length);
}
builder.AddCharacter('e');
builder.AddCharacter(negative_exponent ? '-' : '+');
builder.AddDecimalInteger(exponent);
return builder.Finalize();
}
char* DoubleToExponentialCString(double value, int f) {
// f might be -1 to signal that f was undefined in JavaScript.
DCHECK(f >= -1 && f <= kMaxFractionDigits);
bool negative = false;
if (value < 0) {
value = -value;
negative = true;
}
// Find a sufficiently precise decimal representation of n.
int decimal_point;
int sign;
// f corresponds to the digits after the point. There is always one digit
// before the point. The number of requested_digits equals hence f + 1.
// And we have to add one character for the null-terminator.
const int kV8DtoaBufferCapacity = kMaxFractionDigits + 1 + 1;
// Make sure that the buffer is big enough, even if we fall back to the
// shortest representation (which happens when f equals -1).
DCHECK_LE(kBase10MaximalLength, kMaxFractionDigits + 1);
char decimal_rep[kV8DtoaBufferCapacity];
int decimal_rep_length;
if (f == -1) {
DoubleToAscii(value, DTOA_SHORTEST, 0,
Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
&sign, &decimal_rep_length, &decimal_point);
f = decimal_rep_length - 1;
} else {
DoubleToAscii(value, DTOA_PRECISION, f + 1,
Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
&sign, &decimal_rep_length, &decimal_point);
}
DCHECK_GT(decimal_rep_length, 0);
DCHECK(decimal_rep_length <= f + 1);
int exponent = decimal_point - 1;
char* result =
CreateExponentialRepresentation(decimal_rep, exponent, negative, f+1);
return result;
}
char* DoubleToPrecisionCString(double value, int p) {
const int kMinimalDigits = 1;
DCHECK(p >= kMinimalDigits && p <= kMaxFractionDigits);
USE(kMinimalDigits);
bool negative = false;
if (value < 0) {
value = -value;
negative = true;
}
// Find a sufficiently precise decimal representation of n.
int decimal_point;
int sign;
// Add one for the terminating null character.
const int kV8DtoaBufferCapacity = kMaxFractionDigits + 1;
char decimal_rep[kV8DtoaBufferCapacity];
int decimal_rep_length;
DoubleToAscii(value, DTOA_PRECISION, p,
Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
&sign, &decimal_rep_length, &decimal_point);
DCHECK(decimal_rep_length <= p);
int exponent = decimal_point - 1;
char* result = nullptr;
if (exponent < -6 || exponent >= p) {
result =
CreateExponentialRepresentation(decimal_rep, exponent, negative, p);
} else {
// Use fixed notation.
//
// Leave room in the result for appending a minus, a period and in
// the case where decimal_point is not positive for a zero in
// front of the period.
unsigned result_size = (decimal_point <= 0)
? -decimal_point + p + 3
: p + 2;
SimpleStringBuilder builder(result_size + 1);
if (negative) builder.AddCharacter('-');
if (decimal_point <= 0) {
builder.AddString("0.");
builder.AddPadding('0', -decimal_point);
builder.AddString(decimal_rep);
builder.AddPadding('0', p - decimal_rep_length);
} else {
const int m = Min(decimal_rep_length, decimal_point);
builder.AddSubstring(decimal_rep, m);
builder.AddPadding('0', decimal_point - decimal_rep_length);
if (decimal_point < p) {
builder.AddCharacter('.');
const int extra = negative ? 2 : 1;
if (decimal_rep_length > decimal_point) {
const int len = StrLength(decimal_rep + decimal_point);
const int n = Min(len, p - (builder.position() - extra));
builder.AddSubstring(decimal_rep + decimal_point, n);
}
builder.AddPadding('0', extra + (p - builder.position()));
}
}
result = builder.Finalize();
}
return result;
}
char* DoubleToRadixCString(double value, int radix) {
DCHECK(radix >= 2 && radix <= 36);
DCHECK(std::isfinite(value));
DCHECK_NE(0.0, value);
// Character array used for conversion.
static const char chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
// Temporary buffer for the result. We start with the decimal point in the
// middle and write to the left for the integer part and to the right for the
// fractional part. 1024 characters for the exponent and 52 for the mantissa
// either way, with additional space for sign, decimal point and string
// termination should be sufficient.
static const int kBufferSize = 2200;
char buffer[kBufferSize];
int integer_cursor = kBufferSize / 2;
int fraction_cursor = integer_cursor;
bool negative = value < 0;
if (negative) value = -value;
// Split the value into an integer part and a fractional part.
double integer = std::floor(value);
double fraction = value - integer;
// We only compute fractional digits up to the input double's precision.
double delta = 0.5 * (Double(value).NextDouble() - value);
delta = std::max(Double(0.0).NextDouble(), delta);
DCHECK_GT(delta, 0.0);
if (fraction > delta) {
// Insert decimal point.
buffer[fraction_cursor++] = '.';
do {
// Shift up by one digit.
fraction *= radix;
delta *= radix;
// Write digit.
int digit = static_cast<int>(fraction);
buffer[fraction_cursor++] = chars[digit];
// Calculate remainder.
fraction -= digit;
// Round to even.
if (fraction > 0.5 || (fraction == 0.5 && (digit & 1))) {
if (fraction + delta > 1) {
// We need to back trace already written digits in case of carry-over.
while (true) {
fraction_cursor--;
if (fraction_cursor == kBufferSize / 2) {
CHECK_EQ('.', buffer[fraction_cursor]);
// Carry over to the integer part.
integer += 1;
break;
}
char c = buffer[fraction_cursor];
// Reconstruct digit.
int digit = c > '9' ? (c - 'a' + 10) : (c - '0');
if (digit + 1 < radix) {
buffer[fraction_cursor++] = chars[digit + 1];
break;
}
}
break;
}
}
} while (fraction > delta);
}
// Compute integer digits. Fill unrepresented digits with zero.
while (Double(integer / radix).Exponent() > 0) {
integer /= radix;
buffer[--integer_cursor] = '0';
}
do {
double remainder = Modulo(integer, radix);
buffer[--integer_cursor] = chars[static_cast<int>(remainder)];
integer = (integer - remainder) / radix;
} while (integer > 0);
// Add sign and terminate string.
if (negative) buffer[--integer_cursor] = '-';
buffer[fraction_cursor++] = '\0';
DCHECK_LT(fraction_cursor, kBufferSize);
DCHECK_LE(0, integer_cursor);
// Allocate new string as return value.
char* result = NewArray<char>(fraction_cursor - integer_cursor);
memcpy(result, buffer + integer_cursor, fraction_cursor - integer_cursor);
return result;
}
// ES6 18.2.4 parseFloat(string)
double StringToDouble(UnicodeCache* unicode_cache, Handle<String> string,
int flags, double empty_string_val) {
Handle<String> flattened = String::Flatten(string);
{
DisallowHeapAllocation no_gc;
String::FlatContent flat = flattened->GetFlatContent();
DCHECK(flat.IsFlat());
if (flat.IsOneByte()) {
return StringToDouble(unicode_cache, flat.ToOneByteVector(), flags,
empty_string_val);
} else {
return StringToDouble(unicode_cache, flat.ToUC16Vector(), flags,
empty_string_val);
}
}
}
bool IsSpecialIndex(UnicodeCache* unicode_cache, String* string) {
// Max length of canonical double: -X.XXXXXXXXXXXXXXXXX-eXXX
const int kBufferSize = 24;
const int length = string->length();
if (length == 0 || length > kBufferSize) return false;
uint16_t buffer[kBufferSize];
String::WriteToFlat(string, buffer, 0, length);
// If the first char is not a digit or a '-' or we can't match 'NaN' or
// '(-)Infinity', bailout immediately.
int offset = 0;
if (!IsDecimalDigit(buffer[0])) {
if (buffer[0] == '-') {
if (length == 1) return false; // Just '-' is bad.
if (!IsDecimalDigit(buffer[1])) {
if (buffer[1] == 'I' && length == 9) {
// Allow matching of '-Infinity' below.
} else {
return false;
}
}
offset++;
} else if (buffer[0] == 'I' && length == 8) {
// Allow matching of 'Infinity' below.
} else if (buffer[0] == 'N' && length == 3) {
// Match NaN.
return buffer[1] == 'a' && buffer[2] == 'N';
} else {
return false;
}
}
// Expected fast path: key is an integer.
static const int kRepresentableIntegerLength = 15; // (-)XXXXXXXXXXXXXXX
if (length - offset <= kRepresentableIntegerLength) {
const int initial_offset = offset;
bool matches = true;
for (; offset < length; offset++) {
matches &= IsDecimalDigit(buffer[offset]);
}
if (matches) {
// Match 0 and -0.
if (buffer[initial_offset] == '0') return initial_offset == length - 1;
return true;
}
}
// Slow path: test DoubleToString(StringToDouble(string)) == string.
Vector<const uint16_t> vector(buffer, length);
double d = StringToDouble(unicode_cache, vector, NO_FLAGS);
if (std::isnan(d)) return false;
// Compute reverse string.
char reverse_buffer[kBufferSize + 1]; // Result will be /0 terminated.
Vector<char> reverse_vector(reverse_buffer, arraysize(reverse_buffer));
const char* reverse_string = DoubleToCString(d, reverse_vector);
for (int i = 0; i < length; ++i) {
if (static_cast<uint16_t>(reverse_string[i]) != buffer[i]) return false;
}
return true;
}
} // namespace internal
} // namespace v8