v8/src/compiler.h

682 lines
22 KiB
C
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_COMPILER_H_
#define V8_COMPILER_H_
#include "allocation.h"
#include "ast.h"
#include "zone.h"
namespace v8 {
namespace internal {
class ScriptDataImpl;
class HydrogenCodeStub;
// ParseRestriction is used to restrict the set of valid statements in a
// unit of compilation. Restriction violations cause a syntax error.
enum ParseRestriction {
NO_PARSE_RESTRICTION, // All expressions are allowed.
ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression.
};
struct OffsetRange {
OffsetRange(int from, int to) : from(from), to(to) {}
int from;
int to;
};
// CompilationInfo encapsulates some information known at compile time. It
// is constructed based on the resources available at compile-time.
class CompilationInfo {
public:
CompilationInfo(Handle<JSFunction> closure, Zone* zone);
virtual ~CompilationInfo();
Isolate* isolate() const {
return isolate_;
}
Zone* zone() { return zone_; }
bool is_osr() const { return !osr_ast_id_.IsNone(); }
bool is_lazy() const { return IsLazy::decode(flags_); }
bool is_eval() const { return IsEval::decode(flags_); }
bool is_global() const { return IsGlobal::decode(flags_); }
StrictMode strict_mode() const { return StrictModeField::decode(flags_); }
bool is_in_loop() const { return IsInLoop::decode(flags_); }
FunctionLiteral* function() const { return function_; }
Scope* scope() const { return scope_; }
Static resolution of outer variables in eval code. So far free variables references in eval code are not statically resolved. For example in function foo() { var x = 1; eval("y = x"); } the variable x will get mode DYNAMIC and y will get mode DYNAMIC_GLOBAL, i.e. free variable references trigger dynamic lookups with a fast case handling for global variables. The CL introduces static resolution of free variables references in eval code. If possible variable references are resolved to bindings belonging to outer scopes of the eval call site. This is achieved by deserializing the outer scope chain using Scope::DeserializeScopeChain prior to parsing the eval code similar to lazy parsing of functions. The existing code for variable resolution is used, however resolution starts at the first outer unresolved scope instead of always starting at the root of the scope tree. This is a prerequisite for statically checking validity of assignments in the extended code as specified by the current ES.next draft which will be introduced by a subsequent CL. More specifically section 11.13 of revision 4 of the ES.next draft reads: * It is a Syntax Error if the AssignmentExpression is contained in extended code and the LeftHandSideExpression is an Identifier that does not statically resolve to a declarative environment record binding or if the resolved binding is an immutable binding. TEST=existing tests in mjsunit Review URL: http://codereview.chromium.org/8508052 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9999 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-15 13:48:40 +00:00
Scope* global_scope() const { return global_scope_; }
Handle<Code> code() const { return code_; }
Handle<JSFunction> closure() const { return closure_; }
Handle<SharedFunctionInfo> shared_info() const { return shared_info_; }
Handle<Script> script() const { return script_; }
HydrogenCodeStub* code_stub() const {return code_stub_; }
v8::Extension* extension() const { return extension_; }
ScriptDataImpl* pre_parse_data() const { return pre_parse_data_; }
Handle<Context> context() const { return context_; }
BailoutId osr_ast_id() const { return osr_ast_id_; }
Handle<Code> unoptimized_code() const { return unoptimized_code_; }
int opt_count() const { return opt_count_; }
int num_parameters() const;
int num_heap_slots() const;
Code::Flags flags() const;
void MarkAsEval() {
ASSERT(!is_lazy());
flags_ |= IsEval::encode(true);
}
void MarkAsGlobal() {
ASSERT(!is_lazy());
flags_ |= IsGlobal::encode(true);
}
void set_parameter_count(int parameter_count) {
ASSERT(IsStub());
parameter_count_ = parameter_count;
}
void set_this_has_uses(bool has_no_uses) {
this_has_uses_ = has_no_uses;
}
bool this_has_uses() {
return this_has_uses_;
}
void SetStrictMode(StrictMode strict_mode) {
ASSERT(this->strict_mode() == SLOPPY || this->strict_mode() == strict_mode);
flags_ = StrictModeField::update(flags_, strict_mode);
}
void MarkAsInLoop() {
ASSERT(is_lazy());
flags_ |= IsInLoop::encode(true);
}
void MarkAsNative() {
flags_ |= IsNative::encode(true);
}
bool is_native() const {
return IsNative::decode(flags_);
}
bool is_calling() const {
return is_deferred_calling() || is_non_deferred_calling();
}
void MarkAsDeferredCalling() {
flags_ |= IsDeferredCalling::encode(true);
}
bool is_deferred_calling() const {
return IsDeferredCalling::decode(flags_);
}
void MarkAsNonDeferredCalling() {
flags_ |= IsNonDeferredCalling::encode(true);
}
bool is_non_deferred_calling() const {
return IsNonDeferredCalling::decode(flags_);
}
void MarkAsSavesCallerDoubles() {
flags_ |= SavesCallerDoubles::encode(true);
}
bool saves_caller_doubles() const {
return SavesCallerDoubles::decode(flags_);
}
void MarkAsRequiresFrame() {
flags_ |= RequiresFrame::encode(true);
}
bool requires_frame() const {
return RequiresFrame::decode(flags_);
}
void SetParseRestriction(ParseRestriction restriction) {
flags_ = ParseRestricitonField::update(flags_, restriction);
}
ParseRestriction parse_restriction() const {
return ParseRestricitonField::decode(flags_);
}
void SetFunction(FunctionLiteral* literal) {
ASSERT(function_ == NULL);
function_ = literal;
}
// When the scope is applied, we may have deferred work to do on the function.
void PrepareForCompilation(Scope* scope);
Static resolution of outer variables in eval code. So far free variables references in eval code are not statically resolved. For example in function foo() { var x = 1; eval("y = x"); } the variable x will get mode DYNAMIC and y will get mode DYNAMIC_GLOBAL, i.e. free variable references trigger dynamic lookups with a fast case handling for global variables. The CL introduces static resolution of free variables references in eval code. If possible variable references are resolved to bindings belonging to outer scopes of the eval call site. This is achieved by deserializing the outer scope chain using Scope::DeserializeScopeChain prior to parsing the eval code similar to lazy parsing of functions. The existing code for variable resolution is used, however resolution starts at the first outer unresolved scope instead of always starting at the root of the scope tree. This is a prerequisite for statically checking validity of assignments in the extended code as specified by the current ES.next draft which will be introduced by a subsequent CL. More specifically section 11.13 of revision 4 of the ES.next draft reads: * It is a Syntax Error if the AssignmentExpression is contained in extended code and the LeftHandSideExpression is an Identifier that does not statically resolve to a declarative environment record binding or if the resolved binding is an immutable binding. TEST=existing tests in mjsunit Review URL: http://codereview.chromium.org/8508052 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9999 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-15 13:48:40 +00:00
void SetGlobalScope(Scope* global_scope) {
ASSERT(global_scope_ == NULL);
global_scope_ = global_scope;
}
void SetCode(Handle<Code> code) { code_ = code; }
void SetExtension(v8::Extension* extension) {
ASSERT(!is_lazy());
extension_ = extension;
}
void SetPreParseData(ScriptDataImpl* pre_parse_data) {
ASSERT(!is_lazy());
pre_parse_data_ = pre_parse_data;
}
void SetContext(Handle<Context> context) {
context_ = context;
}
void MarkCompilingForDebugging() {
flags_ |= IsCompilingForDebugging::encode(true);
}
bool IsCompilingForDebugging() {
return IsCompilingForDebugging::decode(flags_);
}
void MarkNonOptimizable() {
SetMode(CompilationInfo::NONOPT);
}
bool ShouldTrapOnDeopt() const {
return (FLAG_trap_on_deopt && IsOptimizing()) ||
(FLAG_trap_on_stub_deopt && IsStub());
}
bool has_global_object() const {
return !closure().is_null() &&
(closure()->context()->global_object() != NULL);
}
GlobalObject* global_object() const {
return has_global_object() ? closure()->context()->global_object() : NULL;
}
// Accessors for the different compilation modes.
bool IsOptimizing() const { return mode_ == OPTIMIZE; }
bool IsOptimizable() const { return mode_ == BASE; }
bool IsStub() const { return mode_ == STUB; }
void SetOptimizing(BailoutId osr_ast_id, Handle<Code> unoptimized) {
ASSERT(!shared_info_.is_null());
SetMode(OPTIMIZE);
osr_ast_id_ = osr_ast_id;
unoptimized_code_ = unoptimized;
optimization_id_ = isolate()->NextOptimizationId();
}
void DisableOptimization();
// Deoptimization support.
bool HasDeoptimizationSupport() const {
return SupportsDeoptimization::decode(flags_);
}
void EnableDeoptimizationSupport() {
ASSERT(IsOptimizable());
flags_ |= SupportsDeoptimization::encode(true);
}
// Determines whether or not to insert a self-optimization header.
bool ShouldSelfOptimize();
void set_deferred_handles(DeferredHandles* deferred_handles) {
ASSERT(deferred_handles_ == NULL);
deferred_handles_ = deferred_handles;
}
ZoneList<Handle<HeapObject> >* dependencies(
DependentCode::DependencyGroup group) {
if (dependencies_[group] == NULL) {
dependencies_[group] = new(zone_) ZoneList<Handle<HeapObject> >(2, zone_);
}
return dependencies_[group];
}
void CommitDependencies(Handle<Code> code);
void RollbackDependencies();
void SaveHandles() {
SaveHandle(&closure_);
SaveHandle(&shared_info_);
SaveHandle(&context_);
SaveHandle(&script_);
SaveHandle(&unoptimized_code_);
}
BailoutReason bailout_reason() const { return bailout_reason_; }
void set_bailout_reason(BailoutReason reason) { bailout_reason_ = reason; }
int prologue_offset() const {
ASSERT_NE(Code::kPrologueOffsetNotSet, prologue_offset_);
return prologue_offset_;
}
void set_prologue_offset(int prologue_offset) {
ASSERT_EQ(Code::kPrologueOffsetNotSet, prologue_offset_);
prologue_offset_ = prologue_offset;
}
// Adds offset range [from, to) where fp register does not point
// to the current frame base. Used in CPU profiler to detect stack
// samples where top frame is not set up.
inline void AddNoFrameRange(int from, int to) {
if (no_frame_ranges_) no_frame_ranges_->Add(OffsetRange(from, to));
}
List<OffsetRange>* ReleaseNoFrameRanges() {
List<OffsetRange>* result = no_frame_ranges_;
no_frame_ranges_ = NULL;
return result;
}
Handle<Foreign> object_wrapper() {
if (object_wrapper_.is_null()) {
object_wrapper_ =
isolate()->factory()->NewForeign(reinterpret_cast<Address>(this));
}
return object_wrapper_;
}
void AbortDueToDependencyChange() {
ASSERT(!OptimizingCompilerThread::IsOptimizerThread(isolate()));
abort_due_to_dependency_ = true;
}
bool HasAbortedDueToDependencyChange() {
ASSERT(!OptimizingCompilerThread::IsOptimizerThread(isolate()));
return abort_due_to_dependency_;
}
bool HasSameOsrEntry(Handle<JSFunction> function, BailoutId osr_ast_id) {
return osr_ast_id_ == osr_ast_id && function.is_identical_to(closure_);
}
int optimization_id() const { return optimization_id_; }
protected:
CompilationInfo(Handle<Script> script,
Zone* zone);
CompilationInfo(Handle<SharedFunctionInfo> shared_info,
Zone* zone);
CompilationInfo(HydrogenCodeStub* stub,
Isolate* isolate,
Zone* zone);
private:
Isolate* isolate_;
// Compilation mode.
// BASE is generated by the full codegen, optionally prepared for bailouts.
// OPTIMIZE is optimized code generated by the Hydrogen-based backend.
// NONOPT is generated by the full codegen and is not prepared for
// recompilation/bailouts. These functions are never recompiled.
enum Mode {
BASE,
OPTIMIZE,
NONOPT,
STUB
};
void Initialize(Isolate* isolate, Mode mode, Zone* zone);
void SetMode(Mode mode) {
ASSERT(isolate()->use_crankshaft());
mode_ = mode;
}
// Flags using template class BitField<type, start, length>. All are
// false by default.
//
// Compilation is either eager or lazy.
class IsLazy: public BitField<bool, 0, 1> {};
// Flags that can be set for eager compilation.
class IsEval: public BitField<bool, 1, 1> {};
class IsGlobal: public BitField<bool, 2, 1> {};
// Flags that can be set for lazy compilation.
class IsInLoop: public BitField<bool, 3, 1> {};
// Strict mode - used in eager compilation.
class StrictModeField: public BitField<StrictMode, 4, 1> {};
// Is this a function from our natives.
class IsNative: public BitField<bool, 5, 1> {};
// Is this code being compiled with support for deoptimization..
class SupportsDeoptimization: public BitField<bool, 6, 1> {};
// If compiling for debugging produce just full code matching the
// initial mode setting.
class IsCompilingForDebugging: public BitField<bool, 7, 1> {};
// If the compiled code contains calls that require building a frame
class IsCalling: public BitField<bool, 8, 1> {};
// If the compiled code contains calls that require building a frame
class IsDeferredCalling: public BitField<bool, 9, 1> {};
// If the compiled code contains calls that require building a frame
class IsNonDeferredCalling: public BitField<bool, 10, 1> {};
// If the compiled code saves double caller registers that it clobbers.
class SavesCallerDoubles: public BitField<bool, 11, 1> {};
// If the set of valid statements is restricted.
class ParseRestricitonField: public BitField<ParseRestriction, 12, 1> {};
// If the function requires a frame (for unspecified reasons)
class RequiresFrame: public BitField<bool, 13, 1> {};
unsigned flags_;
// Fields filled in by the compilation pipeline.
// AST filled in by the parser.
FunctionLiteral* function_;
// The scope of the function literal as a convenience. Set to indicate
// that scopes have been analyzed.
Scope* scope_;
Static resolution of outer variables in eval code. So far free variables references in eval code are not statically resolved. For example in function foo() { var x = 1; eval("y = x"); } the variable x will get mode DYNAMIC and y will get mode DYNAMIC_GLOBAL, i.e. free variable references trigger dynamic lookups with a fast case handling for global variables. The CL introduces static resolution of free variables references in eval code. If possible variable references are resolved to bindings belonging to outer scopes of the eval call site. This is achieved by deserializing the outer scope chain using Scope::DeserializeScopeChain prior to parsing the eval code similar to lazy parsing of functions. The existing code for variable resolution is used, however resolution starts at the first outer unresolved scope instead of always starting at the root of the scope tree. This is a prerequisite for statically checking validity of assignments in the extended code as specified by the current ES.next draft which will be introduced by a subsequent CL. More specifically section 11.13 of revision 4 of the ES.next draft reads: * It is a Syntax Error if the AssignmentExpression is contained in extended code and the LeftHandSideExpression is an Identifier that does not statically resolve to a declarative environment record binding or if the resolved binding is an immutable binding. TEST=existing tests in mjsunit Review URL: http://codereview.chromium.org/8508052 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9999 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-15 13:48:40 +00:00
// The global scope provided as a convenience.
Scope* global_scope_;
// For compiled stubs, the stub object
HydrogenCodeStub* code_stub_;
// The compiled code.
Handle<Code> code_;
// Possible initial inputs to the compilation process.
Handle<JSFunction> closure_;
Handle<SharedFunctionInfo> shared_info_;
Handle<Script> script_;
// Fields possibly needed for eager compilation, NULL by default.
v8::Extension* extension_;
ScriptDataImpl* pre_parse_data_;
// The context of the caller for eval code, and the global context for a
// global script. Will be a null handle otherwise.
Handle<Context> context_;
// Compilation mode flag and whether deoptimization is allowed.
Mode mode_;
BailoutId osr_ast_id_;
// The unoptimized code we patched for OSR may not be the shared code
// afterwards, since we may need to compile it again to include deoptimization
// data. Keep track which code we patched.
Handle<Code> unoptimized_code_;
// Flag whether compilation needs to be aborted due to dependency change.
bool abort_due_to_dependency_;
// The zone from which the compilation pipeline working on this
// CompilationInfo allocates.
Zone* zone_;
DeferredHandles* deferred_handles_;
ZoneList<Handle<HeapObject> >* dependencies_[DependentCode::kGroupCount];
template<typename T>
void SaveHandle(Handle<T> *object) {
if (!object->is_null()) {
Handle<T> handle(*(*object));
*object = handle;
}
}
BailoutReason bailout_reason_;
int prologue_offset_;
List<OffsetRange>* no_frame_ranges_;
// A copy of shared_info()->opt_count() to avoid handle deref
// during graph optimization.
int opt_count_;
// Number of parameters used for compilation of stubs that require arguments.
int parameter_count_;
bool this_has_uses_;
Handle<Foreign> object_wrapper_;
int optimization_id_;
DISALLOW_COPY_AND_ASSIGN(CompilationInfo);
};
// Exactly like a CompilationInfo, except also creates and enters a
// Zone on construction and deallocates it on exit.
class CompilationInfoWithZone: public CompilationInfo {
public:
explicit CompilationInfoWithZone(Handle<Script> script)
: CompilationInfo(script, &zone_),
zone_(script->GetIsolate()) {}
explicit CompilationInfoWithZone(Handle<SharedFunctionInfo> shared_info)
: CompilationInfo(shared_info, &zone_),
zone_(shared_info->GetIsolate()) {}
explicit CompilationInfoWithZone(Handle<JSFunction> closure)
: CompilationInfo(closure, &zone_),
zone_(closure->GetIsolate()) {}
CompilationInfoWithZone(HydrogenCodeStub* stub, Isolate* isolate)
: CompilationInfo(stub, isolate, &zone_),
zone_(isolate) {}
// Virtual destructor because a CompilationInfoWithZone has to exit the
// zone scope and get rid of dependent maps even when the destructor is
// called when cast as a CompilationInfo.
virtual ~CompilationInfoWithZone() {
RollbackDependencies();
}
private:
Zone zone_;
};
// A wrapper around a CompilationInfo that detaches the Handles from
// the underlying DeferredHandleScope and stores them in info_ on
// destruction.
class CompilationHandleScope BASE_EMBEDDED {
public:
explicit CompilationHandleScope(CompilationInfo* info)
: deferred_(info->isolate()), info_(info) {}
~CompilationHandleScope() {
info_->set_deferred_handles(deferred_.Detach());
}
private:
DeferredHandleScope deferred_;
CompilationInfo* info_;
};
class HGraph;
class HOptimizedGraphBuilder;
class LChunk;
// A helper class that calls the three compilation phases in
// Crankshaft and keeps track of its state. The three phases
// CreateGraph, OptimizeGraph and GenerateAndInstallCode can either
// fail, bail-out to the full code generator or succeed. Apart from
// their return value, the status of the phase last run can be checked
// using last_status().
class OptimizedCompileJob: public ZoneObject {
public:
explicit OptimizedCompileJob(CompilationInfo* info)
: info_(info),
graph_builder_(NULL),
graph_(NULL),
chunk_(NULL),
last_status_(FAILED),
awaiting_install_(false) { }
enum Status {
FAILED, BAILED_OUT, SUCCEEDED
};
MUST_USE_RESULT Status CreateGraph();
MUST_USE_RESULT Status OptimizeGraph();
MUST_USE_RESULT Status GenerateCode();
Status last_status() const { return last_status_; }
CompilationInfo* info() const { return info_; }
Isolate* isolate() const { return info()->isolate(); }
MUST_USE_RESULT Status AbortOptimization(
BailoutReason reason = kNoReason) {
if (reason != kNoReason) info_->set_bailout_reason(reason);
return SetLastStatus(BAILED_OUT);
}
MUST_USE_RESULT Status AbortAndDisableOptimization(
BailoutReason reason = kNoReason) {
if (reason != kNoReason) info_->set_bailout_reason(reason);
info_->shared_info()->DisableOptimization(info_->bailout_reason());
return SetLastStatus(BAILED_OUT);
}
void WaitForInstall() {
ASSERT(info_->is_osr());
awaiting_install_ = true;
}
bool IsWaitingForInstall() { return awaiting_install_; }
private:
CompilationInfo* info_;
HOptimizedGraphBuilder* graph_builder_;
HGraph* graph_;
LChunk* chunk_;
TimeDelta time_taken_to_create_graph_;
TimeDelta time_taken_to_optimize_;
TimeDelta time_taken_to_codegen_;
Status last_status_;
bool awaiting_install_;
MUST_USE_RESULT Status SetLastStatus(Status status) {
last_status_ = status;
return last_status_;
}
void RecordOptimizationStats();
struct Timer {
Timer(OptimizedCompileJob* job, TimeDelta* location)
: job_(job), location_(location) {
ASSERT(location_ != NULL);
timer_.Start();
}
~Timer() {
*location_ += timer_.Elapsed();
}
OptimizedCompileJob* job_;
ElapsedTimer timer_;
TimeDelta* location_;
};
};
// The V8 compiler
//
// General strategy: Source code is translated into an anonymous function w/o
// parameters which then can be executed. If the source code contains other
// functions, they will be compiled and allocated as part of the compilation
// of the source code.
// Please note this interface returns shared function infos. This means you
// need to call Factory::NewFunctionFromSharedFunctionInfo before you have a
// real function with a context.
class Compiler : public AllStatic {
public:
static Handle<Code> GetUnoptimizedCode(Handle<JSFunction> function);
static Handle<Code> GetUnoptimizedCode(Handle<SharedFunctionInfo> shared);
static bool EnsureCompiled(Handle<JSFunction> function,
ClearExceptionFlag flag);
static Handle<Code> GetCodeForDebugging(Handle<JSFunction> function);
#ifdef ENABLE_DEBUGGER_SUPPORT
static void CompileForLiveEdit(Handle<Script> script);
#endif
// Compile a String source within a context for eval.
static Handle<JSFunction> GetFunctionFromEval(Handle<String> source,
Handle<Context> context,
StrictMode strict_mode,
ParseRestriction restriction,
int scope_position);
// Compile a String source within a context.
static Handle<SharedFunctionInfo> CompileScript(Handle<String> source,
Handle<Object> script_name,
int line_offset,
int column_offset,
bool is_shared_cross_origin,
Handle<Context> context,
v8::Extension* extension,
ScriptDataImpl* pre_data,
NativesFlag is_natives_code);
// Create a shared function info object (the code may be lazily compiled).
static Handle<SharedFunctionInfo> BuildFunctionInfo(FunctionLiteral* node,
Handle<Script> script);
enum ConcurrencyMode { NOT_CONCURRENT, CONCURRENT };
// Generate and return optimized code or start a concurrent optimization job.
// In the latter case, return the InOptimizationQueue builtin. On failure,
// return the empty handle.
static Handle<Code> GetOptimizedCode(
Handle<JSFunction> function,
Handle<Code> current_code,
ConcurrencyMode mode,
BailoutId osr_ast_id = BailoutId::None());
// Generate and return code from previously queued optimization job.
// On failure, return the empty handle.
static Handle<Code> GetConcurrentlyOptimizedCode(OptimizedCompileJob* job);
static void RecordFunctionCompilation(Logger::LogEventsAndTags tag,
CompilationInfo* info,
Handle<SharedFunctionInfo> shared);
};
class CompilationPhase BASE_EMBEDDED {
public:
CompilationPhase(const char* name, CompilationInfo* info);
~CompilationPhase();
protected:
bool ShouldProduceTraceOutput() const;
const char* name() const { return name_; }
CompilationInfo* info() const { return info_; }
Isolate* isolate() const { return info()->isolate(); }
Zone* zone() { return &zone_; }
private:
const char* name_;
CompilationInfo* info_;
Zone zone_;
unsigned info_zone_start_allocation_size_;
ElapsedTimer timer_;
DISALLOW_COPY_AND_ASSIGN(CompilationPhase);
};
} } // namespace v8::internal
#endif // V8_COMPILER_H_