v8/src/ic.cc

2255 lines
76 KiB
C++
Raw Normal View History

// Copyright 2006-2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "accessors.h"
#include "api.h"
#include "arguments.h"
#include "codegen.h"
#include "execution.h"
#include "ic-inl.h"
#include "runtime.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
#ifdef DEBUG
static char TransitionMarkFromState(IC::State state) {
switch (state) {
case UNINITIALIZED: return '0';
case PREMONOMORPHIC: return 'P';
case MONOMORPHIC: return '1';
case MONOMORPHIC_PROTOTYPE_FAILURE: return '^';
case MEGAMORPHIC: return 'N';
// We never see the debugger states here, because the state is
// computed from the original code - not the patched code. Let
// these cases fall through to the unreachable code below.
case DEBUG_BREAK: break;
case DEBUG_PREPARE_STEP_IN: break;
}
UNREACHABLE();
return 0;
}
void IC::TraceIC(const char* type,
Handle<Object> name,
State old_state,
Code* new_target,
const char* extra_info) {
if (FLAG_trace_ic) {
State new_state = StateFrom(new_target,
Heap::undefined_value(),
Heap::undefined_value());
PrintF("[%s (%c->%c)%s", type,
TransitionMarkFromState(old_state),
TransitionMarkFromState(new_state),
extra_info);
name->Print();
PrintF("]\n");
}
}
#endif
IC::IC(FrameDepth depth) {
// To improve the performance of the (much used) IC code, we unfold
// a few levels of the stack frame iteration code. This yields a
// ~35% speedup when running DeltaBlue with the '--nouse-ic' flag.
const Address entry = Top::c_entry_fp(Top::GetCurrentThread());
Address* pc_address =
reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
// If there's another JavaScript frame on the stack, we need to look
// one frame further down the stack to find the frame pointer and
// the return address stack slot.
if (depth == EXTRA_CALL_FRAME) {
const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
}
#ifdef DEBUG
StackFrameIterator it;
for (int i = 0; i < depth + 1; i++) it.Advance();
StackFrame* frame = it.frame();
ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
#endif
fp_ = fp;
pc_address_ = pc_address;
}
#ifdef ENABLE_DEBUGGER_SUPPORT
Address IC::OriginalCodeAddress() {
HandleScope scope;
// Compute the JavaScript frame for the frame pointer of this IC
// structure. We need this to be able to find the function
// corresponding to the frame.
StackFrameIterator it;
while (it.frame()->fp() != this->fp()) it.Advance();
JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
// Find the function on the stack and both the active code for the
// function and the original code.
JSFunction* function = JSFunction::cast(frame->function());
Handle<SharedFunctionInfo> shared(function->shared());
Code* code = shared->code();
ASSERT(Debug::HasDebugInfo(shared));
Code* original_code = Debug::GetDebugInfo(shared)->original_code();
ASSERT(original_code->IsCode());
// Get the address of the call site in the active code. This is the
// place where the call to DebugBreakXXX is and where the IC
// normally would be.
Address addr = pc() - Assembler::kCallTargetAddressOffset;
// Return the address in the original code. This is the place where
// the call which has been overwritten by the DebugBreakXXX resides
// and the place where the inline cache system should look.
intptr_t delta =
original_code->instruction_start() - code->instruction_start();
return addr + delta;
}
#endif
static bool HasNormalObjectsInPrototypeChain(LookupResult* lookup,
Object* receiver) {
Object* end = lookup->IsProperty() ? lookup->holder() : Heap::null_value();
for (Object* current = receiver;
current != end;
current = current->GetPrototype()) {
if (current->IsJSObject() &&
!JSObject::cast(current)->HasFastProperties() &&
!current->IsJSGlobalProxy() &&
!current->IsJSGlobalObject()) {
return true;
}
}
return false;
}
static bool TryRemoveInvalidPrototypeDependentStub(Code* target,
Object* receiver,
Object* name) {
InlineCacheHolderFlag cache_holder =
Code::ExtractCacheHolderFromFlags(target->flags());
if (cache_holder == OWN_MAP && !receiver->IsJSObject()) {
// The stub was generated for JSObject but called for non-JSObject.
// IC::GetCodeCacheHolder is not applicable.
return false;
} else if (cache_holder == PROTOTYPE_MAP &&
receiver->GetPrototype()->IsNull()) {
// IC::GetCodeCacheHolder is not applicable.
return false;
}
Map* map = IC::GetCodeCacheHolder(receiver, cache_holder)->map();
// Decide whether the inline cache failed because of changes to the
// receiver itself or changes to one of its prototypes.
//
// If there are changes to the receiver itself, the map of the
// receiver will have changed and the current target will not be in
// the receiver map's code cache. Therefore, if the current target
// is in the receiver map's code cache, the inline cache failed due
// to prototype check failure.
int index = map->IndexInCodeCache(name, target);
if (index >= 0) {
map->RemoveFromCodeCache(String::cast(name), target, index);
return true;
}
return false;
}
IC::State IC::StateFrom(Code* target, Object* receiver, Object* name) {
IC::State state = target->ic_state();
if (state != MONOMORPHIC || !name->IsString()) return state;
if (receiver->IsUndefined() || receiver->IsNull()) return state;
// For keyed load/store/call, the most likely cause of cache failure is
// that the key has changed. We do not distinguish between
// prototype and non-prototype failures for keyed access.
Code::Kind kind = target->kind();
if (kind == Code::KEYED_LOAD_IC ||
kind == Code::KEYED_STORE_IC ||
kind == Code::KEYED_CALL_IC) {
return MONOMORPHIC;
}
// Remove the target from the code cache if it became invalid
// because of changes in the prototype chain to avoid hitting it
// again.
// Call stubs handle this later to allow extra IC state
// transitions.
if (kind != Code::CALL_IC &&
TryRemoveInvalidPrototypeDependentStub(target, receiver, name)) {
return MONOMORPHIC_PROTOTYPE_FAILURE;
}
// The builtins object is special. It only changes when JavaScript
// builtins are loaded lazily. It is important to keep inline
// caches for the builtins object monomorphic. Therefore, if we get
// an inline cache miss for the builtins object after lazily loading
// JavaScript builtins, we return uninitialized as the state to
// force the inline cache back to monomorphic state.
if (receiver->IsJSBuiltinsObject()) {
return UNINITIALIZED;
}
return MONOMORPHIC;
}
RelocInfo::Mode IC::ComputeMode() {
Address addr = address();
Code* code = Code::cast(Heap::FindCodeObject(addr));
for (RelocIterator it(code, RelocInfo::kCodeTargetMask);
!it.done(); it.next()) {
RelocInfo* info = it.rinfo();
if (info->pc() == addr) return info->rmode();
}
UNREACHABLE();
return RelocInfo::NONE;
}
Failure* IC::TypeError(const char* type,
Handle<Object> object,
Handle<Object> key) {
HandleScope scope;
Handle<Object> args[2] = { key, object };
Handle<Object> error = Factory::NewTypeError(type, HandleVector(args, 2));
return Top::Throw(*error);
}
Failure* IC::ReferenceError(const char* type, Handle<String> name) {
HandleScope scope;
Handle<Object> error =
Factory::NewReferenceError(type, HandleVector(&name, 1));
return Top::Throw(*error);
}
void IC::Clear(Address address) {
Code* target = GetTargetAtAddress(address);
// Don't clear debug break inline cache as it will remove the break point.
if (target->ic_state() == DEBUG_BREAK) return;
switch (target->kind()) {
case Code::LOAD_IC: return LoadIC::Clear(address, target);
case Code::KEYED_LOAD_IC: return KeyedLoadIC::Clear(address, target);
case Code::STORE_IC: return StoreIC::Clear(address, target);
case Code::KEYED_STORE_IC: return KeyedStoreIC::Clear(address, target);
case Code::CALL_IC: return CallIC::Clear(address, target);
case Code::KEYED_CALL_IC: return KeyedCallIC::Clear(address, target);
case Code::BINARY_OP_IC:
case Code::TYPE_RECORDING_BINARY_OP_IC:
case Code::COMPARE_IC:
// Clearing these is tricky and does not
// make any performance difference.
return;
default: UNREACHABLE();
}
}
void CallICBase::Clear(Address address, Code* target) {
State state = target->ic_state();
if (state == UNINITIALIZED) return;
Code* code =
StubCache::FindCallInitialize(target->arguments_count(),
target->ic_in_loop(),
target->kind());
SetTargetAtAddress(address, code);
}
void KeyedLoadIC::ClearInlinedVersion(Address address) {
// Insert null as the map to check for to make sure the map check fails
// sending control flow to the IC instead of the inlined version.
PatchInlinedLoad(address, Heap::null_value());
}
void KeyedLoadIC::Clear(Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
// Make sure to also clear the map used in inline fast cases. If we
// do not clear these maps, cached code can keep objects alive
// through the embedded maps.
ClearInlinedVersion(address);
SetTargetAtAddress(address, initialize_stub());
}
void LoadIC::ClearInlinedVersion(Address address) {
// Reset the map check of the inlined inobject property load (if
// present) to guarantee failure by holding an invalid map (the null
// value). The offset can be patched to anything.
PatchInlinedLoad(address, Heap::null_value(), 0);
PatchInlinedContextualLoad(address,
Heap::null_value(),
Heap::null_value(),
true);
}
void LoadIC::Clear(Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
ClearInlinedVersion(address);
SetTargetAtAddress(address, initialize_stub());
}
void StoreIC::ClearInlinedVersion(Address address) {
// Reset the map check of the inlined inobject property store (if
// present) to guarantee failure by holding an invalid map (the null
// value). The offset can be patched to anything.
PatchInlinedStore(address, Heap::null_value(), 0);
}
void StoreIC::Clear(Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
ClearInlinedVersion(address);
SetTargetAtAddress(address, initialize_stub());
}
void KeyedStoreIC::ClearInlinedVersion(Address address) {
// Insert null as the elements map to check for. This will make
// sure that the elements fast-case map check fails so that control
// flows to the IC instead of the inlined version.
PatchInlinedStore(address, Heap::null_value());
}
void KeyedStoreIC::RestoreInlinedVersion(Address address) {
// Restore the fast-case elements map check so that the inlined
// version can be used again.
PatchInlinedStore(address, Heap::fixed_array_map());
}
void KeyedStoreIC::Clear(Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
SetTargetAtAddress(address, initialize_stub());
}
static bool HasInterceptorGetter(JSObject* object) {
return !object->GetNamedInterceptor()->getter()->IsUndefined();
}
static void LookupForRead(Object* object,
String* name,
LookupResult* lookup) {
AssertNoAllocation no_gc; // pointers must stay valid
// Skip all the objects with named interceptors, but
// without actual getter.
while (true) {
object->Lookup(name, lookup);
// Besides normal conditions (property not found or it's not
// an interceptor), bail out if lookup is not cacheable: we won't
// be able to IC it anyway and regular lookup should work fine.
if (!lookup->IsFound()
|| (lookup->type() != INTERCEPTOR)
|| !lookup->IsCacheable()) {
return;
}
JSObject* holder = lookup->holder();
if (HasInterceptorGetter(holder)) {
return;
}
holder->LocalLookupRealNamedProperty(name, lookup);
if (lookup->IsProperty()) {
ASSERT(lookup->type() != INTERCEPTOR);
return;
}
Object* proto = holder->GetPrototype();
if (proto->IsNull()) {
lookup->NotFound();
return;
}
object = proto;
}
}
Object* CallICBase::TryCallAsFunction(Object* object) {
HandleScope scope;
Handle<Object> target(object);
Handle<Object> delegate = Execution::GetFunctionDelegate(target);
if (delegate->IsJSFunction()) {
// Patch the receiver and use the delegate as the function to
// invoke. This is used for invoking objects as if they were
// functions.
const int argc = this->target()->arguments_count();
StackFrameLocator locator;
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
int index = frame->ComputeExpressionsCount() - (argc + 1);
frame->SetExpression(index, *target);
}
return *delegate;
}
void CallICBase::ReceiverToObject(Handle<Object> object) {
HandleScope scope;
Handle<Object> receiver(object);
// Change the receiver to the result of calling ToObject on it.
const int argc = this->target()->arguments_count();
StackFrameLocator locator;
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
int index = frame->ComputeExpressionsCount() - (argc + 1);
frame->SetExpression(index, *Factory::ToObject(object));
}
MaybeObject* CallICBase::LoadFunction(State state,
Code::ExtraICState extra_ic_state,
Handle<Object> object,
Handle<String> name) {
// If the object is undefined or null it's illegal to try to get any
// of its properties; throw a TypeError in that case.
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_call", object, name);
}
if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
ReceiverToObject(object);
}
// Check if the name is trivially convertible to an index and get
// the element if so.
uint32_t index;
if (name->AsArrayIndex(&index)) {
Object* result;
{ MaybeObject* maybe_result = object->GetElement(index);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
if (result->IsJSFunction()) return result;
// Try to find a suitable function delegate for the object at hand.
result = TryCallAsFunction(result);
if (result->IsJSFunction()) return result;
// Otherwise, it will fail in the lookup step.
}
// Lookup the property in the object.
LookupResult lookup;
LookupForRead(*object, *name, &lookup);
if (!lookup.IsProperty()) {
// If the object does not have the requested property, check which
// exception we need to throw.
if (IsContextual(object)) {
return ReferenceError("not_defined", name);
}
return TypeError("undefined_method", object, name);
}
// Lookup is valid: Update inline cache and stub cache.
if (FLAG_use_ic) {
UpdateCaches(&lookup, state, extra_ic_state, object, name);
}
// Get the property.
PropertyAttributes attr;
Object* result;
{ MaybeObject* maybe_result =
object->GetProperty(*object, &lookup, *name, &attr);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
if (lookup.type() == INTERCEPTOR) {
// If the object does not have the requested property, check which
// exception we need to throw.
if (attr == ABSENT) {
if (IsContextual(object)) {
return ReferenceError("not_defined", name);
}
return TypeError("undefined_method", object, name);
}
}
ASSERT(result != Heap::the_hole_value());
if (result->IsJSFunction()) {
#ifdef ENABLE_DEBUGGER_SUPPORT
// Handle stepping into a function if step into is active.
if (Debug::StepInActive()) {
// Protect the result in a handle as the debugger can allocate and might
// cause GC.
HandleScope scope;
Handle<JSFunction> function(JSFunction::cast(result));
Debug::HandleStepIn(function, object, fp(), false);
return *function;
}
#endif
return result;
}
// Try to find a suitable function delegate for the object at hand.
result = TryCallAsFunction(result);
MaybeObject* answer = result;
if (!result->IsJSFunction()) {
answer = TypeError("property_not_function", object, name);
}
return answer;
}
bool CallICBase::TryUpdateExtraICState(LookupResult* lookup,
Handle<Object> object,
Code::ExtraICState* extra_ic_state) {
ASSERT(kind_ == Code::CALL_IC);
if (lookup->type() != CONSTANT_FUNCTION) return false;
JSFunction* function = lookup->GetConstantFunction();
if (!function->shared()->HasBuiltinFunctionId()) return false;
// Fetch the arguments passed to the called function.
const int argc = target()->arguments_count();
Address entry = Top::c_entry_fp(Top::GetCurrentThread());
Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
Arguments args(argc + 1,
&Memory::Object_at(fp +
StandardFrameConstants::kCallerSPOffset +
argc * kPointerSize));
switch (function->shared()->builtin_function_id()) {
case kStringCharCodeAt:
case kStringCharAt:
if (object->IsString()) {
String* string = String::cast(*object);
// Check that there's the right wrapper in the receiver slot.
ASSERT(string == JSValue::cast(args[0])->value());
// If we're in the default (fastest) state and the index is
// out of bounds, update the state to record this fact.
if (*extra_ic_state == DEFAULT_STRING_STUB &&
argc >= 1 && args[1]->IsNumber()) {
double index;
if (args[1]->IsSmi()) {
index = Smi::cast(args[1])->value();
} else {
ASSERT(args[1]->IsHeapNumber());
index = DoubleToInteger(HeapNumber::cast(args[1])->value());
}
if (index < 0 || index >= string->length()) {
*extra_ic_state = STRING_INDEX_OUT_OF_BOUNDS;
return true;
}
}
}
break;
default:
return false;
}
return false;
}
MaybeObject* CallICBase::ComputeMonomorphicStub(
LookupResult* lookup,
State state,
Code::ExtraICState extra_ic_state,
Handle<Object> object,
Handle<String> name) {
int argc = target()->arguments_count();
InLoopFlag in_loop = target()->ic_in_loop();
MaybeObject* maybe_code = NULL;
switch (lookup->type()) {
case FIELD: {
int index = lookup->GetFieldIndex();
maybe_code = StubCache::ComputeCallField(argc,
in_loop,
kind_,
*name,
*object,
lookup->holder(),
index);
break;
}
case CONSTANT_FUNCTION: {
// Get the constant function and compute the code stub for this
// call; used for rewriting to monomorphic state and making sure
// that the code stub is in the stub cache.
JSFunction* function = lookup->GetConstantFunction();
maybe_code = StubCache::ComputeCallConstant(argc,
in_loop,
kind_,
extra_ic_state,
*name,
*object,
lookup->holder(),
function);
break;
}
case NORMAL: {
if (!object->IsJSObject()) return NULL;
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (lookup->holder()->IsGlobalObject()) {
GlobalObject* global = GlobalObject::cast(lookup->holder());
JSGlobalPropertyCell* cell =
JSGlobalPropertyCell::cast(global->GetPropertyCell(lookup));
if (!cell->value()->IsJSFunction()) return NULL;
JSFunction* function = JSFunction::cast(cell->value());
maybe_code = StubCache::ComputeCallGlobal(argc,
in_loop,
kind_,
*name,
*receiver,
global,
cell,
function);
} else {
// There is only one shared stub for calling normalized
// properties. It does not traverse the prototype chain, so the
// property must be found in the receiver for the stub to be
// applicable.
if (lookup->holder() != *receiver) return NULL;
maybe_code = StubCache::ComputeCallNormal(argc,
in_loop,
kind_,
*name,
*receiver);
}
break;
}
case INTERCEPTOR: {
ASSERT(HasInterceptorGetter(lookup->holder()));
maybe_code = StubCache::ComputeCallInterceptor(argc,
kind_,
*name,
*object,
lookup->holder());
break;
}
default:
maybe_code = NULL;
break;
}
return maybe_code;
}
void CallICBase::UpdateCaches(LookupResult* lookup,
State state,
Code::ExtraICState extra_ic_state,
Handle<Object> object,
Handle<String> name) {
// Bail out if we didn't find a result.
if (!lookup->IsProperty() || !lookup->IsCacheable()) return;
if (lookup->holder() != *object &&
HasNormalObjectsInPrototypeChain(lookup, object->GetPrototype())) {
// Suppress optimization for prototype chains with slow properties objects
// in the middle.
return;
}
// Compute the number of arguments.
int argc = target()->arguments_count();
InLoopFlag in_loop = target()->ic_in_loop();
MaybeObject* maybe_code = NULL;
bool had_proto_failure = false;
if (state == UNINITIALIZED) {
// This is the first time we execute this inline cache.
// Set the target to the pre monomorphic stub to delay
// setting the monomorphic state.
maybe_code = StubCache::ComputeCallPreMonomorphic(argc, in_loop, kind_);
} else if (state == MONOMORPHIC) {
if (kind_ == Code::CALL_IC &&
TryUpdateExtraICState(lookup, object, &extra_ic_state)) {
maybe_code = ComputeMonomorphicStub(lookup,
state,
extra_ic_state,
object,
name);
} else if (kind_ == Code::CALL_IC &&
TryRemoveInvalidPrototypeDependentStub(target(),
*object,
*name)) {
had_proto_failure = true;
maybe_code = ComputeMonomorphicStub(lookup,
state,
extra_ic_state,
object,
name);
} else {
maybe_code = StubCache::ComputeCallMegamorphic(argc, in_loop, kind_);
}
} else {
maybe_code = ComputeMonomorphicStub(lookup,
state,
extra_ic_state,
object,
name);
}
// If we're unable to compute the stub (not enough memory left), we
// simply avoid updating the caches.
Object* code;
if (maybe_code == NULL || !maybe_code->ToObject(&code)) return;
// Patch the call site depending on the state of the cache.
if (state == UNINITIALIZED ||
state == PREMONOMORPHIC ||
state == MONOMORPHIC ||
state == MONOMORPHIC_PROTOTYPE_FAILURE) {
set_target(Code::cast(code));
} else if (state == MEGAMORPHIC) {
// Cache code holding map should be consistent with
// GenerateMonomorphicCacheProbe. It is not the map which holds the stub.
Map* map = JSObject::cast(object->IsJSObject() ? *object :
object->GetPrototype())->map();
// Update the stub cache.
StubCache::Set(*name, map, Code::cast(code));
}
USE(had_proto_failure);
#ifdef DEBUG
if (had_proto_failure) state = MONOMORPHIC_PROTOTYPE_FAILURE;
TraceIC(kind_ == Code::CALL_IC ? "CallIC" : "KeyedCallIC",
name, state, target(), in_loop ? " (in-loop)" : "");
#endif
}
MaybeObject* KeyedCallIC::LoadFunction(State state,
Handle<Object> object,
Handle<Object> key) {
if (key->IsSymbol()) {
return CallICBase::LoadFunction(state,
Code::kNoExtraICState,
object,
Handle<String>::cast(key));
}
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_call", object, key);
}
if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
ReceiverToObject(object);
}
if (FLAG_use_ic && state != MEGAMORPHIC && !object->IsAccessCheckNeeded()) {
int argc = target()->arguments_count();
InLoopFlag in_loop = target()->ic_in_loop();
MaybeObject* maybe_code = StubCache::ComputeCallMegamorphic(
argc, in_loop, Code::KEYED_CALL_IC);
Object* code;
if (maybe_code->ToObject(&code)) {
set_target(Code::cast(code));
#ifdef DEBUG
TraceIC(
"KeyedCallIC", key, state, target(), in_loop ? " (in-loop)" : "");
#endif
}
}
Object* result;
{ MaybeObject* maybe_result = Runtime::GetObjectProperty(object, key);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
if (result->IsJSFunction()) return result;
result = TryCallAsFunction(result);
MaybeObject* answer = result;
if (!result->IsJSFunction()) {
answer = TypeError("property_not_function", object, key);
}
return answer;
}
#ifdef DEBUG
#define TRACE_IC_NAMED(msg, name) \
if (FLAG_trace_ic) PrintF(msg, *(name)->ToCString())
#else
#define TRACE_IC_NAMED(msg, name)
#endif
MaybeObject* LoadIC::Load(State state,
Handle<Object> object,
Handle<String> name) {
// If the object is undefined or null it's illegal to try to get any
// of its properties; throw a TypeError in that case.
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_load", object, name);
}
if (FLAG_use_ic) {
Code* non_monomorphic_stub =
(state == UNINITIALIZED) ? pre_monomorphic_stub() : megamorphic_stub();
// Use specialized code for getting the length of strings and
// string wrapper objects. The length property of string wrapper
// objects is read-only and therefore always returns the length of
// the underlying string value. See ECMA-262 15.5.5.1.
if ((object->IsString() || object->IsStringWrapper()) &&
name->Equals(Heap::length_symbol())) {
HandleScope scope;
#ifdef DEBUG
if (FLAG_trace_ic) PrintF("[LoadIC : +#length /string]\n");
#endif
if (state == PREMONOMORPHIC) {
if (object->IsString()) {
Map* map = HeapObject::cast(*object)->map();
const int offset = String::kLengthOffset;
PatchInlinedLoad(address(), map, offset);
set_target(Builtins::builtin(Builtins::LoadIC_StringLength));
} else {
set_target(Builtins::builtin(Builtins::LoadIC_StringWrapperLength));
}
} else if (state == MONOMORPHIC && object->IsStringWrapper()) {
set_target(Builtins::builtin(Builtins::LoadIC_StringWrapperLength));
} else {
set_target(non_monomorphic_stub);
}
// Get the string if we have a string wrapper object.
if (object->IsJSValue()) {
object = Handle<Object>(Handle<JSValue>::cast(object)->value());
}
return Smi::FromInt(String::cast(*object)->length());
}
// Use specialized code for getting the length of arrays.
if (object->IsJSArray() && name->Equals(Heap::length_symbol())) {
#ifdef DEBUG
if (FLAG_trace_ic) PrintF("[LoadIC : +#length /array]\n");
#endif
if (state == PREMONOMORPHIC) {
Map* map = HeapObject::cast(*object)->map();
const int offset = JSArray::kLengthOffset;
PatchInlinedLoad(address(), map, offset);
set_target(Builtins::builtin(Builtins::LoadIC_ArrayLength));
} else {
set_target(non_monomorphic_stub);
}
return JSArray::cast(*object)->length();
}
// Use specialized code for getting prototype of functions.
if (object->IsJSFunction() && name->Equals(Heap::prototype_symbol()) &&
JSFunction::cast(*object)->should_have_prototype()) {
#ifdef DEBUG
if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n");
#endif
if (state == PREMONOMORPHIC) {
set_target(Builtins::builtin(Builtins::LoadIC_FunctionPrototype));
} else {
set_target(non_monomorphic_stub);
}
return Accessors::FunctionGetPrototype(*object, 0);
}
}
// Check if the name is trivially convertible to an index and get
// the element if so.
uint32_t index;
if (name->AsArrayIndex(&index)) return object->GetElement(index);
// Named lookup in the object.
LookupResult lookup;
LookupForRead(*object, *name, &lookup);
// If we did not find a property, check if we need to throw an exception.
if (!lookup.IsProperty()) {
if (FLAG_strict || IsContextual(object)) {
return ReferenceError("not_defined", name);
}
LOG(SuspectReadEvent(*name, *object));
}
bool can_be_inlined_precheck =
FLAG_use_ic &&
lookup.IsProperty() &&
lookup.IsCacheable() &&
lookup.holder() == *object &&
!object->IsAccessCheckNeeded();
bool can_be_inlined =
can_be_inlined_precheck &&
state == PREMONOMORPHIC &&
lookup.type() == FIELD;
bool can_be_inlined_contextual =
can_be_inlined_precheck &&
state == UNINITIALIZED &&
lookup.holder()->IsGlobalObject() &&
lookup.type() == NORMAL;
if (can_be_inlined) {
Map* map = lookup.holder()->map();
// Property's index in the properties array. If negative we have
// an inobject property.
int index = lookup.GetFieldIndex() - map->inobject_properties();
if (index < 0) {
// Index is an offset from the end of the object.
int offset = map->instance_size() + (index * kPointerSize);
if (PatchInlinedLoad(address(), map, offset)) {
set_target(megamorphic_stub());
TRACE_IC_NAMED("[LoadIC : inline patch %s]\n", name);
return lookup.holder()->FastPropertyAt(lookup.GetFieldIndex());
} else {
TRACE_IC_NAMED("[LoadIC : no inline patch %s (patching failed)]\n",
name);
}
} else {
TRACE_IC_NAMED("[LoadIC : no inline patch %s (not inobject)]\n", name);
}
} else if (can_be_inlined_contextual) {
Map* map = lookup.holder()->map();
JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(
lookup.holder()->property_dictionary()->ValueAt(
lookup.GetDictionaryEntry()));
if (PatchInlinedContextualLoad(address(),
map,
cell,
lookup.IsDontDelete())) {
set_target(megamorphic_stub());
TRACE_IC_NAMED("[LoadIC : inline contextual patch %s]\n", name);
ASSERT(cell->value() != Heap::the_hole_value());
return cell->value();
}
} else {
if (FLAG_use_ic && state == PREMONOMORPHIC) {
TRACE_IC_NAMED("[LoadIC : no inline patch %s (not inlinable)]\n", name);
}
}
// Update inline cache and stub cache.
if (FLAG_use_ic) {
UpdateCaches(&lookup, state, object, name);
}
PropertyAttributes attr;
if (lookup.IsProperty() && lookup.type() == INTERCEPTOR) {
// Get the property.
Object* result;
{ MaybeObject* maybe_result =
object->GetProperty(*object, &lookup, *name, &attr);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// If the property is not present, check if we need to throw an
// exception.
if (attr == ABSENT && IsContextual(object)) {
return ReferenceError("not_defined", name);
}
return result;
}
// Get the property.
return object->GetProperty(*object, &lookup, *name, &attr);
}
void LoadIC::UpdateCaches(LookupResult* lookup,
State state,
Handle<Object> object,
Handle<String> name) {
// Bail out if the result is not cacheable.
if (!lookup->IsCacheable()) return;
// Loading properties from values is not common, so don't try to
// deal with non-JS objects here.
if (!object->IsJSObject()) return;
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (HasNormalObjectsInPrototypeChain(lookup, *object)) return;
// Compute the code stub for this load.
MaybeObject* maybe_code = NULL;
Object* code;
if (state == UNINITIALIZED) {
// This is the first time we execute this inline cache.
// Set the target to the pre monomorphic stub to delay
// setting the monomorphic state.
maybe_code = pre_monomorphic_stub();
} else if (!lookup->IsProperty()) {
// Nonexistent property. The result is undefined.
maybe_code = StubCache::ComputeLoadNonexistent(*name, *receiver);
} else {
// Compute monomorphic stub.
switch (lookup->type()) {
case FIELD: {
maybe_code = StubCache::ComputeLoadField(*name, *receiver,
lookup->holder(),
lookup->GetFieldIndex());
break;
}
case CONSTANT_FUNCTION: {
Object* constant = lookup->GetConstantFunction();
maybe_code = StubCache::ComputeLoadConstant(*name, *receiver,
lookup->holder(), constant);
break;
}
case NORMAL: {
if (lookup->holder()->IsGlobalObject()) {
GlobalObject* global = GlobalObject::cast(lookup->holder());
JSGlobalPropertyCell* cell =
JSGlobalPropertyCell::cast(global->GetPropertyCell(lookup));
maybe_code = StubCache::ComputeLoadGlobal(*name,
*receiver,
global,
cell,
lookup->IsDontDelete());
} else {
// There is only one shared stub for loading normalized
// properties. It does not traverse the prototype chain, so the
// property must be found in the receiver for the stub to be
// applicable.
if (lookup->holder() != *receiver) return;
maybe_code = StubCache::ComputeLoadNormal();
}
break;
}
case CALLBACKS: {
if (!lookup->GetCallbackObject()->IsAccessorInfo()) return;
AccessorInfo* callback =
AccessorInfo::cast(lookup->GetCallbackObject());
if (v8::ToCData<Address>(callback->getter()) == 0) return;
maybe_code = StubCache::ComputeLoadCallback(*name, *receiver,
lookup->holder(), callback);
break;
}
case INTERCEPTOR: {
ASSERT(HasInterceptorGetter(lookup->holder()));
maybe_code = StubCache::ComputeLoadInterceptor(*name, *receiver,
lookup->holder());
break;
}
default:
return;
}
}
// If we're unable to compute the stub (not enough memory left), we
// simply avoid updating the caches.
if (maybe_code == NULL || !maybe_code->ToObject(&code)) return;
// Patch the call site depending on the state of the cache.
if (state == UNINITIALIZED || state == PREMONOMORPHIC ||
state == MONOMORPHIC_PROTOTYPE_FAILURE) {
set_target(Code::cast(code));
} else if (state == MONOMORPHIC) {
set_target(megamorphic_stub());
} else if (state == MEGAMORPHIC) {
// Cache code holding map should be consistent with
// GenerateMonomorphicCacheProbe.
Map* map = JSObject::cast(object->IsJSObject() ? *object :
object->GetPrototype())->map();
StubCache::Set(*name, map, Code::cast(code));
}
#ifdef DEBUG
TraceIC("LoadIC", name, state, target());
#endif
}
MaybeObject* KeyedLoadIC::Load(State state,
Handle<Object> object,
Handle<Object> key) {
if (key->IsSymbol()) {
Handle<String> name = Handle<String>::cast(key);
// If the object is undefined or null it's illegal to try to get any
// of its properties; throw a TypeError in that case.
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_load", object, name);
}
if (FLAG_use_ic) {
// TODO(1073): don't ignore the current stub state.
// Use specialized code for getting the length of strings.
if (object->IsString() && name->Equals(Heap::length_symbol())) {
Handle<String> string = Handle<String>::cast(object);
Object* code = NULL;
{ MaybeObject* maybe_code =
StubCache::ComputeKeyedLoadStringLength(*name, *string);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
set_target(Code::cast(code));
#ifdef DEBUG
TraceIC("KeyedLoadIC", name, state, target());
#endif // DEBUG
return Smi::FromInt(string->length());
}
// Use specialized code for getting the length of arrays.
if (object->IsJSArray() && name->Equals(Heap::length_symbol())) {
Handle<JSArray> array = Handle<JSArray>::cast(object);
Object* code;
{ MaybeObject* maybe_code =
StubCache::ComputeKeyedLoadArrayLength(*name, *array);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
set_target(Code::cast(code));
#ifdef DEBUG
TraceIC("KeyedLoadIC", name, state, target());
#endif // DEBUG
return JSArray::cast(*object)->length();
}
// Use specialized code for getting prototype of functions.
if (object->IsJSFunction() && name->Equals(Heap::prototype_symbol()) &&
JSFunction::cast(*object)->should_have_prototype()) {
Handle<JSFunction> function = Handle<JSFunction>::cast(object);
Object* code;
{ MaybeObject* maybe_code =
StubCache::ComputeKeyedLoadFunctionPrototype(*name, *function);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
set_target(Code::cast(code));
#ifdef DEBUG
TraceIC("KeyedLoadIC", name, state, target());
#endif // DEBUG
return Accessors::FunctionGetPrototype(*object, 0);
}
}
// Check if the name is trivially convertible to an index and get
// the element or char if so.
uint32_t index = 0;
if (name->AsArrayIndex(&index)) {
HandleScope scope;
// Rewrite to the generic keyed load stub.
if (FLAG_use_ic) set_target(generic_stub());
return Runtime::GetElementOrCharAt(object, index);
}
// Named lookup.
LookupResult lookup;
LookupForRead(*object, *name, &lookup);
// If we did not find a property, check if we need to throw an exception.
if (!lookup.IsProperty()) {
if (FLAG_strict || IsContextual(object)) {
return ReferenceError("not_defined", name);
}
}
if (FLAG_use_ic) {
UpdateCaches(&lookup, state, object, name);
}
PropertyAttributes attr;
if (lookup.IsProperty() && lookup.type() == INTERCEPTOR) {
// Get the property.
Object* result;
{ MaybeObject* maybe_result =
object->GetProperty(*object, &lookup, *name, &attr);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// If the property is not present, check if we need to throw an
// exception.
if (attr == ABSENT && IsContextual(object)) {
return ReferenceError("not_defined", name);
}
return result;
}
return object->GetProperty(*object, &lookup, *name, &attr);
}
// Do not use ICs for objects that require access checks (including
// the global object).
bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded();
if (use_ic) {
Code* stub = generic_stub();
if (object->IsString() && key->IsNumber()) {
stub = string_stub();
} else if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->HasExternalArrayElements()) {
MaybeObject* probe =
StubCache::ComputeKeyedLoadOrStoreExternalArray(*receiver, false);
stub =
probe->IsFailure() ? NULL : Code::cast(probe->ToObjectUnchecked());
} else if (receiver->HasIndexedInterceptor()) {
stub = indexed_interceptor_stub();
} else if (state == UNINITIALIZED &&
key->IsSmi() &&
receiver->map()->has_fast_elements()) {
MaybeObject* probe = StubCache::ComputeKeyedLoadSpecialized(*receiver);
stub =
probe->IsFailure() ? NULL : Code::cast(probe->ToObjectUnchecked());
}
}
if (stub != NULL) set_target(stub);
#ifdef DEBUG
TraceIC("KeyedLoadIC", key, state, target());
#endif // DEBUG
// For JSObjects with fast elements that are not value wrappers
// and that do not have indexed interceptors, we initialize the
// inlined fast case (if present) by patching the inlined map
// check.
if (object->IsJSObject() &&
!object->IsJSValue() &&
!JSObject::cast(*object)->HasIndexedInterceptor() &&
JSObject::cast(*object)->HasFastElements()) {
Map* map = JSObject::cast(*object)->map();
PatchInlinedLoad(address(), map);
}
}
// Get the property.
return Runtime::GetObjectProperty(object, key);
}
void KeyedLoadIC::UpdateCaches(LookupResult* lookup, State state,
Handle<Object> object, Handle<String> name) {
// Bail out if we didn't find a result.
if (!lookup->IsProperty() || !lookup->IsCacheable()) return;
if (!object->IsJSObject()) return;
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (HasNormalObjectsInPrototypeChain(lookup, *object)) return;
// Compute the code stub for this load.
MaybeObject* maybe_code = NULL;
Object* code;
if (state == UNINITIALIZED) {
// This is the first time we execute this inline cache.
// Set the target to the pre monomorphic stub to delay
// setting the monomorphic state.
maybe_code = pre_monomorphic_stub();
} else {
// Compute a monomorphic stub.
switch (lookup->type()) {
case FIELD: {
maybe_code = StubCache::ComputeKeyedLoadField(*name, *receiver,
lookup->holder(),
lookup->GetFieldIndex());
break;
}
case CONSTANT_FUNCTION: {
Object* constant = lookup->GetConstantFunction();
maybe_code = StubCache::ComputeKeyedLoadConstant(*name,
*receiver,
lookup->holder(),
constant);
break;
}
case CALLBACKS: {
if (!lookup->GetCallbackObject()->IsAccessorInfo()) return;
AccessorInfo* callback =
AccessorInfo::cast(lookup->GetCallbackObject());
if (v8::ToCData<Address>(callback->getter()) == 0) return;
maybe_code = StubCache::ComputeKeyedLoadCallback(*name,
*receiver,
lookup->holder(),
callback);
break;
}
case INTERCEPTOR: {
ASSERT(HasInterceptorGetter(lookup->holder()));
maybe_code = StubCache::ComputeKeyedLoadInterceptor(*name, *receiver,
lookup->holder());
break;
}
default: {
// Always rewrite to the generic case so that we do not
// repeatedly try to rewrite.
maybe_code = generic_stub();
break;
}
}
}
// If we're unable to compute the stub (not enough memory left), we
// simply avoid updating the caches.
if (maybe_code == NULL || !maybe_code->ToObject(&code)) return;
// Patch the call site depending on the state of the cache. Make
// sure to always rewrite from monomorphic to megamorphic.
ASSERT(state != MONOMORPHIC_PROTOTYPE_FAILURE);
if (state == UNINITIALIZED || state == PREMONOMORPHIC) {
set_target(Code::cast(code));
} else if (state == MONOMORPHIC) {
set_target(megamorphic_stub());
}
#ifdef DEBUG
TraceIC("KeyedLoadIC", name, state, target());
#endif
}
static bool StoreICableLookup(LookupResult* lookup) {
// Bail out if we didn't find a result.
if (!lookup->IsPropertyOrTransition() || !lookup->IsCacheable()) return false;
// If the property is read-only, we leave the IC in its current
// state.
if (lookup->IsReadOnly()) return false;
return true;
}
static bool LookupForWrite(JSObject* object,
String* name,
LookupResult* lookup) {
object->LocalLookup(name, lookup);
if (!StoreICableLookup(lookup)) {
return false;
}
if (lookup->type() == INTERCEPTOR) {
if (object->GetNamedInterceptor()->setter()->IsUndefined()) {
object->LocalLookupRealNamedProperty(name, lookup);
return StoreICableLookup(lookup);
}
}
return true;
}
MaybeObject* StoreIC::Store(State state,
Handle<Object> object,
Handle<String> name,
Handle<Object> value) {
// If the object is undefined or null it's illegal to try to set any
// properties on it; throw a TypeError in that case.
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_store", object, name);
}
// Ignore stores where the receiver is not a JSObject.
if (!object->IsJSObject()) return *value;
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
// Check if the given name is an array index.
uint32_t index;
if (name->AsArrayIndex(&index)) {
HandleScope scope;
Handle<Object> result = SetElement(receiver, index, value);
if (result.is_null()) return Failure::Exception();
return *value;
}
// Use specialized code for setting the length of arrays.
if (receiver->IsJSArray()
&& name->Equals(Heap::length_symbol())
&& receiver->AllowsSetElementsLength()) {
#ifdef DEBUG
if (FLAG_trace_ic) PrintF("[StoreIC : +#length /array]\n");
#endif
Code* target = Builtins::builtin(Builtins::StoreIC_ArrayLength);
set_target(target);
return receiver->SetProperty(*name, *value, NONE);
}
// Lookup the property locally in the receiver.
if (FLAG_use_ic && !receiver->IsJSGlobalProxy()) {
LookupResult lookup;
if (LookupForWrite(*receiver, *name, &lookup)) {
bool can_be_inlined =
state == UNINITIALIZED &&
lookup.IsProperty() &&
lookup.holder() == *receiver &&
lookup.type() == FIELD &&
!receiver->IsAccessCheckNeeded();
if (can_be_inlined) {
Map* map = lookup.holder()->map();
// Property's index in the properties array. If negative we have
// an inobject property.
int index = lookup.GetFieldIndex() - map->inobject_properties();
if (index < 0) {
// Index is an offset from the end of the object.
int offset = map->instance_size() + (index * kPointerSize);
if (PatchInlinedStore(address(), map, offset)) {
set_target(megamorphic_stub());
#ifdef DEBUG
if (FLAG_trace_ic) {
PrintF("[StoreIC : inline patch %s]\n", *name->ToCString());
}
#endif
return receiver->SetProperty(*name, *value, NONE);
#ifdef DEBUG
} else {
if (FLAG_trace_ic) {
PrintF("[StoreIC : no inline patch %s (patching failed)]\n",
*name->ToCString());
}
}
} else {
if (FLAG_trace_ic) {
PrintF("[StoreIC : no inline patch %s (not inobject)]\n",
*name->ToCString());
}
}
} else {
if (state == PREMONOMORPHIC) {
if (FLAG_trace_ic) {
PrintF("[StoreIC : no inline patch %s (not inlinable)]\n",
*name->ToCString());
#endif
}
}
}
// If no inlined store ic was patched, generate a stub for this
// store.
UpdateCaches(&lookup, state, receiver, name, value);
}
}
if (receiver->IsJSGlobalProxy()) {
// Generate a generic stub that goes to the runtime when we see a global
// proxy as receiver.
if (target() != global_proxy_stub()) {
set_target(global_proxy_stub());
#ifdef DEBUG
TraceIC("StoreIC", name, state, target());
#endif
}
}
// Set the property.
return receiver->SetProperty(*name, *value, NONE);
}
void StoreIC::UpdateCaches(LookupResult* lookup,
State state,
Handle<JSObject> receiver,
Handle<String> name,
Handle<Object> value) {
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
// Skip JSGlobalProxy.
ASSERT(!receiver->IsJSGlobalProxy());
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
ASSERT(StoreICableLookup(lookup));
// If the property has a non-field type allowing map transitions
// where there is extra room in the object, we leave the IC in its
// current state.
PropertyType type = lookup->type();
// Compute the code stub for this store; used for rewriting to
// monomorphic state and making sure that the code stub is in the
// stub cache.
MaybeObject* maybe_code = NULL;
Object* code = NULL;
switch (type) {
case FIELD: {
maybe_code = StubCache::ComputeStoreField(*name, *receiver,
lookup->GetFieldIndex());
break;
}
case MAP_TRANSITION: {
if (lookup->GetAttributes() != NONE) return;
HandleScope scope;
ASSERT(type == MAP_TRANSITION);
Handle<Map> transition(lookup->GetTransitionMap());
int index = transition->PropertyIndexFor(*name);
maybe_code = StubCache::ComputeStoreField(*name, *receiver,
index, *transition);
break;
}
case NORMAL: {
if (receiver->IsGlobalObject()) {
// The stub generated for the global object picks the value directly
// from the property cell. So the property must be directly on the
// global object.
Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver);
JSGlobalPropertyCell* cell =
JSGlobalPropertyCell::cast(global->GetPropertyCell(lookup));
maybe_code = StubCache::ComputeStoreGlobal(*name, *global, cell);
} else {
if (lookup->holder() != *receiver) return;
maybe_code = StubCache::ComputeStoreNormal();
}
break;
}
case CALLBACKS: {
if (!lookup->GetCallbackObject()->IsAccessorInfo()) return;
AccessorInfo* callback = AccessorInfo::cast(lookup->GetCallbackObject());
if (v8::ToCData<Address>(callback->setter()) == 0) return;
maybe_code = StubCache::ComputeStoreCallback(*name, *receiver, callback);
break;
}
case INTERCEPTOR: {
ASSERT(!receiver->GetNamedInterceptor()->setter()->IsUndefined());
maybe_code = StubCache::ComputeStoreInterceptor(*name, *receiver);
break;
}
default:
return;
}
// If we're unable to compute the stub (not enough memory left), we
// simply avoid updating the caches.
if (maybe_code == NULL || !maybe_code->ToObject(&code)) return;
// Patch the call site depending on the state of the cache.
if (state == UNINITIALIZED || state == MONOMORPHIC_PROTOTYPE_FAILURE) {
set_target(Code::cast(code));
} else if (state == MONOMORPHIC) {
// Only move to megamorphic if the target changes.
if (target() != Code::cast(code)) set_target(megamorphic_stub());
} else if (state == MEGAMORPHIC) {
// Update the stub cache.
StubCache::Set(*name, receiver->map(), Code::cast(code));
}
#ifdef DEBUG
TraceIC("StoreIC", name, state, target());
#endif
}
MaybeObject* KeyedStoreIC::Store(State state,
Handle<Object> object,
Handle<Object> key,
Handle<Object> value) {
if (key->IsSymbol()) {
Handle<String> name = Handle<String>::cast(key);
// If the object is undefined or null it's illegal to try to set any
// properties on it; throw a TypeError in that case.
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_store", object, name);
}
// Ignore stores where the receiver is not a JSObject.
if (!object->IsJSObject()) return *value;
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
// Check if the given name is an array index.
uint32_t index;
if (name->AsArrayIndex(&index)) {
HandleScope scope;
Handle<Object> result = SetElement(receiver, index, value);
if (result.is_null()) return Failure::Exception();
return *value;
}
// Lookup the property locally in the receiver.
LookupResult lookup;
receiver->LocalLookup(*name, &lookup);
// Update inline cache and stub cache.
if (FLAG_use_ic) {
UpdateCaches(&lookup, state, receiver, name, value);
}
// Set the property.
return receiver->SetProperty(*name, *value, NONE);
}
// Do not use ICs for objects that require access checks (including
// the global object).
bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded();
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
ASSERT(!(use_ic && object->IsJSGlobalProxy()));
if (use_ic) {
Code* stub = generic_stub();
if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->HasExternalArrayElements()) {
MaybeObject* probe =
StubCache::ComputeKeyedLoadOrStoreExternalArray(*receiver, true);
stub =
probe->IsFailure() ? NULL : Code::cast(probe->ToObjectUnchecked());
} else if (state == UNINITIALIZED &&
key->IsSmi() &&
receiver->map()->has_fast_elements()) {
MaybeObject* probe = StubCache::ComputeKeyedStoreSpecialized(*receiver);
stub =
probe->IsFailure() ? NULL : Code::cast(probe->ToObjectUnchecked());
}
}
if (stub != NULL) set_target(stub);
}
// Set the property.
return Runtime::SetObjectProperty(object, key, value, NONE);
}
void KeyedStoreIC::UpdateCaches(LookupResult* lookup,
State state,
Handle<JSObject> receiver,
Handle<String> name,
Handle<Object> value) {
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
// Skip JSGlobalProxy.
if (receiver->IsJSGlobalProxy()) return;
// Bail out if we didn't find a result.
if (!lookup->IsPropertyOrTransition() || !lookup->IsCacheable()) return;
// If the property is read-only, we leave the IC in its current
// state.
if (lookup->IsReadOnly()) return;
// If the property has a non-field type allowing map transitions
// where there is extra room in the object, we leave the IC in its
// current state.
PropertyType type = lookup->type();
// Compute the code stub for this store; used for rewriting to
// monomorphic state and making sure that the code stub is in the
// stub cache.
MaybeObject* maybe_code = NULL;
Object* code = NULL;
switch (type) {
case FIELD: {
maybe_code = StubCache::ComputeKeyedStoreField(*name, *receiver,
lookup->GetFieldIndex());
break;
}
case MAP_TRANSITION: {
if (lookup->GetAttributes() == NONE) {
HandleScope scope;
ASSERT(type == MAP_TRANSITION);
Handle<Map> transition(lookup->GetTransitionMap());
int index = transition->PropertyIndexFor(*name);
maybe_code = StubCache::ComputeKeyedStoreField(*name, *receiver,
index, *transition);
break;
}
// fall through.
}
default: {
// Always rewrite to the generic case so that we do not
// repeatedly try to rewrite.
maybe_code = generic_stub();
break;
}
}
// If we're unable to compute the stub (not enough memory left), we
// simply avoid updating the caches.
if (maybe_code == NULL || !maybe_code->ToObject(&code)) return;
// Patch the call site depending on the state of the cache. Make
// sure to always rewrite from monomorphic to megamorphic.
ASSERT(state != MONOMORPHIC_PROTOTYPE_FAILURE);
if (state == UNINITIALIZED || state == PREMONOMORPHIC) {
set_target(Code::cast(code));
} else if (state == MONOMORPHIC) {
set_target(megamorphic_stub());
}
#ifdef DEBUG
TraceIC("KeyedStoreIC", name, state, target());
#endif
}
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
static JSFunction* CompileFunction(JSFunction* function,
InLoopFlag in_loop) {
// Compile now with optimization.
HandleScope scope;
Handle<JSFunction> function_handle(function);
if (in_loop == IN_LOOP) {
CompileLazyInLoop(function_handle, CLEAR_EXCEPTION);
} else {
CompileLazy(function_handle, CLEAR_EXCEPTION);
}
return *function_handle;
}
// Used from ic-<arch>.cc.
MUST_USE_RESULT MaybeObject* CallIC_Miss(Arguments args) {
NoHandleAllocation na;
ASSERT(args.length() == 2);
CallIC ic;
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
MaybeObject* maybe_result = ic.LoadFunction(state,
extra_ic_state,
args.at<Object>(0),
args.at<String>(1));
Object* result;
if (!maybe_result->ToObject(&result)) return maybe_result;
// The first time the inline cache is updated may be the first time the
// function it references gets called. If the function was lazily compiled
// then the first call will trigger a compilation. We check for this case
// and we do the compilation immediately, instead of waiting for the stub
// currently attached to the JSFunction object to trigger compilation. We
// do this in the case where we know that the inline cache is inside a loop,
// because then we know that we want to optimize the function.
if (!result->IsJSFunction() || JSFunction::cast(result)->is_compiled()) {
return result;
}
return CompileFunction(JSFunction::cast(result), ic.target()->ic_in_loop());
}
// Used from ic-<arch>.cc.
MUST_USE_RESULT MaybeObject* KeyedCallIC_Miss(Arguments args) {
NoHandleAllocation na;
ASSERT(args.length() == 2);
KeyedCallIC ic;
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
Object* result;
{ MaybeObject* maybe_result =
ic.LoadFunction(state, args.at<Object>(0), args.at<Object>(1));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
if (!result->IsJSFunction() || JSFunction::cast(result)->is_compiled()) {
return result;
}
return CompileFunction(JSFunction::cast(result), ic.target()->ic_in_loop());
}
// Used from ic-<arch>.cc.
MUST_USE_RESULT MaybeObject* LoadIC_Miss(Arguments args) {
NoHandleAllocation na;
ASSERT(args.length() == 2);
LoadIC ic;
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
return ic.Load(state, args.at<Object>(0), args.at<String>(1));
}
// Used from ic-<arch>.cc
MUST_USE_RESULT MaybeObject* KeyedLoadIC_Miss(Arguments args) {
NoHandleAllocation na;
ASSERT(args.length() == 2);
KeyedLoadIC ic;
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
return ic.Load(state, args.at<Object>(0), args.at<Object>(1));
}
// Used from ic-<arch>.cc.
MUST_USE_RESULT MaybeObject* StoreIC_Miss(Arguments args) {
NoHandleAllocation na;
ASSERT(args.length() == 3);
StoreIC ic;
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
return ic.Store(state, args.at<Object>(0), args.at<String>(1),
args.at<Object>(2));
}
MUST_USE_RESULT MaybeObject* StoreIC_ArrayLength(Arguments args) {
NoHandleAllocation nha;
ASSERT(args.length() == 2);
JSObject* receiver = JSObject::cast(args[0]);
Object* len = args[1];
// The generated code should filter out non-Smis before we get here.
ASSERT(len->IsSmi());
Object* result;
{ MaybeObject* maybe_result = receiver->SetElementsLength(len);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
return len;
}
// Extend storage is called in a store inline cache when
// it is necessary to extend the properties array of a
// JSObject.
MUST_USE_RESULT MaybeObject* SharedStoreIC_ExtendStorage(Arguments args) {
NoHandleAllocation na;
ASSERT(args.length() == 3);
// Convert the parameters
JSObject* object = JSObject::cast(args[0]);
Map* transition = Map::cast(args[1]);
Object* value = args[2];
// Check the object has run out out property space.
ASSERT(object->HasFastProperties());
ASSERT(object->map()->unused_property_fields() == 0);
// Expand the properties array.
FixedArray* old_storage = object->properties();
int new_unused = transition->unused_property_fields();
int new_size = old_storage->length() + new_unused + 1;
Object* result;
{ MaybeObject* maybe_result = old_storage->CopySize(new_size);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
FixedArray* new_storage = FixedArray::cast(result);
new_storage->set(old_storage->length(), value);
// Set the new property value and do the map transition.
object->set_properties(new_storage);
object->set_map(transition);
// Return the stored value.
return value;
}
// Used from ic-<arch>.cc.
MUST_USE_RESULT MaybeObject* KeyedStoreIC_Miss(Arguments args) {
NoHandleAllocation na;
ASSERT(args.length() == 3);
KeyedStoreIC ic;
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
return ic.Store(state, args.at<Object>(0), args.at<Object>(1),
args.at<Object>(2));
}
void BinaryOpIC::patch(Code* code) {
set_target(code);
}
const char* BinaryOpIC::GetName(TypeInfo type_info) {
switch (type_info) {
case UNINIT_OR_SMI: return "UninitOrSmi";
case DEFAULT: return "Default";
case GENERIC: return "Generic";
case HEAP_NUMBERS: return "HeapNumbers";
case STRINGS: return "Strings";
default: return "Invalid";
}
}
BinaryOpIC::State BinaryOpIC::ToState(TypeInfo type_info) {
switch (type_info) {
case UNINIT_OR_SMI:
return UNINITIALIZED;
case DEFAULT:
case HEAP_NUMBERS:
case STRINGS:
return MONOMORPHIC;
case GENERIC:
return MEGAMORPHIC;
}
UNREACHABLE();
return UNINITIALIZED;
}
BinaryOpIC::TypeInfo BinaryOpIC::GetTypeInfo(Object* left,
Object* right) {
if (left->IsSmi() && right->IsSmi()) {
// If we have two smi inputs we can reach here because
// of an overflow. Enter default state.
return DEFAULT;
}
if (left->IsNumber() && right->IsNumber()) {
return HEAP_NUMBERS;
}
if (left->IsString() || right->IsString()) {
// Patching for fast string ADD makes sense even if only one of the
// arguments is a string.
return STRINGS;
}
return GENERIC;
}
// defined in code-stubs-<arch>.cc
Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info);
MUST_USE_RESULT MaybeObject* BinaryOp_Patch(Arguments args) {
ASSERT(args.length() == 5);
HandleScope scope;
Handle<Object> left = args.at<Object>(0);
Handle<Object> right = args.at<Object>(1);
int key = Smi::cast(args[2])->value();
Token::Value op = static_cast<Token::Value>(Smi::cast(args[3])->value());
BinaryOpIC::TypeInfo previous_type =
static_cast<BinaryOpIC::TypeInfo>(Smi::cast(args[4])->value());
BinaryOpIC::TypeInfo type = BinaryOpIC::GetTypeInfo(*left, *right);
Handle<Code> code = GetBinaryOpStub(key, type);
if (!code.is_null()) {
BinaryOpIC ic;
ic.patch(*code);
if (FLAG_trace_ic) {
PrintF("[BinaryOpIC (%s->%s)#%s]\n",
BinaryOpIC::GetName(previous_type),
BinaryOpIC::GetName(type),
Token::Name(op));
}
}
Handle<JSBuiltinsObject> builtins = Top::builtins();
Object* builtin = NULL; // Initialization calms down the compiler.
switch (op) {
case Token::ADD:
builtin = builtins->javascript_builtin(Builtins::ADD);
break;
case Token::SUB:
builtin = builtins->javascript_builtin(Builtins::SUB);
break;
case Token::MUL:
builtin = builtins->javascript_builtin(Builtins::MUL);
break;
case Token::DIV:
builtin = builtins->javascript_builtin(Builtins::DIV);
break;
case Token::MOD:
builtin = builtins->javascript_builtin(Builtins::MOD);
break;
case Token::BIT_AND:
builtin = builtins->javascript_builtin(Builtins::BIT_AND);
break;
case Token::BIT_OR:
builtin = builtins->javascript_builtin(Builtins::BIT_OR);
break;
case Token::BIT_XOR:
builtin = builtins->javascript_builtin(Builtins::BIT_XOR);
break;
case Token::SHR:
builtin = builtins->javascript_builtin(Builtins::SHR);
break;
case Token::SAR:
builtin = builtins->javascript_builtin(Builtins::SAR);
break;
case Token::SHL:
builtin = builtins->javascript_builtin(Builtins::SHL);
break;
default:
UNREACHABLE();
}
Handle<JSFunction> builtin_function(JSFunction::cast(builtin));
bool caught_exception;
Object** builtin_args[] = { right.location() };
Handle<Object> result = Execution::Call(builtin_function,
left,
ARRAY_SIZE(builtin_args),
builtin_args,
&caught_exception);
if (caught_exception) {
return Failure::Exception();
}
return *result;
}
void TRBinaryOpIC::patch(Code* code) {
set_target(code);
}
const char* TRBinaryOpIC::GetName(TypeInfo type_info) {
switch (type_info) {
case UNINITIALIZED: return "Uninitialized";
case SMI: return "SMI";
case INT32: return "Int32s";
case HEAP_NUMBER: return "HeapNumbers";
case STRING: return "Strings";
case GENERIC: return "Generic";
default: return "Invalid";
}
}
TRBinaryOpIC::State TRBinaryOpIC::ToState(TypeInfo type_info) {
switch (type_info) {
case UNINITIALIZED:
return ::v8::internal::UNINITIALIZED;
case SMI:
case INT32:
case HEAP_NUMBER:
case STRING:
return MONOMORPHIC;
case GENERIC:
return MEGAMORPHIC;
}
UNREACHABLE();
return ::v8::internal::UNINITIALIZED;
}
TRBinaryOpIC::TypeInfo TRBinaryOpIC::JoinTypes(TRBinaryOpIC::TypeInfo x,
TRBinaryOpIC::TypeInfo y) {
if (x == UNINITIALIZED) return y;
if (y == UNINITIALIZED) return x;
if (x == STRING && y == STRING) return STRING;
if (x == STRING || y == STRING) return GENERIC;
if (x >= y) return x;
return y;
}
TRBinaryOpIC::TypeInfo TRBinaryOpIC::GetTypeInfo(Handle<Object> left,
Handle<Object> right) {
::v8::internal::TypeInfo left_type =
::v8::internal::TypeInfo::TypeFromValue(left);
::v8::internal::TypeInfo right_type =
::v8::internal::TypeInfo::TypeFromValue(right);
if (left_type.IsSmi() && right_type.IsSmi()) {
return SMI;
}
if (left_type.IsInteger32() && right_type.IsInteger32()) {
return INT32;
}
if (left_type.IsNumber() && right_type.IsNumber()) {
return HEAP_NUMBER;
}
if (left_type.IsString() || right_type.IsString()) {
// Patching for fast string ADD makes sense even if only one of the
// arguments is a string.
return STRING;
}
return GENERIC;
}
// defined in code-stubs-<arch>.cc
// Only needed to remove dependency of ic.cc on code-stubs-<arch>.h.
Handle<Code> GetTypeRecordingBinaryOpStub(int key,
TRBinaryOpIC::TypeInfo type_info,
TRBinaryOpIC::TypeInfo result_type);
MaybeObject* TypeRecordingBinaryOp_Patch(Arguments args) {
ASSERT(args.length() == 5);
HandleScope scope;
Handle<Object> left = args.at<Object>(0);
Handle<Object> right = args.at<Object>(1);
int key = Smi::cast(args[2])->value();
Token::Value op = static_cast<Token::Value>(Smi::cast(args[3])->value());
TRBinaryOpIC::TypeInfo previous_type =
static_cast<TRBinaryOpIC::TypeInfo>(Smi::cast(args[4])->value());
TRBinaryOpIC::TypeInfo type = TRBinaryOpIC::GetTypeInfo(left, right);
type = TRBinaryOpIC::JoinTypes(type, previous_type);
TRBinaryOpIC::TypeInfo result_type = TRBinaryOpIC::UNINITIALIZED;
if (type == TRBinaryOpIC::STRING && op != Token::ADD) {
type = TRBinaryOpIC::GENERIC;
}
if (type == TRBinaryOpIC::SMI &&
previous_type == TRBinaryOpIC::SMI) {
if (op == Token::DIV || op == Token::MUL) {
// Arithmetic on two Smi inputs has yielded a heap number.
// That is the only way to get here from the Smi stub.
result_type = TRBinaryOpIC::HEAP_NUMBER;
} else {
// Other operations on SMIs that overflow yield int32s.
result_type = TRBinaryOpIC::INT32;
}
}
if (type == TRBinaryOpIC::INT32 &&
previous_type == TRBinaryOpIC::INT32) {
// We must be here because an operation on two INT32 types overflowed.
result_type = TRBinaryOpIC::HEAP_NUMBER;
}
Handle<Code> code = GetTypeRecordingBinaryOpStub(key, type, result_type);
if (!code.is_null()) {
if (FLAG_trace_ic) {
PrintF("[TypeRecordingBinaryOpIC (%s->(%s->%s))#%s]\n",
TRBinaryOpIC::GetName(previous_type),
TRBinaryOpIC::GetName(type),
TRBinaryOpIC::GetName(result_type),
Token::Name(op));
}
TRBinaryOpIC ic;
ic.patch(*code);
// Activate inlined smi code.
if (previous_type == TRBinaryOpIC::UNINITIALIZED) {
PatchInlinedSmiCode(ic.address());
}
}
Handle<JSBuiltinsObject> builtins = Top::builtins();
Object* builtin = NULL; // Initialization calms down the compiler.
switch (op) {
case Token::ADD:
builtin = builtins->javascript_builtin(Builtins::ADD);
break;
case Token::SUB:
builtin = builtins->javascript_builtin(Builtins::SUB);
break;
case Token::MUL:
builtin = builtins->javascript_builtin(Builtins::MUL);
break;
case Token::DIV:
builtin = builtins->javascript_builtin(Builtins::DIV);
break;
case Token::MOD:
builtin = builtins->javascript_builtin(Builtins::MOD);
break;
case Token::BIT_AND:
builtin = builtins->javascript_builtin(Builtins::BIT_AND);
break;
case Token::BIT_OR:
builtin = builtins->javascript_builtin(Builtins::BIT_OR);
break;
case Token::BIT_XOR:
builtin = builtins->javascript_builtin(Builtins::BIT_XOR);
break;
case Token::SHR:
builtin = builtins->javascript_builtin(Builtins::SHR);
break;
case Token::SAR:
builtin = builtins->javascript_builtin(Builtins::SAR);
break;
case Token::SHL:
builtin = builtins->javascript_builtin(Builtins::SHL);
break;
default:
UNREACHABLE();
}
Handle<JSFunction> builtin_function(JSFunction::cast(builtin));
bool caught_exception;
Object** builtin_args[] = { right.location() };
Handle<Object> result = Execution::Call(builtin_function,
left,
ARRAY_SIZE(builtin_args),
builtin_args,
&caught_exception);
if (caught_exception) {
return Failure::Exception();
}
return *result;
}
Handle<Code> CompareIC::GetUninitialized(Token::Value op) {
ICCompareStub stub(op, UNINITIALIZED);
return stub.GetCode();
}
CompareIC::State CompareIC::ComputeState(Code* target) {
int key = target->major_key();
if (key == CodeStub::Compare) return GENERIC;
ASSERT(key == CodeStub::CompareIC);
return static_cast<State>(target->compare_state());
}
const char* CompareIC::GetStateName(State state) {
switch (state) {
case UNINITIALIZED: return "UNINITIALIZED";
case SMIS: return "SMIS";
case HEAP_NUMBERS: return "HEAP_NUMBERS";
case OBJECTS: return "OBJECTS";
case GENERIC: return "GENERIC";
default:
UNREACHABLE();
return NULL;
}
}
CompareIC::State CompareIC::TargetState(State state,
bool has_inlined_smi_code,
Handle<Object> x,
Handle<Object> y) {
if (!has_inlined_smi_code && state != UNINITIALIZED) return GENERIC;
if (state == UNINITIALIZED && x->IsSmi() && y->IsSmi()) return SMIS;
if ((state == UNINITIALIZED || (state == SMIS && has_inlined_smi_code)) &&
x->IsNumber() && y->IsNumber()) return HEAP_NUMBERS;
if (op_ != Token::EQ && op_ != Token::EQ_STRICT) return GENERIC;
if (state == UNINITIALIZED &&
x->IsJSObject() && y->IsJSObject()) return OBJECTS;
return GENERIC;
}
// Used from ic_<arch>.cc.
Code* CompareIC_Miss(Arguments args) {
NoHandleAllocation na;
ASSERT(args.length() == 3);
CompareIC ic(static_cast<Token::Value>(Smi::cast(args[2])->value()));
ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
return ic.target();
}
static Address IC_utilities[] = {
#define ADDR(name) FUNCTION_ADDR(name),
IC_UTIL_LIST(ADDR)
NULL
#undef ADDR
};
Address IC::AddressFromUtilityId(IC::UtilityId id) {
return IC_utilities[id];
}
} } // namespace v8::internal